KR20080106616A - Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc) - Google Patents

Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc) Download PDF

Info

Publication number
KR20080106616A
KR20080106616A KR1020070054227A KR20070054227A KR20080106616A KR 20080106616 A KR20080106616 A KR 20080106616A KR 1020070054227 A KR1020070054227 A KR 1020070054227A KR 20070054227 A KR20070054227 A KR 20070054227A KR 20080106616 A KR20080106616 A KR 20080106616A
Authority
KR
South Korea
Prior art keywords
tuberculosis
dhplc
mutation
tuberculosis bacilli
mycobacterium
Prior art date
Application number
KR1020070054227A
Other languages
Korean (ko)
Inventor
박용현
박수민
정성수
이시흥
장원철
남윤형
안영창
이상현
조민호
Original Assignee
단국대학교 산학협력단
박용현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단, 박용현 filed Critical 단국대학교 산학협력단
Priority to KR1020070054227A priority Critical patent/KR20080106616A/en
Publication of KR20080106616A publication Critical patent/KR20080106616A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/137Chromatographic separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for analyzing the mutation of drug resistant gene of non-tuberculosis bacilli and tuberculosis bacilli, a primer pair for discriminating the mutation of drug resistant gene of tuberculosis bacilli, and a method for discriminating the mutation of drug resistant gene of tuberculosis bacilli by using the primer pair are provided to analyze the mutation of drug resistant gene of tuberculosis bacilli and non-tuberculosis bacilli by using base specific PCR. A method for analyzing the mutation of drug resistant gene of non-tuberculosis bacilli and tuberculosis bacilli comprises the steps of amplifying the gene part coding the RNA polymerasebeta-subunit-encoding gene (rpoB) capable of discriminating tuberculosis bacilli and non-tuberculosis bacilli by using a primer pair by base-specific PCR; and carrying out the denaturing high-performance liquid chromatography (DHPLC) with the obtained PCR product.

Description

변성고성능액체크로마토그래피를 이용한 결핵균 판별방법{Method of detecting Mycobacterium using denaturing high-performance liquid chromatography(DHPLC)}Method of detecting Mycobacterium using denaturing high-performance liquid chromatography (DHPLC)

도1의 (a)는 결핵균의 유전자에서 결핵균(TB:Mycobacterium tuberculosis)과 비결핵균(NTM:nontuberculous mycobacteria, NTM)을 증폭할 수 있는 각각의 primer 위치를 나타내고, (b)는 각 primer들의 sequence를 나타내는 그림이고(TB: M. tuberculosis H37Rv, AVI: M. avium, INT: M. intracellulare, KAN: M. kansasii), Figure 1 (a) is a tuberculosis bacteria (TB: Mycobacterium) tuberculosis ) and the location of each primer to amplify nontuberculous mycobacteria (NTM), (b) is a diagram showing the sequence of each primer (TB: M. tuberculosis H37Rv, AVI: M. avium , INT: M. intracellulare , KAN: M. kansasii ),

도2은 증폭의 유무에 따라 TB와 NTM을 구분 지을 수 있는 PCR 산물의 전기영동 사진이며((a) TB: Tbc1-TbcR5 primer 세트 (235bp) 사용한 PCR 산물 (b) NTM: M5-RM3 primer 세트 (136bp)사용한 PCR 산물),Figure 2 is an electrophoresis picture of a PCR product that can distinguish between TB and NTM depending on the presence or absence of amplification ((a) TB: PCR product using TB: Tbc1-TbcR5 primer set (235bp) (b) NTM: M5-RM3 primer set (136 bp) PCR product used),

도3는 MF-MR primer 세트 (342bp)로 증폭한 산물을 Hae 제한효소RFLP 결과를 나타내는 사진이며((M1) 100bp marker (4) M. TB control, (8) M. TB 531 mutation TCG to TTG, (10) M. avium, (20) M. intracellulare, (M2) 25bp marker, (14) M. TB 526 mutation CAC to GAC, (35) M. TB 526 mutation CAC to TGC, (54) M. parascrofulaceum, (60) M. gordonae, (64) M. terrae (86) M. fortuitum, (89)M. TB 526 mutation CAC to GAC, (M3) Sizing control*),Figure 3 is a photograph showing the Hae III restriction enzyme RFLP results of the product amplified with the MF-MR primer set (342bp) ((M 1 ) 100bp marker (4) M. TB control, (8) M. TB 531 mutation TCG to TTG, (10) M. avium , (20) M. intracellulare , (M 2 ) 25 bp marker, (14) M. TB 526 mutation CAC to GAC, (35) M. TB 526 mutation CAC to TGC, (54 ) M. parascrofulaceum , (60) M. gordonae , (64) M. terrae (86) M. fortuitum , (89) M. TB 526 mutation CAC to GAC, (M 3 ) Sizing control * ),

도4는 MF-MR primer 세트로 증폭한 산물(342bp)을 Hae 제한효소로 처리하여 DHPLC로 분석한 사진이며 (Patterns: (a) M. tuberculosis (b) M. avium (c) M. intracellulare (d) M. parascrofulaceum (e) M. gordonae (f) M. terrae (g) M. fortuitum (h) Sizing control* Figure 4 is a photograph of the product amplified with MF-MR primer set (342bp) treated with Hae III restriction enzyme and analyzed by DHPLC (Patterns: (a) M. tuberculosis (b) M. avium (c) M. intracellulare ) (d) M. parascrofulaceum (e) M. gordonae (f ) M. terrae (g) M. fortuitum (h) Sizing control *

*Fragment Sizes: base pairs(bp) 80, 102, 174, 257, 267, 298, 434, 458, 587) * Fragment Sizes: base pairs (bp ) 80, 102, 174, 257, 267, 298, 434, 458, 587)

도5은 DHPLC를 사용한 약물내성균의 탐지 사진이며((DHPLC 컬럼 온도 : 66℃). Patterns: (a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC), Figure 5 is a photograph of detection of drug-resistant bacteria using DHPLC ((DHPLC column temperature: 66 ℃). Patterns: (a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC),

도6은 DHPLC로 분석한 결과들 중 차이가 나는 패턴만 염기서열분석법으로 확인한 그림이다((a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC).Figure 6 is a pattern confirmed only by the sequence analysis of the results of the analysis by DHPLC ((a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC).

본 발명은 분자 유전학적 기법을 이용하여 결핵균의 특이적 부분을 증폭하고 이를 변성고성능액체크로마토그래피(Denaturing High-Performance Liquid Chromatography, DHPLC)를 사용하여 부수적인 효소 사용이나 전기영동 없이 결핵균과 비결핵항산성균의 감별도 가능하게 하는 분석 방법에 관한 것이다.The present invention amplifies specific parts of Mycobacterium tuberculosis using molecular genetic techniques, and uses it to denature high-performance liquid chromatography (DHPLC) without the use of additional enzymes or electrophoresis. It also relates to analytical methods that enable the differentiation of.

지난 10년간 미국에서 발생한 Mycobacterium의 발생 빈도를 보면, 결핵(Mycobacterium tuberculosis, TB)이 전체의 50%를 차지하고 비결핵항산성균(nontuberculous mycobacteria, NTM)이 나머지 50%를 차지하고 있다. 그러나 국내에서는 93% 이상이 결핵 감염이고, 비결핵항산성균에 의한 감염이 3~10%의 빈도로 발생하고 있다. 결핵은 항 결핵제의 효율적인 사용으로 1980년대 말까지는 계속 감소하는 추세였으나 1990년대에 내성결핵균의 증가와 후천성면역결핍 환자의 증가 등으로 점차 증가하는 추세이다. 특히 국내에는 IMF에 의한 노숙자의 증가 등으로 현재 결핵으로 인한 사망이 감염질환 중에서 가장 높고 연 3000명 이상이 결핵으로 인해 사망한다고 보고되고 있다.When the frequency of occurrence of the last 10 years occurred in the United States Mycobacterium tuberculosis (Mycobacterium tuberculosis, TB) accounts for 50% of total non-tuberculosis hangsanseonggyun (nontuberculous mycobacteria, NTM) have accounted for the remaining 50%. However, more than 93% of tuberculosis infections in Korea are caused by non-tuberculosis acidophilic bacteria, which occur 3 to 10% of the time. Tuberculosis has continued to decline until the late 1980s due to the effective use of anti-tuberculosis drugs, but it has been gradually increasing in the 1990s due to the increase in resistant tuberculosis bacteria and the increase in patients with acquired immunodeficiency. Especially in Korea, the death of tuberculosis is the highest among infectious diseases due to the increase of homelessness caused by IMF, and more than 3000 people per year are reported to die from tuberculosis.

비결핵항산성균은 임상적으로 대부분 면역저하 환자나, 노약자에서 병을 일으키고 임상소견은 결핵과 유사하다. 비록 국내에는 상대적으로 결핵에 비해 발생율이 현 저하게 낮지만 생활환경에 널리 분포하고 있어서, 임상가검물로부터 분리되어도 병원성 여부를 판단하기 힘들어 진단이 쉽지 않고, 또한 대부분의 항결핵제에 약제 내성을 보여 치료가 어려우며, 재발율도 높은 것으로 열려져 있다. 또한 이러한 비결핵항산성균은 면역 기능의 저하가 없는 환자에게도 질병을 일으키는 사실이 보고되고 있다. 1980년 이후에 Human immunodeficiency virus(HIV) 감염이 확산되면서, 비결핵항산성균이 면역저하 환자에서 전신적인 파종성 감염을 일으킨다는 것이 알려지면서 비결핵항산성균에 대한 관심이 높아지고 있다.Non-tuberculosis acidophilic bacteria are clinically most immunocompromised, but the elderly are ill and clinical findings are similar to tuberculosis. Although the incidence rate is relatively low compared to tuberculosis in Korea, it is widely distributed in living environment, and it is difficult to determine whether it is pathogenic even if separated from clinical specimens, and diagnosis is not easy. It is difficult and is open to high recurrence rate. In addition, these non-tuberculosis acidophilic bacteria have been reported to cause disease in patients without a decrease in immune function. Since the spread of human immunodeficiency virus (HIV) infection since 1980, it is known that non-tuberculosis acidophilic bacteria cause systemic disseminated infections in immunocompromised patients.

국내에서도 결핵 유병율이 점차 감소하고 있고, 후천성 면역결핍증 환자 및 면역억제재의 사용이 점차 증가하는 추세에 있기 때문에 상대적으로 비결핵항산성균증에 의한 감염의 빈도가 더욱 높아질 가능성이 있다.In Korea, the prevalence of tuberculosis is gradually decreasing, and patients with acquired immunodeficiency syndrome and the use of immunosuppressive agents are gradually increasing. Therefore, the incidence of infections caused by NTB is relatively high.

Mycobacterium 균종은 각 종에 따라 항결핵제 내성 pattern이 서로 다르기 때문에 치료방법이 서로 다른 경우가 많다. 따라서 Mycobacterium 속 균종의 species level로의 감별이 환자를 치유하기 위해서 반드시 필요하다. 생화학적 동정방법은 Mycobacterium 속 균종의 발육 속도가 느리기 때문에 시간이 오래 걸리고 숙련된 사람이 필요하다는 단점이 있다. HPLC(high - performance liquid chromatography), TLC(thin layer liquid chromatography)와 같이 세포벽의 지질 분석에 의한 동정방법이 있으나, 이 방법도 역시 수행하기 까다롭고, 비용이 많이 드는 단점이 있어 소수의 실험실에서만 이용된다. 기존의 Mycobacterium 속 균종 동정 방법은 이 들 균의 발육속도가 느리다는 생물학적인 특성 때문에 진단 동정하는 데에 있어서 시간이 많이 소요되고 (완속발육균→2-3달) 결국 임상적으로 치료시기를 놓칠 수 있다. Mycobacterium spp. Are treated differently because the anti-tuberculosis resistance pattern is different for each species. Therefore, differentiation of species of Mycobacterium spp. Into species level is essential for the healing of patients. The biochemical identification method has the disadvantage that it takes a long time and requires a skilled person because of the slow development of Mycobacterium spp. There are methods for identification by lipid analysis of cell walls, such as high performance liquid chromatography (HPLC) and thin layer liquid chromatography (TLC), but these methods are also difficult to perform and costly. do. Traditional Mycobacterium The identification of genus species is time consuming to identify and diagnose because of the biological nature of the slow growth rate of these organisms (slow growth → 2-3 months).

기존 동정 방법의 문제점을 극복하기 위해서 1990년 대 이후에는 Mycobacterium 속 균종의 계통학적 관계를 잘 나타내는 16S rDNA, RNA polymerase 유전자 등 chronometer molecule을 표적으로 하는 분자 생물학적인 방법을 이용한 진단 방법이 개발된다. 그러나 16S rDNA를 이용한 동정 방법은 한 개체 내의 유전자의 heterogenecity 등 여러 문제점이 보고되고 있다. Mycobacterium 진단에 있어서 기존 chronometer의 문제점을 보완할 수 있는 대체 chronometer molecule의 개발이 시급하다. 대체 chronometer molecule을 이용하면 새로운 균종 진단 방법의 개발이 가능하기 때문에 감염질환 진단 시장에서 큰 비중을 차지하는 결핵 및 비결핵항산성균증 진단 kit의 수입대체 효과 뿐 만 아니라 선진국에 원천기술을 수출하는 효과도 있을 것으로 생각된다. 따라서 대체 chrinometer molecule인 hsp65 유전자를 이용하여 Mycobacterium 속 균종 동정에 이용될 수 있는 새로운 진단방법 개발이 필요하다.In order to overcome the problems of the existing identification methods, Mycobacterium after the 1990s Diagnostic methods using molecular biological methods that target chronometer molecules, such as 16S rDNA and RNA polymerase genes, which show the systematic relationship of the genus species, are developed. However, the identification method using 16S rDNA has been reported a number of problems, such as the heterogeneity of genes in an individual. Mycobacterium There is an urgent need to develop alternative chronometer molecules that can complement the problems of conventional chronometers in diagnostics. The use of alternative chronometer molecules enables the development of new fungal diagnostic methods, as well as the replacement of imported tuberculosis and non-tuberculosis mycobacterium diagnostic kits, which have a large share in the infectious disease diagnosis market, as well as the export of original technologies to developed countries. It is thought to be. Therefore, the Mycobacterium gene using the hsp65 gene, which is an alternative chrinometer molecule There is a need to develop new diagnostic methods that can be used to identify genus species.

이에 본 발명에서는 기존의 시간이 많이 소요되어 약재 치유시기를 놓치는 기존의 동정 및 진단 방법을 대체하여 결핵균의 진단 뿐 만 아니라 비결핵항산성균의 species level로의 감별도 가능하게 하는 유전자를 표적으로 하는 새로운 분자유전 학적 진단법을 개발하였다.Therefore, in the present invention, a new molecule targeting a gene that enables not only the diagnosis of Mycobacterium tuberculosis but also the discrimination of the non-tuberculosis acidophilic species to the species level by replacing the existing identification and diagnosis methods that take a lot of time and miss the medicinal healing time Developed genetic diagnostics.

본 발명은 종래기술로 사용되어왔던 TB, NTM의 종 분류방법과 TB의 약물내성유전자의 돌연변이의 분류방법의 문제점을 해결하기 위한 것으로 본 발명의 목적은 TB, NTM의 특이 유전자 부위를 증폭하고 이를 변성고성능액체크로마토그래피를 사용하여 RFLP방법이나 전기영동 없이 TB, NTM 및 TB의 약물내성 유전자의 돌연변이를 판별하는 분석방법을 제공하는 것이다. The present invention is to solve the problems of the method of classifying the species of TB, NTM and the method of classifying mutations of drug-resistant genes of TB, which has been used in the prior art, and an object of the present invention is to amplify specific gene regions of TB and NTM and By using denaturing high performance liquid chromatography, there is provided an analysis method for identifying mutations in drug-resistant genes of TB, NTM and TB without RFLP method or electrophoresis.

본 발명의 목적은 결핵균과 비결핵균을 구별할 수 있는 RNA polymeraseβ-subunit-encoding gene (rpoB)을 코딩하는 유전자 부분을 프라이머쌍을 이용하여 증폭시키는 염기특이-중합효소연쇄반응단계; 및 상기 PCR 반응을 통해 증폭된 PCR 산물을 변성고성능액체크로마토그래피(Denaturing High-Performance Liquid Chromatography, DHPLC)단계를 포함하는 것을 특징으로 하는 염기특이-중합효소연쇄반응을 이용한 결핵균, 비결핵균 및 결핵균의 약물내성 유전자의 돌연변이를 판별하는 분석방법을 제공하는 것이다.An object of the present invention is a base-specific polymerase chain reaction step of amplifying a portion of the gene encoding the RNA polymeraseβ-subunit-encoding gene ( rpoB ) to distinguish between tuberculosis and non-tuberculosis using a primer pair; And a step of denaturing high-performance liquid chromatography (DHPLC) of the PCR product amplified by the PCR reaction. The present invention provides an analysis method for identifying mutations in drug resistance genes.

본 발명의 또 다른 목적은 결핵균의 약물내성 유전자의 돌연변이를 판별하기 위한 서열번호 1 및 서열번호 2의 프라이머 쌍을 제공하는 것이다.Still another object of the present invention is to provide primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 for determining mutations in drug resistance genes of Mycobacterium tuberculosis.

본 발명의 또 다른 목적은 상기의 프라이머 쌍을 이용한 결핵균의 약물내성 유전자의 돌연변이 군을 감별하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for discriminating a mutant group of drug-resistant genes of Mycobacterium tuberculosis using the above primer pairs.

본 발명은 변성고성능액체크로마토그래피를 이용한 결핵균 판별방법에 관한 것이다.The present invention relates to a method for discriminating Mycobacterium tuberculosis using denatured high performance liquid chromatography.

본 발명은 결핵균과 비결핵균을 구별할 수 있는 RNA polymeraseβ-subunit-encoding gene (rpoB)을 코딩하는 유전자 부분을 프라이머쌍을 이용하여 증폭시키는 염기특이-중합효소연쇄반응단계; 및 상기 PCR 반응을 통해 증폭된 PCR 산물을 변성고성능액체크로마토그래피(Denaturing High-Performance Liquid Chromatography, DHPLC)단계를 포함하는 것을 특징으로 하는 염기특이-중합효소연쇄반응을 이용한 결핵균, 비결핵균 및 결핵균의 약물내성 유전자의 돌연변이를 판별하는 분석방법을 포함한다.The present invention is a base-specific polymerase chain reaction step of amplifying a portion of the gene encoding the RNA polymerase β-subunit-encoding gene ( rpoB ) to distinguish between tuberculosis and non-tuberculosis using a primer pair; And a step of denaturing high-performance liquid chromatography (DHPLC) of the PCR product amplified by the PCR reaction. Assays for determining mutations in drug resistance genes.

본 발명은 결핵균의 약물내성 유전자의 돌연변이를 판별하기 위한 서열번호 1 및 서열번호 2의 프라이머 쌍을 포함한다.The present invention includes primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 for determining mutations in drug resistance genes of Mycobacterium tuberculosis.

본 발명은 상기의 프라이머 쌍을 이용한 결핵균의 약물내성 유전자의 돌연변이 군을 감별하는 방법을 포함한다.The present invention includes a method for discriminating a mutant group of drug-resistant genes of Mycobacterium tuberculosis using the above primer pairs.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

<실시예1; Mycobacterium의 DNA 추출><Example 1; Mycobacterium DNA Extraction>

결핵환자로부터 객담을 받아 Ogawa 배지에서 배양 후 1M NaOH를 1ml 넣어 처리 한 후, 끊는 물에 중탕하여 15분간 끓였다. 이 전처리 한 용액에 PCI-9을 동량 넣고, 12,000rpm에서 원심분리 한 후 상층액을 새로운 튜브에 옮겼다. 여기에 2M sodium acetate와 100% 에탄올을 넣은 후, 세척하여 DNA을 추출하였다. 추출한 DNA를 0.8% agarose gel에서 100V로 30분간 전기영동 (electrophoresis)하여 확인하였다.After receiving sputum from patients with tuberculosis, incubated in Ogawa medium, and then treated with 1ml of 1M NaOH, and boiled for 15 minutes with boiling water. Equivalent amount of PCI-9 was added to this pretreated solution, centrifuged at 12,000 rpm, and the supernatant was transferred to a new tube. 2M sodium acetate and 100% ethanol were added thereto, followed by washing to extract DNA. The extracted DNA was confirmed by electrophoresis for 30 minutes at 100V in 0.8% agarose gel.

<실시예2; 결핵균과 비결핵항산성균의 구별><Example 2; Distinguishing between Mycobacterium tuberculosis and non-tuberculosis acidophilic bacteria>

RNA polymeraseβ-subunit-encoding gene (rpoB)에는 결핵균과 비결핵항산성균의 특이한 뉴클레오티드가 존재한다. 이 차이를 이용해서 Tbc1 (5’-CGT ACG GTC GGC GAG CTG ATC CAA-3’) TbcR5 (5’-C CAC CAG TCG GCG CTT GTG GGT CAA-3’) primer 세트와 M5 (5’-G GAG CGG ATG ACC ACC CAG GAC GTC-3’)-RM3 (5’CAG CGG GTT GTT CTG GTC CAT GAA-3’) primer 세트를 준비하였다. 첫번째 primer 세트는 결핵균으로부터 235bp의 DNA 염기서열이 증폭되고, 두번째 primer 세트는 비결핵항산성균으로부터 136bp의 DNA 염기서열이 증폭된다 (도1). PCR premix (2.5U의 Taq 중합효 소, 250 uM의 dNTP, 1.5 mM MgCl2, 완충액 포함)에 각각의 primer (10 pmol)와 추출한 DNA (2 ul)를 넣어 최종 20 ul가 되게하였다. 이 혼합액을 thermal cycler (Applied Biosystems, USA, GeneAmpPCR System 2700)를 이용하여 초기 변성 단계로 94℃에서 10분간 반응시킨 후, 변성 단계 94℃ 30초, annealing 단계 60℃ 30초, 신장 단계 72℃ 40초의 조건으로 33주기 반응시켰다. 그 후에 마지막 신장 단계로 72℃에서 5분 동안 반응시켰다. 증폭산물을 1.5% agarose gel에서 100V로 30분간 전기영동 (electrophoresis)하여 확인한 결과 도2의 (a)는 235bp의 DNA 염기서열인 결핵균, 도2의 (b)는 136bp의 DNA 염기서열인 비결핵균을 확인할 수 있었다(도2).The RNA polymeraseβ-subunit-encoding gene ( rpoB ) contains specific nucleotides of Mycobacterium tuberculosis and nonmycobacterium tuberculosis. Use this difference to set Tbc1 (5'-CGT ACG GTC GGC GAG CTG ATC CAA-3 ') TbcR5 (5'-C CAC CAG TCG GCG CTT GTG GGT CAA-3') primer set and M5 (5'-G GAG CGG ATG ACC ACC CAG GAC GTC-3 ')-RM3 (5'CAG CGG GTT GTT CTG GTC CAT GAA-3') primer set was prepared. The first primer set is amplified 235bp DNA sequence from Mycobacterium tuberculosis, and the second primer set is amplified 136bp DNA sequence from non-tuberculosis acidophilic bacteria (Figure 1). PCR premix (2.5 U Taq polymerase, 250 uM dNTP, 1.5 mM MgCl 2 , Each primer (10 pmol) and extracted DNA (2 ul) were added to the final buffer to 20 ul. The mixture was reacted at 94 ° C. for 10 minutes in an initial denaturation step using a thermal cycler (Applied Biosystems, USA, GeneAmpPCR System 2700), followed by denaturation step 94 ° C. 30 sec, annealing step 60 ° C. 30 sec, and extension step 72 ° C. 40 The reaction was carried out for 33 cycles under the condition of seconds. Thereafter, the reaction was carried out at 72 ° C. for 5 minutes in the last extension step. The amplification product was confirmed by electrophoresis for 30 minutes at 100 V on a 1.5% agarose gel. As shown in FIG. 2, (a) is a tuberculosis bacterium with a DNA sequence of 235 bp, and (b) is a non-tuberculous bacterium with a sequence of 136 bp. It could be confirmed (Fig. 2).

<실시예4: 제한절편길이다형성을 이용한 동정>Example 4 Identification Using Restriction Section Length Formation

실시예1에서 얻어진 DNA(2 ul)에 Mycobacterium-specific primers인 MF (5’-CGA CCA CTT CGG CAA CCG-3’)과 MR (5’-TCG ATC GGG CAC ATC CGG-3’)를 각각 10 pmol 넣고, PCR premix (2.5U의 Taq 중합효소, 250 uM의 dNTP, 1.5 mM MgCl2, 완충액 포함)의 최종 볼륨이 20 ul가 되게 하여 PCR을 수행하였다. 이 혼합액을 thermal cycler (Applied Biosystems, USA, GeneAmpPCR System 2700)를 이용하여 초기 변성 단계로 94℃에서 10분간 반응시킨 후, 변성 단계 94℃ 30초, annealing 단계 60℃ 30초, 신장 단계 72℃ 40초의 조건으로 33주기 반응시켰다. 얻어진 증폭된 산물을 제한절편길이다형성(restriction fragment length polymorphism, RFLP)를 이용하여 세부적으로 동정하였다. 제한효소는 Hae (Promega Corporation, USA)를 사용하여 37℃에서 1시간 동안 반응시켰다. 이 후 3% agarose gel에서 100V로 35분간 전기영동 하여 확인 하였다. 확인한 결과 결핵균인 TB는 레인3에서 확인되었으며 레인7, 레인 8, 레인13에서는 TB의 돌연변이까지 관찰할 수 있었으며 비결핵균인 NTM은 레인4(M. avium), 레인5(M. intracellulare), 레인9(M. parascrofulaceum), 레인10(M. gordonae), 레인11(M. terrae), 레인12(M. fortuitum)에서 관찰할 수 있었다. (도3. 레인1:(M1) 100bp marker, 레인2: (4) M. TB control, 레인3:(8) M. TB 531 mutation TCG to TTG, 레인4:(10) M. avium, 레인5:(20) M. intracellulare, 레인6:(M2) 25bp marker, 레인7:(14) M. TB 526 mutation CAC to GAC, 레인8:(35) M. TB 526 mutation CAC to TGC, 레인9:(54) M. parascrofulaceum, 레인10:(60) M. gordonae, 레인11:(64) M. terrae , 레인12: (86) M. fortuitum, 레인13:(89) M. TB 526 mutation CAC to GAC, 레인14:(M3) Sizing control* In the DNA (2 ul) obtained in Example 1, Mycobacterium- specific primers MF (5'-CGA CCA CTT CGG CAA CCG-3 ') and MR (5'-TCG ATC GGG CAC ATC CGG-3'), respectively, were prepared. Pmol was added and PCR was performed with a final volume of 20 μl of the PCR premix (2.5 U Taq polymerase, 250 uM dNTP, 1.5 mM MgCl 2 , buffer). The mixture was reacted at 94 ° C. for 10 minutes in an initial denaturation step using a thermal cycler (Applied Biosystems, USA, GeneAmpPCR System 2700), followed by denaturation step 94 ° C. 30 sec, annealing step 60 ° C. 30 sec, and extension step 72 ° C. 40 The reaction was carried out for 33 cycles under the condition of seconds. The resulting amplified product was identified in detail using restriction fragment length polymorphism (RFLP). Restriction enzyme was reacted for 1 hour at 37 ℃ using Hae III (Promega Corporation, USA). After that, electrophoresis was performed for 35 minutes at 100V in 3% agarose gel. As a result, TB was identified in lane 3 and TB mutations were observed in lane 7, lane 8 and lane 13. Non-tuberculosis NTM was detected in lane 4 ( M. avium ), lane 5 ( M. intracellulare ) and lane. 9 ( M. parascrofulaceum ), lane 10 ( M. gordonae ), lane 11 ( M. terrae ), lane 12 ( M. fortuitum ). (Fig. 3 lane 1: (M 1) 100bp marker , Lane 2: (4) M. TB control , lane 3: (8) M. TB 531 mutation TCG to TTG, Lane 4: (10) M. avium, Lane 5: (20) M. intracellulare , lane 6: (M 2 ) 25 bp marker, lane 7: (14) M. TB 526 mutation CAC to GAC, lane 8: (35) M. TB 526 mutation CAC to TGC, Lane 9: (54) M. parascrofulaceum , lane 10: (60) M. gordonae , lane 11: (64) M. terrae , lane 12: (86) M. fortuitum , lane 13: (89) M. TB 526 mutation CAC to GAC, lane 14: (M 3 ) Sizing control *

*Fragment Sizes: base pairs(bp) 80, 102, 174, 257, 267, 298, 434, 458, 587). * Fragment Sizes: base pairs (bp ) 80, 102, 174, 257, 267, 298, 434, 458, 587).

또한 MF-MR primer 세트로 증폭한 산물(342bp)을 Hae 제한효소로 처리하여 DHPLC 분석 방법 중 하나인 non-denaturing 방법을 이용하여 제한효소로 처리된 PCR증폭 산물을 길이에 따라 분석하였다. 이 분석 방법은 DNA단편의 길이가 길수록 컬럼에 머무르는 시간이 길다는 원리를 이용하여 제한효소로 잘려진 DNA 단편들의 길이에 따라 DHPLC의 패턴이 달라지는 것이다. 분석한 결과, 도4에서 보는 바와 같이 결핵균은 (a) M. tuberculosis , 비결핵균은 (b) M. avium (c) M. intracellulare (d) M. parascrofulaceum (e) M. gordonae (f) M. terrae (g) M. fortuitum 인 것으로 확인되었다. (h) Sizing control* In addition, the product amplified with MF-MR primer set (342bp) was treated with Hae III restriction enzyme, and the PCR amplification product treated with restriction enzyme was analyzed by length using non-denaturing method, one of DHPLC analysis methods. This analysis method uses the principle that the longer the DNA fragment is, the longer the residence time in the column, and the pattern of DHPLC varies according to the length of DNA fragments cut by restriction enzyme. As shown in Figure 4, the tuberculosis bacteria (a) M. tuberculosis , non-tuberculosis bacteria (b) M. avium (c) M. intracellulare (d) M. parascrofulaceum (e) M. gordonae (f ) M . terrae (g) M. fortuitum It was confirmed to be. (h) Sizing control *

(*Fragment Sizes: base pairs(bp) 80, 102, 174, 257, 267, 298, 434, 458, 587,)( * Fragment Sizes: base pairs (bp) 80, 102, 174, 257, 267, 298, 434, 458, 587,)

<실시예5; DHPLC를 이용한 약물내성결핵균 탐지><Example 5; Detection of Drug-Resistant Mycobacterium Tuberculosis Using DHPLC>

항생제에 저항성을 가지는 TB는 약재를 처리하여도 저항성을 가지고 있으므로 환자가 치료되기 어렵다. 따라서 환자에게 알맞은 약재를 제공하기 위해서는 약물내성결핵균의 돌연변이 여부를 검사하여야 하는데 기존의 방법은 항생제 테스트를 거쳐야 하므로 시간이 오래 걸려 환자가 상태가 나빠지는 경우를 볼 수 있다. 따라서 약물내성결핵균의 빠른 검출이 요구되어져 약물내성결핵균을 검출할수 있는 TR8 (5’-TCG CCG CGA TCA AGG AGT-3’(서열번호1))과 TR9 (5’-TGC ACG TCG CGG ACC TCA-3’(서열번호2)) primer 세트를 이용하여 중합효소연쇄반응을 하였다. 위와 같은 PCR premix에 primer(10 pmol)와 실시예1에서 추출한 DNA(2 ul)를 넣어 최종 20 ul가 되게 하였다. 이 혼합액을 thermal cycler (Applied Biosystems, USA, GeneAmpPCR System 2700)를 이용하여 초기 변성 단계로 94℃에서 10분간 반응시킨 후, 변성 단계 94℃ 30초, annealing 단계 61℃ 30초, 신장 단계 72℃ 40초의 조건으로 33주기로 PCR 반응을 수행하였다. 증폭된 PCR 산물을 thermal cycler를 사용 하여 95℃에서 10분간 변성(denaturation)시킨 후 상온에서 45분간 서서히 reanealing 시켜 heteroduplex를 만든다. 위의 실험을 도5의 TB와 NTB로 예를 들어 설명하면 TB의 PCR 산물과 NTB의 PCR산물을 혼합하여 위의 조건대로 변성시킨 후 상온에서 식히면 이형접합체가 생기게 되고 TB의 TB의 PCR 산물끼리 혼합하는 경우는 동형접합체가 생기게 된다. DHPLC분석 방법에서 이형접합체는 비 상보적인 염기서열을 가지게 되므로 염기서열상의 버블현상이 일어나게 되고 동형접합체는 버블현상이 일어나지 않는다. 따라서 컬럼과의 결합에서 동형접합체가 이형접합체보다 더 단단히 결합하게 되므로 retension time(동형접합체와 이형접합체가 컬럼을 통과하는 시간)이 다르게 되므로 DHPLC에서 다른 패턴의 크로마토그래피가 그려지게 되어 TB와 NTM을 구별할 수 있게 된다. 이 산물을 Transgenomic WAVE system(DHPLC) (Transgenomic, Inc., Omaha, NE, USA)를 이용하여 분석하였다. 65℃에서부터 67℃까지 분석하였고 66℃에서 내성결핵균의 탐지가 가장 잘 되었다. 이동상으로는 0.1 M triehylammonium acetate (TEAA), pH7 (buffer A)와 25% acetonitrile이 포함된 0.1 M TEAA (buffer B)를 사용하였다. 확인한 결과 TB(Mycobacterium tuberculosis ) 도5의(b)는 531 TCG이 TTG으로, (c)는 526 CAC이 GAC으로, (d)는 526 CAC이 TGC으로, (e)는 516 GAC이 GTC으로 돌연변이가 일어나 약물내성 결핵균인 것으로 확인되었고, 이 균들의 염기서열분석을 (주)마크로젠에 의뢰하여 분석한 결과 도5의 결과와 일치하는 것을 확인할 수 있었다(도5-(DHPLC 컬럼 온도 : 66℃). Patterns: (a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC). 다른 patten의 chromatogram들을 가지는 샘플을 염시서열분석기를 사용하여 확인하였다(도6-Patterns: (a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC).TB, which is resistant to antibiotics, is resistant to treatment because the drug is resistant to treatment. Therefore, in order to provide a suitable medicine for patients, the drug-resistant Mycobacterium tuberculosis bacteria should be examined for mutations. However, the conventional method requires an antibiotic test, so it may take a long time for the patient to get worse. Therefore, the rapid detection of drug-resistant Mycobacterium tuberculosis is required so that TR8 (5'-TCG CCG CGA TCA AGG AGT-3 '(SEQ ID NO: 1)) and TR9 (5'-TGC ACG TCG CGG ACC TCA-) The polymerase chain reaction was performed using 3 '(SEQ ID NO: 2) primer set. The primer (10 pmol) and the DNA (2 ul) extracted in Example 1 were added to the PCR premix as described above to make the final 20 ul. The mixture was reacted for 10 minutes at 94 ° C. in an initial denaturation step using a thermal cycler (Applied Biosystems, USA, GeneAmpPCR System 2700), followed by a denaturation step 94 ° C. 30 sec, annealing step 61 ° C. 30 sec, and extension step 72 ° C. 40 PCR reactions were performed in 33 cycles under the conditions of seconds. The amplified PCR product was denatured at 95 ° C. for 10 minutes using a thermal cycler, and then slowly reanealed at room temperature for 45 minutes to form a heteroduplex. For example, when the above experiment is explained with TB and NTB of FIG. 5, the PCR product of TB and the PCR product of NTB are mixed and denatured according to the above conditions, and then cooled at room temperature to form a heterozygote and the PCR products of TB of TB. In the case of mixing, homozygotes are formed. In the DHPLC analysis method, the heterozygote has a non-complementary base sequence, so that a bubble phenomenon occurs on the base sequence and the homozygote does not occur. Therefore, since the homozygotes are more tightly bonded than the heterozygotes in the coupling with the column, the retension time is different, so that different patterns of chromatography are drawn in DHPLC. Can be distinguished. This product was analyzed using Transgenomic WAVE system (DHPLC) (Transgenomic, Inc., Omaha, NE, USA). Analyzes were performed from 65 ° C to 67 ° C and detection of resistant tuberculosis bacteria was best at 66 ° C. As mobile phase, 0.1 M triehylammonium acetate (TEAA), pH7 (buffer A) and 0.1 M TEAA (buffer B) containing 25% acetonitrile were used. As a result, TB ( Mycobacterium tuberculosis ) 5 (b) shows that 531 TCG is TTG, (c) 526 CAC is GAC, (d) 526 CAC is TGC, and (e) 516 GAC is mutated to GTC. As a result, the sequencing of the microorganisms was performed by Macrogen Co., Ltd., and it was confirmed that the results were consistent with those of Fig. 5 (Fig. 5- (DHPLC column temperature: 66 ° C). Patterns: (a) M . tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC). Samples with different patten chromatograms were identified using a saline sequencer (Fig. 6-Patterns: (a) M. tuberculosis (b) 531 TCG to TTG; (c) 526 CAC to GAC; (d) 526 CAC to TGC; (e) 516 GAC to GTC).

본 발명의 결핵 검출 키트는 기존의 시간이 많이 소요되어 약재 치유시기를 놓치는 기존의 동정 및 진단 방법을 대체하여 결핵균의 진단 뿐 만 아니라 비결핵항산성균의 species level로의 감별도 가능하므로, 결핵 및 비결핵항산성균증 진단 kit의 수입대체 효과 뿐만 아니라 선진국에 원천기술을 수출하는 효과가 있는 새로운 진단방법이다.The tuberculosis detection kit of the present invention replaces the existing identification and diagnosis methods that miss the time of medicinal healing due to the long time-consuming process, and therefore, tuberculosis and non-tuberculosis can be diagnosed at the species level of non-tuberculosis acidophilic bacteria. It is a new diagnostic method that has the effect of exporting the original technology to developed countries as well as the import substitution effect of the acidophilic bacterium diagnostic kit.

<110> Industry-Academic Cooperation Foundation, Dankook University PARK, YONG HYEUN <120> Method of detecting Mycobacterium using denaturing high-performance liquid chromatography(DHPLC) <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 tcgccgcgat caaggagt 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tgcacgtcgc ggacctca 18 <110> Industry-Academic Cooperation Foundation, Dankook University          PARK, YONG HYEUN <120> Method of detecting Mycobacterium using denaturing          high-performance liquid chromatography (DHPLC) <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 tcgccgcgat caaggagt 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tgcacgtcgc ggacctca 18  

Claims (3)

결핵균과 비결핵균을 구별할 수 있는 RNA polymeraseβ-subunit-encoding gene (rpoB)을 코딩하는 유전자 부분을 프라이머쌍을 이용하여 증폭시키는 염기특이-중합효소연쇄반응단계; 및 상기 PCR 반응을 통해 증폭된 PCR 산물을 변성고성능액체크로마토그래피(Denaturing High-Performance Liquid Chromatography, DHPLC)단계를 포함하는 것을 특징으로 하는 염기특이-중합효소연쇄반응을 이용한 결핵균, 비결핵균 및 결핵균의 약물내성 유전자의 돌연변이를 판별하는 분석방법.A base-specific polymerase chain reaction step of amplifying a portion of a gene encoding an RNA polymeraseβ-subunit-encoding gene ( rpoB ) capable of distinguishing tuberculosis from non-tuberculosis with primer pairs; And a step of denaturing high-performance liquid chromatography (DHPLC) of the PCR product amplified by the PCR reaction. Assay method for determining mutation of drug resistance gene. 결핵균의 약물내성 유전자의 돌연변이를 판별하기 위한 서열번호 1 및 서열번호 2의 프라이머 쌍.Primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 for determining mutations in drug resistance genes of Mycobacterium tuberculosis. 제2항의 프라이머 쌍을 이용한 결핵균의 약물내성 유전자의 돌연변이 군을 감별하는 방법.A method for discriminating a mutant group of drug-resistant genes of Mycobacterium tuberculosis using the primer pair of claim 2.
KR1020070054227A 2007-06-04 2007-06-04 Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc) KR20080106616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070054227A KR20080106616A (en) 2007-06-04 2007-06-04 Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070054227A KR20080106616A (en) 2007-06-04 2007-06-04 Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc)

Publications (1)

Publication Number Publication Date
KR20080106616A true KR20080106616A (en) 2008-12-09

Family

ID=40367234

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070054227A KR20080106616A (en) 2007-06-04 2007-06-04 Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc)

Country Status (1)

Country Link
KR (1) KR20080106616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254379B1 (en) * 2010-06-01 2013-04-15 단국대학교 산학협력단 Method of detecting non-hanwoo and hanwoo using denaturing high-performance liquid chromatography(dhplc)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254379B1 (en) * 2010-06-01 2013-04-15 단국대학교 산학협력단 Method of detecting non-hanwoo and hanwoo using denaturing high-performance liquid chromatography(dhplc)

Similar Documents

Publication Publication Date Title
CN110541022B (en) Mycobacterium tuberculosis complex detection kit based on CRISPR-Cas12a system
Ross et al. Rapid, simple method for typing isolates of Mycobacterium tuberculosis by using the polymerase chain reaction
CN101023170B (en) Probe and primer for tubercle bacillus detection, and method of detecting human tubercle bacillus therewith
EP2419527B1 (en) Method for the detection and characterization of a toxinogenic clostridium difficile strain
Truman et al. Genotypic variation and stability of four variable-number tandem repeats and their suitability for discriminating strains of Mycobacterium leprae
Nasr Esfahani et al. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes
KR100454585B1 (en) Microarray comprising probes for Mycobacteria genotyping, M. tuberculosis strain differentiation and antibiotic-resistance detection
KR20090078341A (en) Detection of bacterium by utilizing dnaj gene and use thereof
Sadri et al. Frequency of mutations associated with isoniazid-resistant in clinical Mycobacterium tuberculosis strains by low-cost and density (LCD) DNA microarrays
El Amin et al. Identification of non-tuberculous mycobacteria: 16S rRNA gene sequence analysis vs. conventional methods
US20110287965A1 (en) Methods and compositions to detect clostridium difficile
Lumb et al. Phenotypic and molecular characterization of three clinical isolates of Mycobacterium interjectum
AU710996B2 (en) Compositions and methods for the detection of mycobacterium kansasii
SG176989A1 (en) Method and/or primers for the detection of mycobacterium tuberculosis
JP3565752B2 (en) Identification and specific detection of slow-growing mycobacteria using characteristic nucleotide sequences present in DNA gyrase gene
US20050130168A1 (en) Method of determining a bacterium species
KR101765677B1 (en) Primer set for detection of mycobacterium tuberculosis and non-Tuberculosis mycobacteria and use thereof
KR20080106616A (en) Method of detecting mycobacterium using denaturing high-performance liquid chromatography(dhplc)
PT760005E (en) DETACTION AND DIFFERENTIATION OF MYCOBACTERIUM COMPLEX BACTERIA TUBERCULOSIS BY OLIGOTIPIFICATION OF DIRECT VARIANT REPETITION
Glennon et al. Detection and diagnosis of mycobacterial pathogens using PCR
KR20120000868A (en) Method and kit for identification of mycobacterium sp. using real-time pcr
Deepa et al. Application of PCR-based restriction fragment length polymorphism (RFLP) for the identification of mycobacterial isolates
RU2409680C1 (en) Diagnostic technique for of mycobacterium tuberculosis strain sensitivity to aminoglycosides
KR100435587B1 (en) Primers for amplifying hsp 65 gene of mycobaterial specifes and method of identification of mycobaterial specifes with the same
KR100486820B1 (en) Hsp 65 gene fragments and method of identifying mycobaterial species with the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application