KR20080097795A - 시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법 - Google Patents

시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법 Download PDF

Info

Publication number
KR20080097795A
KR20080097795A KR1020070043103A KR20070043103A KR20080097795A KR 20080097795 A KR20080097795 A KR 20080097795A KR 1020070043103 A KR1020070043103 A KR 1020070043103A KR 20070043103 A KR20070043103 A KR 20070043103A KR 20080097795 A KR20080097795 A KR 20080097795A
Authority
KR
South Korea
Prior art keywords
optical
signal
remote
optical signal
pattern
Prior art date
Application number
KR1020070043103A
Other languages
English (en)
Inventor
조재헌
황성택
김훈
김병직
이한림
이재훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020070043103A priority Critical patent/KR20080097795A/ko
Publication of KR20080097795A publication Critical patent/KR20080097795A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

시분할 이중화(Time Division Duplexing) 방식의 광 중계기에서 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치에 있어서, 상위 계층으로부터 하향 데이터의 RF 신호를 입력받아, RF 신호를 광신호로 변환하여 광섬유를 통해 리모트(Remote)로 전달하고, 광섬유를 통해 리모트로부터 입력된 상향 데이터의 광신호를 RF 신호로 변환하여 상위 계층으로 전달하는 메인 도너(Donor)와, 메인 도너로부터 하향 데이터 광신호를 입력받아 RF 신호로 변환하고 RF 신호를 분기하여 하나는 안테나(Antenna)를 통해 단말로 방사하고, 다른 하나는 광신호로 변환 후 광섬유로 연결된 다른 리모트로 전송하고, 단말로부터 상향 RF 신호를 안테나로부터 입력받아서 광신호로 변환하여 광섬유를 통하여 상기 메인 도너로 전달하는 리모트(Remote)를 포함함을 특징으로 한다.
Figure P1020070043103
광 중계기, 리모트, 데이지 체인, 토플로지

Description

시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를 지원하는 가변 시간 지연 장치 및 방법{VARIABLE TIME DELAYING APPARATUS AND METHOD SUPPORTED MULITI-HOP TOPOLOGY IN OPTICAL REPEATER USING TDD}
도 1은 종래의 광중계 시스템을 이용한 TDD 방식의 무선 서비스 시스템의 일 예시 구성도
도 2는 종래의 TDD 방식의 무선 서비스 시스템의 내부 구성에 대한 구성도
도 3은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 적용 가능한 토플로지 구성도
도 4a, 4b는 본 발명의 일 실시 예에 따른 2개의 광 송수신기를 가지는 광 중계기의 내부 구성도
도 5는 본 발명의 일 실시 예에 따른 2개의 광 송수신기를 가지는 광 중계기의 리모트(Remote) 흐름도
도 6은 본 발명의 일 실시 예에 따른 2개의 광 송수신기를 가지는 광 중계기의 도너(Donor) 흐름도
도 7은 본 발명의 일 실시 예에 따른 광 커플러(Optical Coupler)를 이용한 광 중계기의 내부 구성도
도 8은 본 발명의 일 실시 예에 따른 광 커플러를 이용한 광 중계기의 리모 트 흐름도
도 9는 본 발명의 일 실시 예에 따른 광 커플러를 이용한 광 중계기의 도너 흐름도
도 10은 본 발명의 일 실시 예에 따른 WDM(Wavelength Division Multiplexing)을 이용한 광 중계기의 내부 구성도
도 11은 본 발명의 일 실시 예에 따른 WDM을 이용한 광 중계기의 리모트 흐름도
본 발명은 TDD(Time Division Duplexing) 방식을 이용하는 이동 통신 시스템의 무선 상하향 신호 전송을 위한 광중계기에서 사용되는 기술로, 특히 광중계기의 기지국(Base Station)에서 생성된 베이스 밴드(Base Band) 하향 신호를 광신호로 변환하여 기지국에 존재하는 메인 도너(Donor)에서 리모트(Remote)까지 전송하는 광링크와 리모트에서 안테나를 통해 수신된 상향 무선 신호를 광신호로 변환하여 리모트에서 메인 도너로 전송하는 광링크 및 그 시스템에 관한 것이다.
컴퓨터, 전자, 통신 기술이 비약적으로 발전함에 따라 무선 통신망(Wireless Network)을 이용한 다양한 무선 통신 서비스가 제공되고 있다. 가장 기본적인 무선 통신 서비스는 이동 통신 단말기 사용자들에게 무선으로 음성 통화를 제공하는 무선 음성 통화 서비스로서 이는 시간과 장소에 구애받지 않고 서비스를 제공할 수 있다는 특징이 있다. 또한, 문자 메시지서비스를 제공하여 음성 통화 서비스를 보완해주는 한편, 최근에는 이동 통신 단말기의 사용자에게 무선 통신망을 통해 인터넷 통신 서비스를 제공하는 무선 인터넷 서비스가 대두되었다.
최근에는 정보통신의 발달로 ITU-R(International Telecommunication Union-Radio communication)에서 표준으로 제정하고 있는 제 3 세대 이동 통신 시스템인IMT(International Mobile Telecommunication)-2000 예컨대, CDMA(Code Division Multiple Access), EV-DO(Evolution-Data Only), WCDMA(WideBand CDMA) 등이 상용화되고 있다. IMT-2000은 개인의 이동성 및 서비스 이동성을 포함한 전세계적인 직접 로밍, 유선 전화와 동일한 수준의 통화 품질, 고속 패킷 데이터 서비스 및 유무선망의 결합에 의한 다양한 응용 서비스의 구현 등을 목표로 등장한 이동 통신 시스템으로, 기존의 음성 및 WAP(Wireless Application Protocol) 서비스 품질의 향상은 물론 각종 멀티미디어 서비스(AOD, VOD 등)를 보다 빠른 속도로 제공할 수 있다.
그러나 기존의 이동 통신 시스템은 기지국 구축비용이 높기 때문에 무선 인터넷의 이용 요금이 높고, 이동 통신 단말기의 화면 크기가 작기 때문에 이용할 수 있는 컨텐츠에 제약이 있는 등 초고속 무선 인터넷을 제공하기에는 한계가 있으며, WLAN(Wireless Local Area Network) 기술은 전파 간섭 및 좁은 사용 영역(Coverage) 등의 문제로 공중 서비스의 제공에 한계가 있다. 따라서 휴대성과 이동성을 보장하며 저렴한 요금으로 초고속 무선 인터넷 서비스를 이용할 수 있는 초고속 휴대 인터넷 서비스인 와이브로(Wireless Broadband Internet)와 4G 무선 이 동 통신이 대두되었다.
이러한 와이브로와 4G 무선 이동 통신은 CDMA, WCDMA와 달리 듀플렉스(Duplex) 방식으로 TDD(Time Division Duplex) 방식을 이용하고, 변조 방식으로 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 이용하는 휴대 인터넷 기술이 사용된다.
여기서, TDD 방식은 동일한 주파수 대역에서 시간적으로 상향(Uplink), 하향(Downlink)을 교대로 배정하는 양방향 전송 방식이다. TDD 방식은 상향과 하향에 각기 다른 2개의 주파수를 배정하는 FDD(Frequency Division Duplex) 방식보다 전송 효율이 높고, 타임 슬롯의 동적 할당으로 비대칭(Asymmetric)이나 버스티(Bursty)한 어플리케이션 전송에 적합한 특징이 있다. 이러한 OFDMA/TDMA 방식은 전체 대역폭에 퍼져 있는 모든 부반송파를 일정 시간 동안 한 사용자에게 할당하고 다음 일정 시간 동안 또 다른 사용자에게 할당하는 TDMA와 유사한 다중 접속 방식이며, 대역폭 당 전송 속도를 향상시키고 멀티패스(Multipath) 간섭을 방지할 수 있는 특성을 가진다.
한편, 일반적으로 이동 통신 시스템에서는 이동 통신망의 커버리지(Coverage)를 확장하기 위해 주파수 재사용 개념 등을 이용하여 이동 통신 서비스 지역을 다수의 셀(Cell)들로 분할하고, 각각의 셀의 중심 부근에 이동 통신 서비스를 처리하기 위해 무선 기지국(Base Station)을 설치하고 있다. 여기서, 셀의 반경은 해당 지역의 신호의 세기나 데이터의 트래픽(Traffic)량에 따라 정해진다. 즉, 트래픽량이 많은 도심 지역에서는 셀의 반경을 작게 하고, 트래픽량이 상대적 으로 적은 도심 외 지역에서는 셀의 반경을 크게 하여 각각의 셀에서 발생하는 트래픽이 해당 이동 통신 서비스를 담당하는 무선 기지국의 처리 용량을 넘지 않도록 하고 있다.
이러한 주파수 재사용 개념, 트래픽량 등에 따라 셀의 반경을 적절하게 조절하여 보다 나은 이동 통신 서비스를 지원하고자 하는 노력에도 불구하고 도심 지역에서는 지하, 건물 내부, 터널 등 일반적으로 전파가 도달하기 어려운 전파 음영 지역이 존재하고 있다. 전파 음영 지역에서의 전파 음영을 해결하기 위해 다수의 새로운 무선 기지국을 시설하는 것은 시설비용, 설치비용 및 유지 보수비용 등으로 인하여 경제성이 크게 떨어질 뿐만 아니라, 셀 설계에도 바람직하지 못한 결과를 초래할 수 있을 것이다. 이에 대한 해결책으로서, 전파 음영 지역에는 광중계기 시스템을 이용하여 이동 통신 서비스를 제공할 수 있다. 광중계 시스템은 모기지국에 할당된 통화 채널을 광중계기를 이용한 광 전송 방식을 통해 전파 음영 지역으로 전송하도록 하여 전파 음영의 문제점을 해소한다.
특히, 제 2 세대 이동 통신 시스템보다 제 3 세대 이동 통신 시스템 및 와이브로 시스템에서는 높은 주파수를 이용하고 있어 전파 경로 손실이 크고, 회절 효과가 작으며, 건물 투과 손실이 크기 때문에 셀의 반경이 작아 광중계기를 사용하는 것이 바람직하다.
또한, 광중계기에서 기지국과 단말기 간의 무선 신호를 중계하기 위해서는 하향 신호와 상향 신호를 구분할 수 있어야 한다. 이동 통신 시스템의 광중계기에서 FDD 방식을 이용하는 경우에는 듀플렉서를 사용하여 하향 신호와 상향 신호를 구분하게 되나, TDD 방식을 이용하는 경우에는 동일 주파수를 하향 및 상향 신호의 전송을 위해 사용하며 시간 구간을 나누어 하향 신호와 상향 신호를 구분하기 때문에, 듀플렉서를 사용하여 하향 신호와 상향 신호를 구분할 수 없다. 따라서 TDD 방식을 이용하는 광중계기는 스위치를 사용하여 하향 신호와 상향 신호를 구분하고, 각각의 신호에 대한 경로를 선택적으로 제공할 수 있다. 이를 위해서는, 하향 신호의 시작점과 상향 신호의 시작점을 정확히 판별하고 각각의 신호에 따라 스위치의 개폐를 조절하여 신호의 이동 경로를 바꿀 수 있는 제어 신호가 필요하며, 광중계기는 전술한 제어신호를 기지국으로부터 광케이블을 통해 전송받을 수 있다.
TDD 방식의 광중계기는 전송 신호 프레임을 분석하여 하향 신호 구간과 상향 신호 구간 사이에서 스위칭 동작이 일어나도록 스위치를 제어하는 스위치 제어 신호를 생성하는 기능을 갖추고 있어야 한다.
도 1은 종래의 광중계 시스템을 이용한 TDD 방식의 무선 서비스 시스템의 일 예시 구성도로서, 기지국의 메인 도너(Donor)와 중계기의 리모트(Remote) 사이의 기존의 TDD 방식의 이동 통신 시스템의 이동 단말기에서 무선 상하향 신호를 주고받기 위한 RoF(Radio over Fiber) 링크를 보여 주고 있다.
도 2는 종래의 TDD 방식의 무선 서비스 시스템의 내부 구성에 대한 구성도이다. 도 2에 도시된 바와 같이, TDD 방식의 상, 하향 신호를 전송하기 위해 메인 도너 모듈에서는 정해진 시간에 하향 신호를 리모트 모듈에 전송하고 하향 신호가 없는 정해진 시간에 리모트 모듈은 메인 도너 모듈로 상향 신호를 전송하게 된다.
AP(110)에서 생성된 하향 무선 신호는 메인 도너 모듈(200)의 LNA(205)와 광 송신기(210)를 통해 광신호로 변환되고 WDM(Wavelength Division Multiplexing)(215) 광소자를 통과한 후 광섬유를 통해 중계기의 리모트(250)로 전송된다. 리모트(250)에서는 하향 광신호를 광수신기(260)를 통해 전기 신호로 변환하게 되고 HPA(270)을 거쳐서 전기 스위치((275)를 통해 안테나로 전달된다. 하향 신호의 일부는 스위칭 타임 신호 생성 회로(290)를 통해 스위칭 타임 신호를 생성하게 된다. 이렇게 생성된 스위칭 타임 신호로 제어되는 전기 스위치(275)를 통해 하향 신호는 안테나를 통해 방사되어 각 단말에 전송된다.
상기 하향 무선 신호와는 반대로 정해진 시간에 단말에서부터 전송되는 상향 무선 신호는 중계기의 리모트(250)에서 스위칭 타임 신호로 제어되는 전기 스위치(275)를 통해 LNA(280)를 거쳐서 광송신기(285)로 전달되며 광송신기(285)를 통해 광신호로 변환된다. 이때 광송신기(285)에서 생성하는 광신호의 파장은 간섭을 피하기 위해 하향 무선 신호 전송을 위해 사용되었던 중앙 기지국의 광송신기(210)의 파장과 달라야 한다. 이렇게 생성된 광신호는 WDM(255) 광소자와 광섬유를 통해 메인 도너 모듈(200)로 전달되고 메인 도너 모듈(200)의 WDM(215)를 거쳐 광수신기(220)와 HPA(225)를 지나 최종적으로 AP(110)의 상향 신호 입력단으로 전달된다.
상기 도 2에서 언급한 바와 같이, 상하향 신호의 간섭을 줄이기 위해 상하향 링크에 서로 다른 파장을 설정하고 이를 구별하기 위해 WDM 광소자를 사용한다. 그러나 무선 단말이 기지국과 릴레이 사이에 위치할 경우 기지국과 릴레이 사이의 광선로에 의한 지연으로 인해 발생하는 시간축상의 동기가 일치하지 않는 문제를 해결하기 위하여 기지국에서는 일정한 고정된 지연값을 가지고 데이터를 송수신하게 되고, 릴레이에서 광섬유의 지연시간을 측정하여 광섬유 지연시간과 계산된 보정시간 값의 차이가 기지국의 고정된 지연값과 같도록 만들어 동기를 유지하는 구조는 기지국과 릴레이가 1:1로 연결된 점 대 점 연결에서 유효할 뿐 데이지 체인(Daisy Chain)과 같은 멀티 홉의 릴레이 토플로지에는 적용이 불가한 단점이 있다.
따라서 본 발명은 데이지 체인(Daisy Chain)과 같은 멀티 홉 토플로지에서 각각의 리모트들과 기지국의 안테나에서 송수신되는 무선 서비스 신호의 시간 동기를 효과적으로 맞추어서 보다 신뢰성 있고 우수한 성능의 TDD 방식의 무선 광중계 시스템을 구성하고자 한다.
이를 달성하기 위한 본 발명의 일 견지에 따르면, 시분할 이중화(Time Division Duplexing) 방식의 광 중계기에서 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치에 있어서, 상위 계층으로부터 하향 데이터의 RF 신호를 입력받아, RF 신호를 광신호로 변환하여 광섬유를 통해 리모트(Remote)로 전달하고, 광섬유를 통해 리모트로부터 입력된 상향 데이터의 광신호를 RF 신호로 변환하여 상위 계층으로 전달하는 메인 도너(Donor)와, 메인 도너로부터 하향 데이터 광신호를 입력받아 RF 신호로 변환하고 RF 신호를 분기하여 하나는 안테나(Antenna)를 통해 단말로 방사하고, 다른 하나는 광신호로 변환하여 광섬유로 연결된 다른 리모트로 전송하고, 단말로부터 상향 RF 신호를 안테나로부터 입력받아서 광신호로 변환하여 광섬유를 통하여 상기 메인 도너로 전달하는 리모트(Remote)를 포함함을 특징으로 한다.
본 발명의 다른 견지에 따르면, 시분할 이중화(Time Division Duplexing) 방식의 광 중계기에서 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 방법에 있어서, 데이지 체인 구조로 연결된 많은 리모트(Remote)들 중에 해당 리모트의 고유 ID를 해석하여 각 리모트를 구별하는 과정과, 리모트의 고유 ID에 해당하는 패턴(Pattern)을 생성하는 과정과, 수신된 패턴이 검색 테이블에 있는 패턴과 동일한 정확한 패턴인지를 확인하는 과정과, VDCS값을 계산하여 값에 해당하는 지연을 적용하는 과정을 포함함을 특징으로 한다.
이하 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술 분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다.
본 발명에서는 기지국과 복수 개의 릴레이가 데이지 체인(Daisy Chain) 구조로 연결된 토플로지를 구성하는데, 먼저 토플로지(Topology)에 대해서 살펴보면, 토플로지는 네트워킹 구조 내에서 네트워크 노드와 미디어의 물리적 구성, 즉 네트워크에 있는 컴퓨터나 케이블 및 다른 구성요소의 배치를 말한다. 실제 네트워크의 지도로도 표현되는 토플로지의 기본 종류는 크게 버스(bus)형, 스타(star)형, 링(ring)형, 메시(mesh)형, 혼합형 이렇게 다섯 가지로 분류된다. 상기 다섯 가지 토플로지는 각각의 특성을 가지는데, 데이지 체인 토플로지는 버스형 토플로지를 기반으로 하는 결선방식이다. 버스형은 케이블의 사용량이 적은 장점이 있는 반면, 장애발견과 관리가 어렵다는 단점이 있다.
데이지 체인이란 연속적으로 연결되어 있는 하드웨어 장치들의 구성을 지칭한다. 예를 들어 장치 A가 장치 B에 연결되어 있고, 상기 장치 B는 다시 장치 C에 연속하여 연결되어 있는 방식이다. 일반적으로 가장 마지막에 위치한 장치는 저항장치 또는 단말장치에 접속된다. 상기 데이지 체인 구조로 연결된 모든 장치들은 동일한 신호를 수신할 수도 있지만, 단순한 버스형 토플로지와는 현저히 다르게 체인 내에 속한 각 장치가 하나 이상의 신호를 다른 장치에 전달하기 전에 내용을 수정하는 경우도 있다.
기지국과 복수 개의 릴레이가 데이지 체인(Daisy Chain) 구조로 연결된 토플로지를 구성할 때 각각의 릴레이에서 기지국의 도너(Donor)로 특정한 패턴(Pattern)을 전송 후 도너로부터 되돌려지는 특정한 패턴을 체크함으로서 자동으로 광섬유에서 발생하는 전파지연시간(Round Trip Time)을 계산할 수 있다.
상기 전파지연시간(Round Trip Time)과 기지국에서 미리 정해 놓은 고정된 지연시간(fixed delay)을 이용하여 하기의 수학식 1에 표기된 VDCS(Variable Delay Control Signal)값을 계산하여 릴레이에서 VDCS 만큼의 지연을 확보한 뒤 RF 신호를 대기중으로 전파한다.
VDCS = FD - (RTT / 2)
상기 수학식 1에서 FD는 고정된 지연시간(Fixed Delay)을 나타내고, RTT는 전파지연시간(Round Trip Time)을 나타낸다. 상기 수학식 1과 같은 계산 과정을 통하여 기지국과 릴레이 사이에 위치한 단말의 경우 양쪽으로부터 동기된 신호를 받아 서로 다른 지연으로 인한 통신 신호 품질의 저하를 개선시킬 수 있다.
도 3은 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 적용 가능한 토플로지 구성도로서, 도 3a는 하나의 도너(Donor)와 복수개의 릴레이(Relay)의 혼합형 토플로지 구성을 나타내고, 도 3b는 하나의 도너와 복수개의 릴레이의 데이지 체인형 토플로지 구성을 나타낸다. 도 3a를 살펴보면, WiBro 시스템과 같은 무선 통신망에서 기지국에 위치한 도너(PU)와 복수 개의 릴레이(SU)가 스타(Star)와 데이지 체인 토플로지(Daisy Chain Topology)로 구성되고 베이스 밴드(Base Band) 신호를 광 송수신하는 구조를 보여 준다. 도 3b는 도 3a의 임의의 한 라인을 자세히 나타낸 것으로, 도 3b를 자세히 살펴보면, 도너와 리모트의 각 광트랜시버에 상하향을 담당하는 두개의 광섬유가 연결되어 있어서 Tx에서 Rx로 혹은 Rx에서 Tx로 상기 광섬유를 통하여 RF 신호를 전송한다.
본 특허에서는 가변시간 지연장치를 도너측이 아닌 리모트측에 위치하도록 하여, 스타(star) 구조에서 동일한 신호를 리모트측으로 전송 및 분배를 할 수 있도록 하였으며, 데이지 체인 구조에서 각각의 리모트들이 해당 광섬유 길이에 맞는 VDCS 값을 상기의 수학식 1을 이용해 계산하여 RF 전송을 할 수 있도록 한다.
상기 도 3의 기본적인 구성과 상기 수학식 1을 이용하여 본 발명의 동작을 수행함에 있어서 하기의 3가지 실시 예를 제시한다.
도 4a, 4b는 본 발명의 일 실시 예에 따른 2개의 광 송수신기를 가지는 광 중계기의 내부 구성도로서, 상기 도 3에서 도시된 두개의 광 섬유가닥이 아닌 광 순환기(Optical Circulator)를 이용하여 하나의 광 섬유가닥으로 RF 신호 전송 구간이 연결된다.
먼저 도 4a는 초기에 가변 시간지연을 수행하기 위한 과정을 나타낸 것으로, 도 4a를 살펴보면, 하향 신호의 경로는 도너(40)에서 광수신기(Rx)(406)에 수신된 RF 신호를 도너(40)의 FPGA(Field Programmable Gate Array)(402)로 전송하여 상기 수신된 RF 신호의 패턴(pattern)을 검사한 후에 광송신기(404)로 전송한다. 상기 패턴 검사 과정은 하기에 도시될 도 6에서 상세하게 설명한다. 상기 광송신기(404)로 전송된 RF 신호는 광신호로 변환 후 도너(40)의 광 순환기(408)을 거쳐서 광 섬유가닥을 타고 리모트(42)로 들어간다. 리모트(42)의 광 순환기(410)를 거쳐서 광수신기(412)로 전송된 광신호는 RF 신호로 변환 후 분기하여 하나는 리모트(42)의 FPGA(422)로 전송되어 VDCS(425)에서 VDCS값을 계산하기 위한 신호로 사용하게 되고, 다른 하나는 광송신기(414)와 광 순환기(416)을 거쳐서 연결되어 있는 다른 리모트로 광신호를 제공한다. 상기 계산된 VDCS값은 광송신기(420)를 통해 도너(40)로 전송된다.
상향 신호의 경우에는 상기 연결되어 있는 다른 리모트로부터 상기 리모트(42)로 광신호가 광 순환기(416)를 거쳐서 광수신기(418)에 전송된다. 전송된 광신호는 광수신기(418)에서 RF 신호로 변환 후 광송신기(420)로 전송되고 광송신기(420)에서 다시 광신호로 변환 후 광 순환기(410)를 거쳐서 도너(40)로 넘어간다. 도너(40)로 넘어간 광신호는 도너(40)의 광 순환기(408)을 거쳐서 광수신 기(406)로 전송되어 RF 신호로 변환된다.
도 4b는 도 4a에서 계산된 VDCS값에 따른 지연을 제공하는 단계로 도 4a의 다음 과정에 해당한다. 상향 신호의 흐름과 하향 신호의 경로는 도 4a와 유사하다.
도 4b에서 먼저 하향 신호의 경로를 살펴보면, 도너(40)에서 상기 도 4a의 광송신기(420)로부터 광수신기(Rx)(406)에 수신된 광신호를 RF 신호로 변환하여 도너(40)의 FPGA(402)로 전송하여 상기 수신된 RF 신호의 패턴(pattern)을 검사한 후에 광송신기(404)로 전송한다. 상기 패턴 검사 과정은 상기와 같이 하기에 도시될 도 6에서 상세하게 설명한다. 상기 광송신기(404)로 전송된 RF 신호는 광신호로 변환 후 도너(40)의 광 순환기(408)을 거쳐서 광 섬유가닥을 타고 리모트(42)로 들어간다. 리모트(42)의 광 순환기(410)를 거쳐서 광수신기(412)로 전송된 광신호는 RF 신호로 변환 후 분기하여 하나는 리모트(42)의 FPGA(422)로 전송되어 VDCS(425)에서 VDCS값에 해당하는 지연을 가하여 파워 엠프를 통하여 안테나로 전송하게 되고 안테나로 들어온 신호는 VDCS(426)를 거쳐서 다시 도너(40)로 전송된다. 다른 하나는 광송신기(414)와 광 순환기(416)을 거쳐서 연결되어 있는 다른 리모트로 광신호를 제공한다.
상향 신호의 경우에는 상기 도 4a의 흐름과 마찬가지로 상기 연결되어 있는 다른 리모트로부터 상기 리모트(42)로 광신호가 광 순환기(416)를 거쳐서 광수신기(418)에 전송된다. 전송된 광신호는 광수신기(418)에서 RF 신호로 변환 후 광송신기(420)로 전송되고 다시 광신호로 변환 후 광 순환기(410)를 거쳐서 도너(40)로 넘어간다. 도너(40)로 넘어간 광신호는 도너(40)의 광 순환기(408)을 거쳐서 광수 신기(406)로 전송된다. 도 4a와 4b에서 설명한 내용을 구체적인 알고리즘으로 나타내면 하기의 도 5와 도 6과 같다.
도 5는 본 발명의 일 실시 예에 따른 2개의 광 송수신기를 가지는 광 중계기의 리모트(Remote) 흐름도이다.
도 5를 살펴보면, 502단계에서 데이지 체인 구조로 연결된 많은 리모트들 중에 해당 리모트의 고유 ID를 읽어 들여서 리모트를 구별한다. 504단계에서 해당 ID에 맞는 광송신기(Tx)용 패턴(pattern) 및 광수신기(Rx)용 패턴이 저장되어 있는 검색(lookup) 테이블을 참조하여 해당 릴레이의 ID에 매칭되는 광송신기용 패턴을 생성하고 506단계에서 도너(Donor)를 향해 패턴을 전송한다. 이후 리모트에서 입출력되는 모든 신호는 508단계에서 광송신기에서 광수신기로, 광수신기에서 광송신기로 바이패스(Bypass)될 수 있도록 분기시켜 주고, 510단계에서 도너로부터 되돌아오는 광수신기용 패턴을 수신하여 512단계로 진행한다. 512단계에서 만약 수신한 패턴이 검색 테이블 어디에도 위치하지 않는 것이라면, 이 패턴은 다른 리모트로부터 온 패턴과 충돌로 인해 패턴이 손상된 것이라고 판단하여 514단계의 랜덤 백 오프(Random Back Off)만큼 기다린 후 506단계 전으로 올라가 광송신기용 패턴을 재전송한다. 상기에서 만약 손상된 패턴이 아닌 광송신기용 패턴이 되돌아온 경우라면, 이것은 광섬유의 절단으로 인해 반사된 패턴이 되돌아온 것으로 시간을 측정하여 광케이블이 절단된 위치를 찾을 수도 있다. 만약 수신된 광수신기용 패턴이 검색 테이블에 있는 정확한 패턴이라면, 516단계로 진행하여 수신된 패턴이 자신의 것인가를 확인후 518단계에서 상기에서 설명한 수학식 1을 이용하여 VDCS값을 계산 하여, 520단계에서 VDCS값 만큼의 지연을 베이스 밴드 데이터(Base Band Data)에 가하여 RF 송수신을 하게 된다.
도 6은 본 발명의 일 실시 예에 따른 2개의 광 송수신기를 가지는 광 중계기의 도너(Donor) 흐름도이다.
도 6을 살펴보면, 먼저 602단계에서 광수신기용 패턴을 수신하기 위해 수신 대기를 하다가 604단계에서 광수신기용 패턴이 수신되면 606단계로 진행한다. 606단계에서 상기 수신된 패턴이 검색 테이블에 있는 패턴인가를 조사하여 만약 등록되지 않은 신호라면 614단계로 진행하여 수신한 패턴 그대로 바이패스(Bypass)하여 612단계 이후로 전송한다. 만약 등록된 패턴이라면 608단계로 진행하여 이 패턴이 도너에 처음으로 수신된 첫 번째 패턴인가를 확인하여 첫 번째 패턴일 경우 610단계의 수신시점으로부터 에이징(Aging) 카운터를 동작시킨다. 만약 첫 번째 패턴이 아니라면 상기 610단계의 카운터 동작 단계를 건너뛰고 612단계로 진행한다. 612단계에서는 검색 테이블을 참조하여 광수신기용 패턴에 해당하는 광송신기용 패턴을 송신한다. 616단계에서 에이징 카운터의 값이 일정한 값에 도달하였는지를 확인하여 만약 일정한 값을 넘었을 경우에는 가변시간 지연 측정을 위한 프로세스를 종료하여 데이터 전송용 등 다른 기능으로 동작 할 수 있도록 하고, 만약 일정시간 이내일 경우에는 흐름도의 제일 처음인 패턴 수신대기 모드로 돌아가 루프를 다시 수행한다.
도 7은 본 발명의 일 실시 예에 따른 광 커플러(Optical Coupler)를 이용한 광 중계기의 내부 구성도이다. 광 커플러를 이용한 데이지 체인 수용이 가능한 구 조로서, 광 커플러를 사용하는 경우는 광전력 예산(Optical Power Budget)이 충분할 경우 사용될 수 있다. 리모트(SU)가 하나의 광트랜시버로 동작이 되기 때문에 가격면에서 경쟁력을 가질 수 있다.
도 8은 본 발명의 일 실시 예에 따른 광 커플러를 이용한 광 중계기의 리모트 흐름도이다. 도 8의 경우, 상기 도 5의 흐름과 거의 동일한 알고리즘 적용이 가능하지만 신호에 대해 광송신기에서 광수신기로, 광수신기에서 광송신기로 바이패스시킬 필요가 없으므로 바이패스 블록이 빠지게 된다.
도 8을 살펴보면, 802단계에서 데이지 체인 구조로 연결된 많은 리모트들 중에 해당 리모트의 고유 ID를 읽어 들여서 리모트를 구별한다. 804단계에서 해당 ID에 맞는 광송신기(Tx)용 패턴(pattern) 및 광수신기(Rx)용 패턴이 저장되어 있는 검색(lookup) 테이블을 참조하여 해당 릴레이의 ID에 매칭되는 광송신기용 패턴을 생성하고 806단계에서 도너(Donor)를 향해 패턴을 전송한다. 808단계에서 도너로부터 되돌아오는 광수신기용 패턴을 수신하여 810단계로 진행한다. 810단계에서 만약 수신한 패턴이 검색 테이블 어디에도 위치하지 않는 것이라면, 이 패턴은 다른 리모트로부터 온 패턴과 충돌로 인해 패턴이 손상된 것이라고 판단하여 812단계의 랜덤 백 오프(Random Back Off)만큼 기다린 후 806단계 전으로 올라가 광송신기용 패턴을 재전송한다. 상기에서 만약 손상된 패턴이 아닌 광송신기용 패턴이 되돌아온 경우라면, 이것은 광섬유의 절단으로 인해 반사된 패턴이 되돌아온 것으로 시간을 측정하여 광케이블이 절단된 위치를 찾을 수도 있다. 만약 수신된 광수신기용 패턴이 검색 테이블에 있는 정확한 패턴이라면, 814단계로 진행하여 수신된 패턴이 자 신의 것인가를 확인후 816단계에서 상기에서 설명한 수학식 1을 이용하여 VDCS값을 계산하여, 818단계에서 VDCS값 만큼의 지연을 베이스 밴드 데이터(Base Band Data)에 가하여 RF 송수신을 하게 된다.
도 9는 본 발명의 일 실시 예에 따른 광 커플러를 이용한 광 중계기의 도너 흐름도이다. 도 9의 경우는 상기 도 6의 구조와 동일한 알고리즘이 그대로 적용된다.
도 9를 살펴보면, 먼저 902단계에서 광수신기용 패턴을 수신하기 위해 수신 대기를 하다가 904단계에서 광수신기용 패턴이 수신되면 906단계로 진행한다. 906단계에서 상기 수신된 패턴이 검색 테이블에 있는 패턴인가를 조사하여 만약 등록되지 않은 신호라면 916단계로 진행하여 수신한 패턴 그대로 바이패스(Bypass)하여 912단계 이후로 전송한다. 만약 등록된 패턴이라면 908단계로 진행하여 이 패턴이 도너에 처음으로 수신된 첫 번째 패턴인가를 확인하여 첫 번째 패턴일 경우 910단계의 수신시점으로부터 에이징(Aging) 카운터를 동작시킨다. 만약 첫 번째 패턴이 아니라면 상기 910단계의 카운터 동작 단계를 건너뛰고 912단계로 진행한다. 912단계에서는 검색 테이블을 참조하여 광수신기용 패턴에 해당하는 광송신기용 패턴을 송신한다. 914단계에서 에이징 카운터의 값이 일정한 값에 도달하였는지를 확인하여 만약 일정한 값을 넘었을 경우네느 가변시간 지연 측정을 위한 프로세스를 종료하여 데이터 전송용 등 다른 기능으로 동작 할 수 있도록 하고, 만약 일정시간 이내일 경우에는 흐름도의 제일 처음인 패턴 수신대기 모드로 돌아가 루프를 다시 수행한다.
도 10은 본 발명의 일 실시 예에 따른 WDM(Wavelength Division Multiplexing)을 이용한 광 중계기의 내부 구성도이다. 도 10의 경우는 각각의 리모트가 자신만의 파장을 가지는 광트랜시버를 갖도록 하고 WDM 필터를 이용하여 해당되는 자신의 파장만을 선택적으로 다중화(MUX) 또는 역다중화(DEMUX) 할 수 있도록 하는 구조이다. 도 10의 경우 도너에는 광미러(Optical Mirror)를 사용할 수 있으며, 필요에 따라서 세 개의 파장을 가지는 광트랜시버로 대치하는 것도 가능하다. 도 10에서 도너는 들어온 신호를 다시 보내주는 역할만을 수행하므로 별도의 흐름도가 필요하지 않고, 리모트의 흐름도는 하기와 같다.
도 11은 본 발명의 일 실시 예에 따른 WDM을 이용한 광 중계기의 리모트 흐름도이다. 도 11의 경우에는 단순히 패턴을 송신하고 수신된 패턴이 수신될 때까지의 전파지연시간(Round Trip Time)만을 체크하여 VDCS를 추출하고 적용시키는 단순한 구조를 가진다.
도 11을 살펴보면, 먼저 데이지 체인 구조로 연결된 많은 리모트들 중에 자신만의 파장을 가지는 광 트랜시버를 가지는 리모트를 구별한다. 1102단계에서 해당 ID에 맞는 광송신기(Tx)용 패턴(pattern) 및 광수신기(Rx)용 패턴이 저장되어 있는 검색(lookup) 테이블을 참조하여 해당 릴레이의 ID에 매칭되는 광송신기용 패턴을 생성하고 1104단계에서 도너(Donor)를 향해 패턴을 전송한다. 1106단계에서 도너로부터 되돌아오는 광수신기용 패턴을 수신하여 1108단계로 진행한다. 810단계에서 만약 수신한 패턴이 검색 테이블 어디에도 위치하지 않는 것이라면, 이 패턴은 다른 리모트로부터 온 패턴과 충돌로 인해 패턴이 손상된 것이라고 판단하여 1104단계 전으로 올라가 광송신기용 패턴을 재전송한다. 만약 수신된 광수신기용 패턴이 검색 테이블에 있는 정확한 패턴이라면, 1110단계에서 상기에서 설명한 수학식 1을 이용하여 VDCS값을 계산하여, 1112단계에서 VDCS값 만큼의 지연을 베이스 밴드 데이터(Base Band Data)에 가하여 RF 송수신을 하게 된다.
상기와 같이 본 발명의 일 실시 예에 따른 멀티 홉 토플로지를 지원하는 가변시간 지연 방법 및 장치의 구성 및 동작이 이루어질 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다.
이상 설명한 바와 같이 본 발명에 의하면, 멀티 홉 토플로지(Multi Hop Topology), 즉 데이지 체인(Daisy Chain)을 지원하는 가변 시간 지연 방법 및 시스템에 있어서, 가변 시간 지연 측정 시 측정 시간 자동 스케줄이 가능하고 충돌 방지(Collision Protection)를 할 수 있으며, 각 릴레이 노드(SU)에서 바이패스(Bypass)를 통한 패턴(Pattern) 전달을 통해 측정 오차 최소화를 기대할 수 있으며, SU 증가에 대한 가요성(可撓性, Flexibility)을 확보할 수 있는 효과가 있다.

Claims (12)

  1. 시분할 이중화(Time Division Duplexing) 방식의 광 중계기에서 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치에 있어서,
    상위 계층으로부터 하향 데이터의 RF(Radio Frequency) 신호를 입력받아, 상기 RF 신호를 광신호로 변환하여 광섬유를 통해 리모트(Remote)로 전달하고, 상기 광섬유를 통해 리모트로부터 입력된 상향 데이터의 광신호를 RF 신호로 변환하여 상위 계층으로 전달하는 메인 도너(Donor)와,
    상기 메인 도너로부터 하향 데이터 광신호를 입력받아 RF 신호로 변환하고 상기 RF 신호를 분기하여 하나는 안테나(Antenna)를 통해 단말로 방사하고, 다른 하나는 광신호로 변환하여 광섬유로 연결된 다른 리모트로 전송하고, 상기 단말로부터 상향 RF 신호를 안테나로부터 입력받아서 광신호로 변환하여 상기 광섬유를 통하여 상기 메인 도너로 전달하는 리모트(Remote)를 포함함을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  2. 제 1항에 있어서,
    상기 메인 도너는
    광신호를 RF 신호로 변환하여 FPGA로 송신하기 위한 광수신기(Rx)와,
    상기 광신호가 수신되면 검색 테이블을 통하여 상기 광신호의 패턴이 검색 테이블 안의 패턴과 동일한가를 검사하는 FPGA(Field Programmable Gate Array)와,
    상기 수신된 RF 신호를 광신호로 변환하여 상기 리모트로 송신하는 광송신기(Tx)와,
    상기 광송신기의 광신호를 리모트로, 리모트로부터 온 광신호를 광수신기로 전송해 주는 광 순환기(Optical Circulator)를 포함하고,
    상기 리모트는
    상기 메인 도너로부터 전송된 광신호를 광수신기로 전송하거나, 리모트의 광송신기에서 상기 메인 도너로 광신호를 전송해 주는 제 1 광 순환기와,
    상기 제 1 광 순환기로부터 전송된 광신호를 수신하여 RF 신호로 변환하여 분기하는 제 1광수신기와,
    분기된 RF 신호 중 하나를 전송받아 VDCS값을 계산하여 하기의 제 1 광송신기로 전송하거나, 증폭기로 전송하는 FPGA(Field Programmable Gate Array)와,
    상기 FPGA로부터 전송된 RF 신호를 광신호로 변환하여 제 1 광 순환기로 전송해 주는 제 1광송신기와,
    상기 분기된 RF 신호 중 다른 하나를 전송받아 광신호로 변환하여 하기의 제 2 광 순환기로 전송하는 제 2 광송신기와,
    상기 제 2 광송신기로부터 전송받은 광신호를 연결된 다른 리모트로 전송하거나, 상기 연결된 다른 리모트로부터 전송된 광신호를 하기의 제 2 광수신기로 전송해 주는 제 2 광 순환기와,
    제 2 광 순환기로부터 전송받은 광신호를 RF 신호로 변환하여 상기의 제 1 광송신기로 전송해 주는 제 2 광수신기를 포함함을 특징으로 하는 멀티 홉 토플로 지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  3. 제 2항에 있어서, 상기 리모트는
    한쌍의 광송수신기를 가짐으로 상기 메인 도너 혹은 다른 리모트와 하나의 광섬유가닥으로 연결되어 있는 것을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  4. 제 1항에 있어서,
    상기 메인 도너는
    광신호를 RF 신호로 변환하여 FPGA로 송신하기 위한 광수신기(Rx)와,
    상기 RF 신호가 수신되면 검색 테이블을 통하여 상기 광신호의 패턴이 검색 테이블 안의 패턴과 동일한가를 검사하는 FPGA(Field Programmable Gate Array)와,
    상기 수신된 RF 신호를 광신호로 변환하여 상기 리모트로 송신하는 광송신기(Tx)와,
    상기 광송신기의 광신호를 리모트로, 리모트로부터 온 광신호를 광수신기로 전송해 주는 광 순환기(Optical Circulator)를 포함하고,
    상기 리모트는
    상기 메인 도너를 통해 광 커플러(Optical Coupler)로부터 전송된 광신호를 수신하여 RF 신호로 변환하여 FPGA로 전송하는 광수신기와,
    상기 광수신기에서 전송받은 RF 신호로부터 VDCS 값을 계산하여 광송신기로 전송하거나, 증폭기로 전송하는 FPGA(Field Programmable Gate Array)와,
    상기 FPGA로부터 전송된 RF 신호를 광신호로 변환하여 상기 광 커플러로 전송하여 메인 도너로 보내어 주는 광송신기를 포함함을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  5. 제 4항에 있어서, 상기 메인 도너와 리모트는
    상기 광 커플러를 통하여 상기 메인 도너에서 상기 리모트로 전송되는 광신호의 일부를 분배하여 전송하거나, 상기 리모트에서 상기 메인 도너로 전송되는 광신호의 일부를 결합하여 전송하는 것을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  6. 제 1항에 있어서,
    상기 도너는
    리모트로부터 전송되는 광신호의 파장을 반사시켜 전송한 리모트로 다시 광신호를 보내는 광미러(Optical Mirror)를 가지거나, 연결된 리모트의 개수와 같은 파장의 개수을 가지는 광 송수신기를 가지는 것을 포함하고,
    상기 리모트는
    상기 메인 도너를 통해 WDM(Wavelength Division Multiplexing) 필터로부터 전송된 광신호를 수신하여 RF 신호로 변환하여 FPGA로 전송하는 광수신기와,
    상기 광수신기에서 전송받은 RF 신호로부터 VDCS 값을 계산하여 광송신기로 전송하거나, 증폭기로 전송하는 FPGA(Field Programmable Gate Array)와,
    상기 FPGA로부터 전송된 RF 신호를 광신호로 변환하여 상기 WDM 필터로 전송하여 메인 도너로 보내어 주는 광송신기를 포함함을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  7. 제 6항에 있어서, 상기 광송수신기는
    상기 리모트에서 자신만이 가지는 고유의 파장을 포함하는 것을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  8. 제 6항에 있어서, 상기 메인 도너와 리모트는
    상기 WDM 필터를 통하여 해당하는 자신의 파장만을 선택적으로 다중화(MUX)하여 상기 메인 도너에서 상기 리모트로 전송하거나, 역다중화(DEMUX) 하여 상기 리모트에서 상기 메인 도너로 전송하는 것을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 장치.
  9. 시분할 이중화(Time Division Duplexing) 방식의 광 중계기에서 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 방법에 있어서,
    데이지 체인 구조로 연결된 많은 리모트(Remote)들 중에 해당 리모트의 고유 ID를 해석하여 각 리모트를 구별하는 과정과,
    상기 해당 리모트의 고유 ID에 해당하는 패턴(Pattern)을 생성하는 과정과,
    수신된 패턴이 검색 테이블에 있는 패턴과 동일한 정확한 패턴인지를 확인하는 과정과,
    VDCS값을 계산하여 값에 해당하는 지연을 적용하는 과정을 포함함을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 방법.
  10. 제 9항에 있어서, 상기 해당 리모트의 고유 ID에 해당하는 패턴(Pattern)을 생성하는 과정은
    해당 ID에 맞는 광송수신기용 패턴이 저장되어 있는 검색 테이블을 참조하여 해당 리모트에 매칭되는 광송신기용 패턴을 생성하는 단계와,
    리모트의 패턴의 정보를 위해 생성된 광송신기용 패턴을 도너로 전송하는 단계와,
    상기 도너로부터 되돌아오는 광수신기용 패턴을 수신하는 단계를 포함함을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 방법.
  11. 제 9항에 있어서, 상기 수신된 패턴이 검색 테이블에 있는지를 확인하는 과정은
    수신된 패턴이 상기 검색 테이블에 존재하지 않는 패턴일 경우 다시 광송신기용 패턴을 도너로 재전송하는 단계와,
    수신된 패턴이 상기 검색 테이블에 존재하는 패턴일 경우 패턴을 VDCS로 전 송하는 단계를 포함함을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 방법.
  12. 제 9항에 있어서, 상기 VDCS값을 계산하여 값에 해당하는 지연을 적용하는 과정은
    하기의 수학식 2를 이용하여 해당하는 지연 시간을 계산하는 단계와,
    상기 VDCS값 만큼의 지연을 베이스 밴드 데이터(Base Band Data)에 가하여 RF 송수신을 하는 것을 특징으로 하는 멀티 홉 토플로지(Multi-Hop Topology)를 지원하는 가변 시간 지연 방법.
    VDCS = FD - (RTT / 2)
    상기 수학식 2에서 FD는 고정된 지연시간(Fixed Delay)을 나타내고, RTT는 전파지연시간(Round Trip Time)을 나타낸다.
KR1020070043103A 2007-05-03 2007-05-03 시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법 KR20080097795A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070043103A KR20080097795A (ko) 2007-05-03 2007-05-03 시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070043103A KR20080097795A (ko) 2007-05-03 2007-05-03 시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법

Publications (1)

Publication Number Publication Date
KR20080097795A true KR20080097795A (ko) 2008-11-06

Family

ID=40285536

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070043103A KR20080097795A (ko) 2007-05-03 2007-05-03 시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법

Country Status (1)

Country Link
KR (1) KR20080097795A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083872A1 (ko) * 2013-12-06 2015-06-11 주식회사 쏠리드 광 중계 시스템의 리모트 장치
EP3823186A1 (en) 2019-11-15 2021-05-19 SOLiD Inc. Optical communication system and method of monitoring thereof
KR20210059660A (ko) 2019-11-15 2021-05-25 주식회사 쏠리드 광통신 시스템 및 이의 모니터링 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083872A1 (ko) * 2013-12-06 2015-06-11 주식회사 쏠리드 광 중계 시스템의 리모트 장치
US9735872B2 (en) 2013-12-06 2017-08-15 Solid, Inc. Remote device of optical relay system
EP3823186A1 (en) 2019-11-15 2021-05-19 SOLiD Inc. Optical communication system and method of monitoring thereof
KR20210059660A (ko) 2019-11-15 2021-05-25 주식회사 쏠리드 광통신 시스템 및 이의 모니터링 방법
US11418277B2 (en) 2019-11-15 2022-08-16 Solid, Inc. Optical communication system and method of monitoring thereof
US11728920B2 (en) 2019-11-15 2023-08-15 Solid, Inc. Optical communication system and method of monitoring thereof

Similar Documents

Publication Publication Date Title
KR100819257B1 (ko) 전송시간을 제어하기 위한 radio over fiber시스템 및 방법
KR100590486B1 (ko) Tdd 방식과 ofdm 변조 방식을 이용하는 이동통신망의 광중계기에서 전송 신호를 분리하는 스위칭타이밍 신호 생성 방법 및 시스템
KR100871229B1 (ko) 하이브리드 듀플렉싱 방식의 무선통신 서비스를 수행하는유무선 통합 네트워크 시스템 및 이를 위한 신호제어방법
EP3055938B1 (en) Systems and methods for delay management in distributed antenna system with direct digital interface to base station
EP1890509B1 (en) Relay station, radio base station and communication method
US7787408B2 (en) Wireless repeater with master/slave configuration
KR100842534B1 (ko) Tdd 방식의 광중계기에서 전송 신호를 분리하는 스위치제어 신호 생성 방법 및 시스템
US20110222428A1 (en) Relaying in a communication system
KR20080093746A (ko) 저잡음 증폭기를 상하향 공용으로 구성하는 시분할 이중화방식의 원격 스테이션 및 이를 이용한 유선 중계 방법
KR100856196B1 (ko) Tdd 방식의 광중계기에서 리모트 제어 방법 및 시스템
CN103222204A (zh) 用于降低通信系统中频分双工信号和时分双工信号之间的干扰的装置和方法
RU2008139301A (ru) Устройство и способ поддержки услуги ретрансляции в системе связи широкополосного беспроводного доступа с несколькими шагами ретрансляции
Bartelt et al. Heterogeneous backhaul for cloud-based mobile networks
Maier Fiber‐wireless (FiWi) broadband access networks in an age of convergence: past, present, and future
WO2020129791A1 (ja) 光無線通信システム、無線送受信装置及び光無線通信方法
KR20080088069A (ko) 시분할 듀플렉싱 시스템에서 시스템 지연 시간과 프레임길이를 구성하는 방법 및 장치
KR101048960B1 (ko) Ofdm-tdd방식의 와이브로 시스템에서 기지국과중계기 간의 신호전달 지연시간 보상을 위한 광 중계기 및광 중계기의 신호전달 지연시간 보상 스위칭 타이밍 신호생성 방법
KR100770883B1 (ko) TDD 방식의 Radio Over Fiber 시스템 및전송시간 제어 방법
KR100590681B1 (ko) 와이브로 시스템에서 tdd 광중계기의 시간 지연 보상을위한 스위칭 시간 결정 방법 및 그를 위한 tdd 광중계기
KR20080097795A (ko) 시분할 이중화 방식의 광 중계기에서 멀티 홉 토플로지를지원하는 가변 시간 지연 장치 및 방법
RU2434345C2 (ru) Способ и узел для обеспечения поддержки качества услуг в ретрансляционных системах связи
KR101450875B1 (ko) 광 릴레이를 고려한 무선시스템에서 tdd 컨트롤 신호의결정 방법
KR101035535B1 (ko) 와이브로 시스템에서 광중계기의 시간 지연을 제어하는디지털 시간 지연 제어기 및 이를 적용한 광중계기
KR101376370B1 (ko) 데이지 체인 토플로지를 지원하는 시분할 이중화 방식의 광중계기에서 가변 시간 지연을 보상하는 장치 및 방법
KR101390183B1 (ko) 분산안테나시스템의 광중계기에서 시간지연 제어 방법 및장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application