KR20080095623A - Ultra fine fiber, manufacturing method thereof and manufacturing method of carbon nanofiber - Google Patents
Ultra fine fiber, manufacturing method thereof and manufacturing method of carbon nanofiber Download PDFInfo
- Publication number
- KR20080095623A KR20080095623A KR1020070040365A KR20070040365A KR20080095623A KR 20080095623 A KR20080095623 A KR 20080095623A KR 1020070040365 A KR1020070040365 A KR 1020070040365A KR 20070040365 A KR20070040365 A KR 20070040365A KR 20080095623 A KR20080095623 A KR 20080095623A
- Authority
- KR
- South Korea
- Prior art keywords
- component polymer
- fiber
- polymer
- manufacturing
- sea
- Prior art date
Links
- 229920001410 Microfiber Polymers 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000002134 carbon nanofiber Substances 0.000 title claims abstract description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 229920000642 polymer Polymers 0.000 claims abstract description 69
- 239000000835 fiber Substances 0.000 claims abstract description 38
- 238000005406 washing Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000002904 solvent Substances 0.000 claims abstract description 31
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 25
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 24
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 24
- 238000009987 spinning Methods 0.000 claims abstract description 21
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 7
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 7
- 239000003658 microfiber Substances 0.000 claims description 22
- 238000001523 electrospinning Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 7
- 230000006641 stabilisation Effects 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000004185 ester group Chemical group 0.000 claims description 3
- 238000010000 carbonizing Methods 0.000 claims description 2
- 239000002121 nanofiber Substances 0.000 abstract description 14
- 230000005611 electricity Effects 0.000 abstract 1
- 229940068984 polyvinyl alcohol Drugs 0.000 description 20
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 10
- 238000010335 hydrothermal treatment Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010036 direct spinning Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NPHULPIAPWNOOH-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(2,3-dihydroindol-1-ylmethyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CN1CCC2=CC=CC=C12 NPHULPIAPWNOOH-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/36—Matrix structure; Spinnerette packs therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
도 1a 내지 1d는 본 발명의 일실시예(PAN:PVA=4:6)에 따른 극미세섬유 웹의 표면 미세 형태로서, (a), (b)는 as-spun 극미세섬유의 표면의 형태, (c), (d) 열수처리 후 분할 극미세섬유 형태(100 ℃, 5분)를 나타낸 사진이며,Figures 1a to 1d is a surface fine form of the ultrafine web of the web according to an embodiment of the present invention (PAN: PVA = 4: 6), (a), (b) is the form of the surface of the as-spun ultrafine fibers , (c), (d) is a photograph showing the split microfiber form (100 ℃, 5 minutes) after the hot water treatment,
도 2a 내지 2d는 본 발명의 일실시예(PAN:PVA=5:5)에 따른 극미세섬유 웹의 표면 미세 형태로서, (a) 웹의 상태, (b) 극미세섬유의 표면, (c) 열수처리 후 나노섬유 웹(100 ℃, 5분), (d) 열수처리 후 분할형 나노섬유의 미세 사진이며,Figures 2a to 2d is a microstructure of the surface of the ultra-fine fiber web according to an embodiment of the present invention (PAN: PVA = 5: 5), (a) the state of the web, (b) the surface of the ultra-fine fibers, (c ) Nanofiber web after hydrothermal treatment (100 ° C., 5 minutes), (d) micrograph of split nanofiber after hydrothermal treatment,
도 3a 내지 3d는 본 발명의 일실시예(PAN:PVA=6:4)에 따른 극미세섬유 웹의 표면 미세 형태로서,(a), (b)는 as-spun 극미세섬유의 표면 형태, (c), (d) 열수처리 후 분할 극미세섬유 표면형태(100 ℃, 5분)를 나타낸 사진이며, Figure 3a to 3d is a surface fine form of the ultra-fine fiber web according to an embodiment of the present invention (PAN: PVA = 6: 4), (a), (b) is the surface form of as-spun ultra-fine fibers, (c), (d) picture showing the surface shape of the split microfiber (100 ° C, 5 minutes) after the hot water treatment,
도 4는 본 발명의 일실시예(PAN:PVA=5:5)에 따른 극미세섬유를 열처리(60 ~ 260℃, 승온속도 1℃/min, 유지시간 60 min)한 후의 사진이다. Figure 4 is a photograph after the heat treatment (60 ~ 260 ℃, heating rate 1 ℃ / min, holding time 60 min) the ultra-fine fibers according to an embodiment of the present invention (PAN: PVA = 5: 5).
본 발명은 극미세 섬유, 이의 제조방법 및 탄소나소섬유의 제조방법에 관한 것이다.The present invention relates to an ultrafine fiber, a method for producing the same, and a method for producing carbon nanofibers.
극미세 섬유는 아직 미지의 부분이 많고 섬유를 더욱 극세화함에 따라 어떠한 기능들이 나타날 것인지, 어떠한 용도로 개발될 것인지 기대감에 부풀어 있으며, 활발히 연구 중이다.As the microfibers still have a lot of unknown parts and as the fibers are further refined, the expectation is that they will be developed and used for what function.
극미세 섬유의 제조방법은 크게 직접 방사법과 복합 방사법으로 대별할 수 있으나, 직접 방사법에 의한 극세 섬유는 그 섬도에 한계가 있으며 제조 공정상 안정성이 문제화되어, 폴리머 조합 및 구성에 따라 다양하고 균일하고 섬도조절이 가능한 복합 방사법으로 제조하는 것이 보편적이며, 대표적인 것이 바로 해도형 제법에 의한 극미세사의 제조방법이다.The manufacturing method of the ultra fine fibers can be largely classified into direct spinning method and composite spinning method. However, the micro fiber by the direct spinning method has its fineness and the stability of the manufacturing process is problematic. It is common to manufacture a composite spinning method that can adjust the fineness, and the typical one is a manufacturing method of ultra fine yarn by the island-in-the-sea manufacturing method.
종래부터 극히 다수의 해도형 복합섬유의 제조법이나 장치가 제안되어 있다. 그러나, 도성분의 수를 증가시킬 수 있더라도, 해성분에 대하여 도성분이 차지하는 질량비율을 증가시키는 것이 어렵다는 문제가 있다. 즉, 도비율을 증가하고자 하면 해도관계가 역전되어, 도성분의 형성을 목적으로 하여 사용된 폴리머가 연속상태가 되어 해성분을 형성하고 만다는 문제나, 도성분의 수를 증가시키는 것은 가능해도, 방사구금의 1 토출구멍 당 면적이 거대해져 버린다는 문제가 있다. 또한, 이 경우 에는 도성분의 위치나 수를 컨트롤하는 것도 어려워, 불균질한 복합섬유가 얻어지는 등 여러 가지 문제가 있다.Background Art [0002] An extremely large number of islands-in-the-sea composite fiber production methods and apparatuses have been proposed. However, even if the number of island components can be increased, it is difficult to increase the mass ratio occupied by the island components with respect to the sea component. In other words, if the ratio is increased, the island-in-sea relationship is reversed, and the polymer used for the purpose of forming the island component is in a continuous state to form a sea component, or it is possible to increase the number of island components. There is a problem that the area per discharge hole of the spinneret becomes large. In this case, it is also difficult to control the position and number of island components, resulting in various problems such as obtaining a heterogeneous composite fiber.
특히, 일반적인 20 ㎛ 정도의 해도형 섬유를 제조한 후 해성분을 제거하며 도성분을 용출시켜 제조하는 해도사는 최소 800nm 정도의 나노섬유를 제조할 수 있고 이 제품은 상용화되어 있으나, 수 십 nm ~ 수 백 nm정도의 극미세 나노섬유를 제조, 실용화하는 것은 기존의 방법으로는 어려운 문제점이 있다. In particular, the island-in-the-sea yarn manufactured by manufacturing sea island-like fibers having a thickness of about 20 μm and then eluting the island components can produce nanofibers of at least 800 nm, and this product has been commercialized. The production and practical use of ultra-fine nanofibers of several hundred nm is difficult in the conventional method.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 미세한 섬유를 얻는 해도형 섬유제조와 전기방사법을 이용한 나노섬유의 제조기술을 접목하여 극미세 나노섬유, 특히 100nm 이하의 섬유직경을 갖는 극미세 나노섬유를 제조하는 것을 목적으로 한다.The present invention is to solve the above problems, by combining the manufacturing technology of the island-in-the-sea fiber to obtain the fine fibers and the manufacturing technology of the nanofibers using the electrospinning method, ultra-fine nanofibers, especially ultra-fine nanofibers having a fiber diameter of 100nm or less For the purpose of manufacturing.
상기의 목적을 달성하기 위한 본 발명은The present invention for achieving the above object
난(難)용해성 폴리머인 도(島)성분 폴리머 및 이(易)용해성 폴리머인 해(海)성분 폴리머를 용제와 혼합하여 방사용액을 제조하는 단계; 상기 방사용액에 전압을 인가해 전기방사하여 미세섬유를 얻는 단계; 및 상기 얻어진 미세섬유를 해성분 폴리머가 선택적으로 용해되는 세척용제로 세척하여 해성분 폴리머를 제거하는 단 계;를 포함하여 이루어진 극미세섬유의 제조방법을 제공한다.Preparing a spinning solution by mixing a island component polymer, which is a hardly soluble polymer, and a sea component polymer, which is a soluble polymer, with a solvent; Applying a voltage to the spinning solution and electrospinning to obtain fine fibers; And a step of removing the sea component polymer by washing the obtained microfibers with a washing solvent in which the sea component polymer is selectively dissolved.
또한, 상기 도성분 폴리머는 폴리아크릴로니트릴(PAN) 또는 다른 폴리머와 공중합된 PAN 공중합체이고, 상기 해성분 폴리머는 에스테르기의 전부 또는 일부가 알콜로 가수분해된 폴리비닐알콜(PVA), 폴리에틸렌옥사이드(PEO) 또는 폴리비닐피롤리돈(PVP)인 것을 특징으로 하는 극미세섬유의 제조방법을 제공한다.In addition, the island component polymer is a PAN copolymer copolymerized with polyacrylonitrile (PAN) or another polymer, and the sea component polymer is polyvinyl alcohol (PVA), polyethylene in which all or part of an ester group is hydrolyzed with alcohol. Oxide (PEO) or polyvinylpyrrolidone (PVP) provides a method for producing ultra-fine fibers, characterized in that.
또한, 상기 방사용액을 제조하는 단계에서, 상기 도성분 폴리머와 해성분 폴리머의 혼합 중량비는 4:6~6:4인 것을 특징으로 하는 극미세섬유의 제조방법을 제공한다.In addition, in the step of preparing the spinning solution, the mixing weight ratio of the island component polymer and the sea component polymer provides a method for producing ultra-fine fibers, characterized in that 4: 6 ~ 6: 4.
또한, 상기 방사용액의 용제는 디메틸설폭사이드(DMSO)인 것을 특징으로 하는 극미세섬유의 제조방법을 제공한다.In addition, the solvent of the spinning solution provides a method for producing ultra-fine fibers, characterized in that dimethyl sulfoxide (DMSO).
또한, 상기 세척용제로 세척하여 해성분 폴리머를 제거하는 단계에서, 상기 세척용제는 60 내지 100℃로 가열된 물인 것을 특징으로 하는 극미세섬유의 제조방법을 제공한다.In addition, in the step of removing the sea component polymer by washing with the washing solvent, the washing solvent provides a method for producing ultra-fine fibers, characterized in that the water heated to 60 to 100 ℃.
또한, 상기 세척용제로 세척하여 해성분 폴리머를 제거하는 단계에서, 상기 세척용제는 60 내지 100℃로 가열된 물인 것을 특징으로 하는 극미세섬유의 제조방 법을 제공한다.In addition, in the step of removing the sea component polymer by washing with the washing solvent, the washing solvent provides a method for producing ultra-fine fibers, characterized in that the water heated to 60 to 100 ℃.
또한, 상기 전기방사하여 얻은 미세섬유의 평균직경이 250nm 이하인 것을 특징으로 하는 극미세 섬유의 제조방법을 제공한다.The present invention also provides a method for producing ultrafine fibers, wherein the average diameter of the fine fibers obtained by the electrospinning is 250 nm or less.
본 발명은 또한, 상기 제조방법으로 제조된 극미세 섬유로서, 평균 100nm이하의 직경을 갖는 극미세 섬유로 분할된 섬유다발이 존재하는 극미세 섬유을 제공한다.The present invention also provides an ultra-fine fiber produced by the manufacturing method, the fiber bundle is divided into an ultra-fine fiber having an average diameter of 100nm or less.
또한, 상기 해성분 폴리머를 제거하는 단계 이후에 100~300℃에서 열처리하여 산화안정화 처리하는 단계를 더 포함하는 것을 특징으로 하는 극미세 섬유의 제조방법을 제공한다.In addition, after the step of removing the sea component polymer provides a method for producing an ultra-fine fiber, characterized in that further comprising the step of heat treatment at 100 ~ 300 ℃ oxidative stabilization process.
또한, 본 발명은, 상기 산화안정화 단계 이후에 극미세 섬유를 불활성가스 또는 진공분위기에서 탄화시키는 단계를 더 포함하는 탄소나노섬유 제조방법을 제공한다.In addition, the present invention provides a carbon nanofiber manufacturing method further comprising the step of carbonizing the ultrafine fibers in an inert gas or vacuum atmosphere after the oxidation stabilization step.
이하 실시예를 통해 본 발명을 보다 상세하게 설명한다. 하기의 구체적 설명은 본 발명의 일실시예에 대한 설명이므로 비록 단정적, 한정적 표현이 있더라도 특허청구범위로부터 정해지는 권리범위를 제한하는 것은 아니다.The present invention will be described in more detail with reference to the following Examples. The following detailed description is for the purpose of describing the exemplary embodiments of the present invention, but the present invention is not intended to limit the scope of the rights defined by the appended claims, even though there is a certain or limiting expression.
전기방사를 이용한 나노섬유 제조기술은 미세한 섬유를 얻을 수 있는 방사공 정으로서 미세한 섬유를 제조할 수 있는 잠재성이 우수한 기술이다. 이 기술을 이용하여 해도형 미세 섬유를 제조하고 해성분을 세척하여 제거하게 되면 수 nm ~ 수 십 nm의 극미세 나노섬유를 제조할 수 있게 된다. 즉, 전기방사 공정으로 미세하게 얻어진 섬유에서, 재차 해성분을 제거함으로써, 더욱 미세한 나노섬유를 얻을 수 있게 된다.Nanofiber manufacturing technology using electrospinning is a technology capable of producing fine fibers as a spinning process for obtaining fine fibers. Using this technique, if the island-in-the-sea fine fibers are manufactured and sea components are washed and removed, ultrafine nanofibers of several nm to several tens of nm can be produced. That is, the finer nanofibers can be obtained by removing the sea component again from the finely obtained fibers by the electrospinning process.
이를 통해, 기존의 해도형 미세섬유보다, 기존의 전기방사공정을 통해 얻어진 미세섬유보다, 더욱 미세한 극미세 나노섬유를 얻을 수 있게 되는 것이다.Through this, it is possible to obtain a very fine ultra-fine nanofibers than the conventional microfibers obtained through the conventional electrospinning process, than the existing island-in-the-sea fine microfibers.
본 발명에 따른 극미세섬유의 제조방법은 난(難)용해성 폴리머인 도(島)성분 폴리머 및 이(易)용해성 폴리머인 해(海)성분 폴리머를 용제와 혼합하여 방사용액을 제조하는 단계, 상기 방사용액에 전압을 인가해 전기방사하여 미세섬유를 얻는 단계, 및 상기 얻어진 미세섬유를 해성분 폴리머가 선택적으로 용해되는 세척용제로 세척하여 해성분 폴리머를 제거하는 단계를 포함하여 이루어진 것을 특징으로 한다.Method for producing an ultra-fine fiber according to the present invention comprises the steps of preparing a spinning solution by mixing the island component polymer which is a poorly soluble polymer and the sea component polymer which is a soluble polymer with a solvent, Applying a voltage to the spinning solution to electrospin to obtain microfibers, and washing the obtained microfibers with a washing solvent in which the sea component polymer is selectively dissolved to remove the sea component polymer. do.
상기 방사용액을 제조하는 단계는 도성분 폴리머와 해성분 폴리머가 주 성분으로 하여 용제와 혼합되어 제조된다. 이외에도 필요에 따라 본 기술분야에서 알려진 첨가제들이 더 포함될 수 있으며, 이도 본 발명에 포함된다.The step of preparing the spinning solution is prepared by mixing the solvent with a solvent-based polymer and a sea component polymer as a main component. In addition, if necessary, additives known in the art may be further included, which are also included in the present invention.
상기 도성분 폴리머와 해성분 폴리머는 후공정인 세척제거공정에서 세척용제 에 용해되어 제거될 수 있는 이(易)용해성 폴리머를 해성분 폴리머, 상기 세척용제에 용해되지 않는 난(難)용해성 폴리머를 도성분 폴리머로 구분한다. The island component polymer and the sea component polymer include a sea-soluble polymer that can be dissolved and removed in a washing solvent in a subsequent washing and removing process, and uses a sea-soluble polymer and a poorly soluble polymer that does not dissolve in the washing solvent. It is divided into island-based polymers.
상기 도성분 폴리머의 일례로는 제한되지 않으나 폴리아크릴로니트릴(Ho-PAN) 또는 다른 폴리머와 공중합된 PAN 공중합체(Co-PAN)를 들 수 있다. 공중합 조성으로는 (메타)아크릴레이트계나 이타코닉에시드(itaconic acid)등을 들 수 있다.Examples of the island component polymer include, but are not limited to, polyacrylonitrile (Ho-PAN) or PAN copolymer (Co-PAN) copolymerized with other polymers. As a copolymer composition, a (meth) acrylate type, itaconic acid, etc. are mentioned.
상기 해성분 폴리머의 일례로는 에스테르기의 전부(Fully) 또는 일부(Partially)가 알콜로 가수분해된 폴리비닐알콜(PVA), 폴리에틸렌옥사이드(PEO) 또는 폴리비닐피롤리돈(PVP) 등을 들 수 있다. Examples of the sea component polymer include polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), or the like, in which all or part of the ester group is hydrolyzed with alcohol. Can be.
상기 방사용액을 제조하는 단계에서, 상기 도성분 폴리머와 해성분 폴리머의 혼합 중량비는 제한되지 않으나 4:6~6:4인 것이 바람직하다. 상기 범위를 넘어서 해성분 폴리머가 많을 경우 결국엔 제거되는 해성분 폴리머의 낭비가 많아져 바람직하지 않으며, 상기 범위를 넘어서 도성분 폴리머의 함량이 많을 경우, 도성분 폴리머간의 응집 등이 일어나 극미세 섬유로의 분할이 일어나지 않는 빈도가 증가할 수 있다. In the step of preparing the spinning solution, the mixing weight ratio of the island polymer and the sea polymer is not limited, but is preferably 4: 6 to 6: 4. If there is a large amount of sea component polymer beyond the above range, the waste of sea component polymer that is eventually removed increases, which is not preferable.If the content of the island component polymer is exceeded, the coagulation between the island component polymers occurs, resulting in extremely fine fibers. The frequency with which splitting does not occur may increase.
상기 용제는 도성분 폴리머와 해성분폴리머를 용해 또는 고르게 분산시킬 수 있는 용제라면 제한되지 않으며 테트라히드로퓨란(THF), 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAc), 알콜류, 디메틸설폭사이드(DMSO) 등을 단독 또는 조 합하여 사용할 수 있으며, 바람직하기로는 DMSO가 좋다. The solvent is not limited as long as it can dissolve or evenly disperse the island polymer and the sea component polymer, and may be tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacetamide (DMAc), alcohols, or dimethyl sulfoxide ( DMSO) may be used alone or in combination, preferably DMSO.
용제의 함량은 제한되지 않으나 점도가 30~120 poise가 되도록 용제의 양을 조절하는 것이 좋으며, 바람직하기로는 90 poise 정도가 좋다. 바람직한 용제의 함량은 도성분 폴리머와 해성분 폴리머의 합계 농도가 5 ~ 50 중량%가 되도록 함이 좋다.Although the content of the solvent is not limited, it is preferable to adjust the amount of the solvent so that the viscosity is 30 to 120 poise, preferably about 90 poise. The preferred solvent content is such that the total concentration of the island component polymer and the sea component polymer is 5 to 50% by weight.
다음, 상기에서 제조된 방사용액을 전기방사하여 미세섬유를 얻는다.Next, the spinning solution prepared above is electrospun to obtain fine fibers.
전기방사하는 방법은 제한되지 않으며, 일례로, 상기 제조된 방사용액을 방사구에 연결하고, 인가전압 50 kV의 전압을 인가하고, 방사구와 집전체와의 거리는 30 cm를 유지한 상태에서 홀당 0.1 - 3 cc/g로 토출하여 전기방사를 실시하는 방법을 들 수 있다. The method of electrospinning is not limited. For example, the prepared spinning solution is connected to the spinneret, a voltage of 50 kV is applied, and the distance between the spinneret and the current collector is kept 0.1 cm per hole. A method of electrospinning by discharging at 3 cc / g.
다음, 상기 전기방사로 얻어진 미세섬유를 세척용제로 세척하여 해성분 폴리머를 제거하여 극미세 섬유를 얻는다. 즉, 세척과정을 통해 해도성 섬유의 해성분 폴리머가 제거되면 도성분 폴리머만 남게 되어 더욱 미세한 극미세 섬유를 얻게 된다. Next, the microfibers obtained by the electrospinning are washed with a washing solvent to remove the sea component polymer to obtain ultrafine fibers. In other words, when the sea component polymer of the island-in-the-sea fiber is removed through the washing process, only the island-based polymer remains, thereby obtaining more fine fibers.
상기 세척용제로는 상기 해성분 폴리머를 선택적으로 용해시킬 수 있는 것이라면 제한되지 않으며, 바람직하기로는 환경오염이 적은 물이 좋다. 물은 증류수를 사용하는 것이 좋다.The washing solvent is not limited as long as it can selectively dissolve the sea component polymer, preferably water with less environmental pollution is preferable. For water, it is recommended to use distilled water.
상기 세척시, 상온에서 세척용제로 세척하여도 어느정도의 세척효과를 볼 수 있으며, 바람직하기로는 단시간의 효과적 세척을 위해 세척용제를 가열하여 세척하는 것이 좋으며, 물을 사용할 경우, 60 내지 100℃로 가열, 특히 끓는 물을 사용하여 세척하는 것이 좋다. 세척 시간은 제한되지 않으나 끓는 물의 경우 3~20분 정도가 바람직하다. 세척방법은 세척용제에 얻어진 해도형 섬유를 침지하여 세척하거나, 흐르는 세척용제로 흘려주어 세척할 수도 있으며, 제한되지 않는다.At the time of washing, even when washed with a washing solvent at room temperature, it can be seen to some degree of washing effect, preferably to wash the washing solvent by heating for a short time effective washing, when using water, to 60 to 100 ℃ It is advisable to clean it using heating, especially boiling water. The washing time is not limited, but boiling water is preferably about 3 to 20 minutes. The washing method may be performed by immersing and washing the island-in-the-sea fibers obtained in the washing solvent, or by flowing with a flowing washing solvent, but is not limited thereto.
상기 세척과정 이후에, 건조 과정이 추가될 수 있으며, 또한, 100~300℃에서 열처리하여 산화안정화 처리하여 극미세 섬유를 제조할 수도 있다. 일례로, 승온속도 1℃/min으로 260℃까지 승온후 한 시간 동안 산화성가스 분위기에서 산화안정화 공정을 거칠 수도 있다. After the washing process, a drying process may be added, and may also be prepared by heat treatment at 100 ~ 300 ℃ oxidative stabilization treatment to produce ultra-fine fibers. For example, the temperature may be elevated to 260 ° C. at a temperature increase rate of 1 ° C./min, and then subjected to an oxidation stabilization process in an oxidizing gas atmosphere for one hour.
상기의 방법으로 제조된 본 발명에 따른 극미세 섬유는 평균 250nm이하의 직경을 갖는 극미세 섬유로 분할된 섬유다발이 존재하는 것이 특징이다. 즉, 전기방사 후에 얻어지는 미세섬유는 해성분 폴리머와 다수로 분할되어 있는 도성분 폴리머로 이루어진 해도형 미세섬유인데, 이에서 해성분 폴리머가 제거됨으로 인해 다수로 분할되어 있는 극미세한 도성분 폴리머가 섬유다발 형태로 존재하는 구조적 특징이 있게 된다.The ultrafine fiber according to the present invention prepared by the above method is characterized by the presence of a fiber bundle divided into ultrafine fibers having an average diameter of 250 nm or less. That is, the microfiber obtained after electrospinning is an island-in-the-sea microfiber composed of a sea component polymer and a island component polymer that is divided into a plurality of fibers. There are structural features present in bundle form.
본 발명은 또한, 탄소나노섬유의 제조방법을 제공한다. 상기 제조방법으로 제조된 극미세 섬유를 불활성가스 또는 진공분위기에서 탄화시키게 되면 극미세한 탄소나노섬유를 얻을 수 있게 된다. 불활성가스로는 헬륨, 네온, 아르곤 등을 들 수 있으며, 바람직하기로는 아르곤이 좋다. 탄화로를 이용하여 탄화시키는 것이 좋으며, 탄화온도는 제한되지 않으나 800~1500℃에서 수행하는 것이 좋다.The present invention also provides a method for producing carbon nanofibers. When the ultrafine fibers prepared by the above production process are carbonized in an inert gas or vacuum atmosphere, ultrafine carbon nanofibers can be obtained. Examples of the inert gas include helium, neon, argon, and the like, and argon is preferable. It is good to carbonize using a carbonization furnace, and the carbonization temperature is not limited, but it is good to perform at 800 ~ 1500 ℃.
이하 실시예를 통해 보다 구체적으로 설명한다.It will be described in more detail through the following examples.
표 1은 해도형 미세섬유를 제조하기 위한 실시예로서 고분자 용액의 조성과 농도를 표기하였다. 도성분으로 사용되는 폴리아크릴로니트릴(PAN, Poly acrylonitrile)로 분자량 150,000 g/mol을 지닌 homo-polymer 제품과 분자량 40,000 g/mol을 지닌 co-polymer(90% AN 함량)를 사용하였으며, 해성분은 폴리 비닐알코올(PVA, Poly vinylalcohol)를 사용하여 열수를 이용하여 용이하게 제거할 수 있도록 하였으며 부분적 또는 완전히 알콜화된 두 종류의 PVA를 이용하여 열수 용해성을 달리하여 실험을 진행하였다. 용액은 PAN과 PVA의 비율이 4:6, 5:5, 6:4 의 세 가지 조성으로 제조하였으며 각 용액의 전기방사가 가능한 가방범위의 농도를 많은 테스트를 통하여 표 1에 표기하였다. 방사 용액을 제조하기 위한 용매로는 PAN과 PVA의 공용매인 디메틸설폭사이드(DMSO, Dimethyl sulfoxide)를 사용하여 제조하였다. Table 1 shows the composition and concentration of the polymer solution as an example for producing island-in-the-sea fine fibers. Polyacrylonitrile (PAN) is used as a co-constituent, and homo-polymer product with molecular weight of 150,000 g / mol and co-polymer (90% AN content) with molecular weight of 40,000 g / mol are used. Silver polyvinyl alcohol (PVA, Poly vinylalcohol) was used for easy removal using hot water, and experiments were carried out with different hydrothermal solubility using two or more partially alcoholated PVA. The solution was prepared with three compositions of 4: 6, 5: 5, and 6: 4 ratios of PAN and PVA, and the concentrations in the range of bags available for electrospinning of each solution are shown in Table 1 through many tests. The solvent for preparing the spinning solution was prepared using dimethyl sulfoxide (DMSO), a co-solvent of PAN and PVA.
용액의 점도는 30 ~ 90 poise정도로 측정되었으며 PVA의 함량이 많은 4:6 조성비의 용액에서 일반적인 전기방사의 결과와 상이하게 고점도에서도 미세섬유를 얻을 수 있었다. 측정된 점도값이 90 poise 정도였고, 얻어진 미세섬유의 섬유경은 약 250nm이하였다. 일반적으로는 단일성분의 용액일 때 점도와 섬유경과의 상관관계를 고려한다면 90 poise의 점도를 지닌 용액이면 약 2,000nm 이하의 섬유경을 얻는다.Viscosity of the solution was measured in the range of 30 to 90 poise, and microfibers were obtained at high viscosity, unlike the result of general electrospinning, in the solution of 4: 6 composition ratio with high PVA content. The viscosity value measured was about 90 poise, and the fiber diameter of the obtained fine fiber was about 250 nm or less. In general, considering the correlation between viscosity and fiber diameter in the case of a single component solution, a fiber diameter of about 2,000 nm or less is obtained for a solution having a viscosity of 90 poise.
* Treatment : 100℃에서 각 시간별 열수로 세척처리* Treatment: Washing treatment with hot water at 100 ℃ for each hour
* Wash : 2차 증류수로 10분간 수세* Wash: Wash with 10 distilled water for 10 minutes
* Dry : 60℃에서 열풍건조기에서 30분간 처리* Dry: Treated for 30 minutes in hot air dryer at 60 ℃
표 2는 PAN과 PVA의 비율이 4:6인 실시예 9를 열수처리하여 얻은 결과이다. 1 번과 2 번은 blank 테스트로서 단순건조 시료의 무게변화와 상온의 증류수에 10분 수세하고 건조한 시료의 무게변화를 확인하여 기준 데이터로 사용하였다. 시료의 건조는 60℃에서 30분간 진행하여 제조하였다.Table 2 shows the results obtained by hydrothermally treating Example 9 in which the ratio of PAN and PVA is 4: 6. No. 1 and No. 2 were blank tests, which were used as reference data after checking the weight change of a simple dry sample and washing with distilled water at room temperature for 10 minutes. The sample was dried for 30 minutes at 60 ° C.
열수 후처리 결과, 끓는 물에 5분만 처리한 후 건조한 시료에서 약 40%의 무게감소 즉, 대부분의 PVA 성분이 제거되었음을 확인할 수 있으며 실제 주사전사현미경(SEM, Scan Electron Microscope)을 이용한 미세 구조 관찰 결과 분할형 나노섬유가 제조 되었음을 확인하였다. 이 후 한 시간 이상 열수처리를 하여도 크게 무게 감소가 발생하지 않는 것을 알 수 있었다.As a result of the hydrothermal post-treatment, it was confirmed that after only 5 minutes in boiling water, about 40% of the weight was removed from the dried sample, that is, most of the PVA components were removed, and the microstructure was observed using a real scanning electron microscope (SEM). As a result, it was confirmed that the split nanofibers were prepared. After that, even if the hydrothermal treatment for more than one hour was found that the weight loss does not occur significantly.
도 1a 내지 1d, 2a 내지 2d, 3a 내지 3d는 각각 PAN:PVA가 4:6(실시예 3), 5:5(실시예 2), 6:4(실시예 1)의 열수처리 전의 미세섬유 및 열수처리 후의 극미세섬유 웹의 표면 미세 형태를 관찰한 현미경(SEM) 사진이다. 열수처리 전의 미세섬유 웹은 일반적인 전기방사 후 얻어지는 웹과 같은 형상을 지니고 있으며 100℃의 열수처리를 5분 정도 실시하여 해성분이 제거된 열수처리 후의 극미세섬유(분할형 극미세섬유)는 100nm 이하의 극미세한 섬유를 형성하였다. 용액의 조성이 6:4의 시료는 열수 처리 후 미세 섬유의 표면이 완벽히 분할되지 않은 부분이 있었으며, 다소 분할이 불완전한 스크래치 형태를 관찰할 수 있었으며(도 3 참조), 4:6의 조성을 지닌 실시예에서는 열수 처리 후 모든 섬유가 분할이 되어 30nm ~ 100nm의 분할형 극미세섬유를 형성한 것을 볼 수 있다(도 1 참조). 웹의 전체적인 형태는 멤브레인과 같은 구조를 지니고 있다. PAN과 PVA의 비율이 같은 5:5 조성 용액의 경우 굵은 미세섬유는 분할이 보다 완벽히 되어 섬유번들을 형성하고, 가는 미세섬유는 분할이 다소 불완전한 것을 확인하였다.1A to 1D, 2A to 2D, and 3A to 3D are microfibers before hydrothermal treatment with PAN: PVA of 4: 6 (Example 3), 5: 5 (Example 2), and 6: 4 (Example 1), respectively. And micrographs (SEM) of the surface fine morphology of the ultrafine fiber web after the hydrothermal treatment. The microfiber web before the hydrothermal treatment has the same shape as the web obtained after the general electrospinning, and the ultrafine fibers (segmented microfine fibers) after the hydrothermal treatment where sea components are removed by performing the hydrothermal treatment at 100 ° C. for about 5 minutes are 100 nm or less. To form very fine fibers. The sample with a solution composition of 6: 4 had a portion where the surface of the microfibers was not completely divided after the hydrothermal treatment, and the scratch shape was found to be somewhat incompletely divided (see FIG. 3). In the example, it can be seen that after the hydrothermal treatment, all the fibers are split to form split type ultrafine fibers of 30 nm to 100 nm (see FIG. 1). The overall shape of the web has a membrane-like structure. For the 5: 5 composition solution with the same ratio of PAN and PVA, coarse microfibers were more completely divided to form fiber bundles, and the fine microfibers were found to be somewhat incomplete.
그림 4는 열수처리 하여 얻어진 분할형 PAN 극미세섬유를 승온속도 1℃/min으로 260℃까지 승온후 한 시간 동안 산화성가스 분위기에서 산화안정화 공정을 거친 안정화섬유의 미세사진이다. 연소테스트 결과 산화안정화가 잘 되었으며, 분할형 극미세섬유 웹의 형태를 그대로 유지하는 것을 확인할 수 있다. 이제까지 수 nm ~ 수백 nm의 CNF나 GNF의 제조에 응용된 화학증착법은 탄소를 많이 함유하고 있는 가스의 화학적인 증착반응을 통하여 섬유형태를 제조하는 bottom-up 기술로서 CNT, CNF 및 GNF 등 미세한 나노탄소재료를 제조하는 대표적인 기술이지만 양산이 어려운 단점이 존재하였다. 본 기술은 100 nm 이하의 Carbon nanofiber 제조하는 기술로서 용액의 전기방사에서 분할형 극미세섬유를 제조하는 Top-down 기술로 대량생산이 가능한 세계 최초의 양산형 CNF 제조기술로 적용될 수 있다.Fig. 4 is a micrograph of stabilized fiber which undergoes oxidation stabilization process in oxidizing gas atmosphere for one hour after heating up split PAN ultrafine fiber obtained by hot water treatment to 260 ° C at a heating rate of 1 ° C / min. As a result of the combustion test, the oxidation was stabilized well, and the shape of the split microfiber web was maintained. The chemical vapor deposition method applied to the production of CNF or GNF of several nm to several hundred nm has been a bottom-up technique for producing fiber form through chemical vapor deposition of carbon-rich gas. Representative technology for manufacturing a carbon material, but the mass production was difficult. This technology is a technology for manufacturing carbon nanofibers of 100 nm or less and is the world's first mass-produced CNF manufacturing technology that can be mass-produced as a top-down technology for the production of split microfibers in solution electrospinning.
본 발명은 해도형 섬유제조와 전기방사법을 이용한 나노섬유의 제조기술을 접목하여 양산성이 뛰어나고, 특정 구조를 갖는 극미세한 섬유를 얻을 수 있으며, 또한, 이를 바탕으로 탄소나노섬유를 용이하게 제조할 수 있는 장점이 있다.The present invention combines the manufacturing technology of nanofibers using the island-in-the-sea fiber manufacturing and the electrospinning method is excellent in mass production, it is possible to obtain a very fine fiber having a specific structure, and also based on this easy to manufacture carbon nanofibers There are advantages to it.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070040365A KR100881953B1 (en) | 2007-04-25 | 2007-04-25 | Ultra fine fiber, manufacturing method thereof and manufacturing method of carbon nanofiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070040365A KR100881953B1 (en) | 2007-04-25 | 2007-04-25 | Ultra fine fiber, manufacturing method thereof and manufacturing method of carbon nanofiber |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080095623A true KR20080095623A (en) | 2008-10-29 |
KR100881953B1 KR100881953B1 (en) | 2009-02-11 |
Family
ID=40155247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070040365A KR100881953B1 (en) | 2007-04-25 | 2007-04-25 | Ultra fine fiber, manufacturing method thereof and manufacturing method of carbon nanofiber |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100881953B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101028382B1 (en) * | 2009-03-03 | 2011-04-13 | 전북대학교산학협력단 | Core-sheath type gallium arsenide / polyvinyl alcohol composite nanofibers and a method of manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101226816B1 (en) | 2010-12-31 | 2013-01-25 | 주식회사 효성 | Method for measuring pH of solvent for carbon fiber |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100438216B1 (en) * | 2002-06-12 | 2004-07-02 | 김학용 | An ultrafine alumina fiber, and a process of preparing for the same |
KR100412241B1 (en) * | 2001-12-13 | 2003-12-31 | 주식회사 라이지오케미칼코리아 | A ultrafine inorganic fiber, and a process of preparing for the same |
KR100595486B1 (en) * | 2004-05-10 | 2006-07-03 | 김학용 | Bottom-up multicomponent electrospinning apparatus and a component nanofiber manufactured using the same |
KR100610250B1 (en) | 2004-06-24 | 2006-08-10 | 주식회사 코오롱 | Method for producing polyvinyl alcohol fiber |
-
2007
- 2007-04-25 KR KR1020070040365A patent/KR100881953B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101028382B1 (en) * | 2009-03-03 | 2011-04-13 | 전북대학교산학협력단 | Core-sheath type gallium arsenide / polyvinyl alcohol composite nanofibers and a method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR100881953B1 (en) | 2009-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100013126A1 (en) | Process for producing nano- and mesofibers by electrospinning colloidal dispersions | |
CN108589048A (en) | Orientation capillary power drive is prepared using electrostatic spinning large area efficiently to catchment the methods of hydrophobic/hydrophilic Janus composite cellulosic membranes | |
CN102031572B (en) | A kind of preparation technology of water-soluble polyvinyl alcohol fibers and application thereof | |
TW200427889A (en) | Non-woven fabric and process for producing the same | |
Jiang et al. | Fabrication of core–shell nanofibers by single capillary electrospinning combined with vapor induced phase separation | |
JP5284889B2 (en) | Fiber products | |
KR20100035208A (en) | Filter media and method of manufacturing the same | |
CN1403641A (en) | Water soluble polyvinyl alcohol fiber and its prepn and use | |
KR100881953B1 (en) | Ultra fine fiber, manufacturing method thereof and manufacturing method of carbon nanofiber | |
JP2005097792A (en) | Extra fine carbon fiber and method for producing the same | |
CN100363542C (en) | A kind of polyvinyl alcohol electrospinning solution | |
KR20210053694A (en) | Polyaniline-polymer nanofiber composite and preparation method thereof | |
JP4773902B2 (en) | Nanofiber nonwoven fabric and method for producing the same | |
CN107988712A (en) | Submicron/nanometer anaerobic carbonization silica fibre felt and preparation method thereof | |
CN112030353B (en) | High-strength carbon nanofiber membrane and preparation method thereof | |
CN101368318B (en) | A Method for Quickly Selecting the Process Conditions of Electrospinning to Prepare Nano-Drug-loaded Fiber Mat | |
JP2012193465A (en) | Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber | |
JP4604911B2 (en) | Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber | |
Ma et al. | Preparation and characterization of chitosan/poly (vinyl alcohol)/poly (vinyl pyrrolidone) electrospun fibers | |
JP4922964B2 (en) | Dry nonwoven fabric | |
KR20160141499A (en) | Method of manufacturing activated carbon fiber | |
CN113215674B (en) | Nanofibers, methods for their preparation and applications | |
CN113373552B (en) | Carbon fiber and preparation method and application thereof | |
CN114232215B (en) | Preparation method and application of asphalt-based carbon nanofiber multistage non-woven fabric with three-dimensional cavity structure | |
CN111501135A (en) | Preparation method of ozone catalytic nanofiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070425 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20080327 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20080910 Patent event code: PE09021S02D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20090115 |
|
GRNT | Written decision to grant | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20090129 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090129 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090130 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20120126 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130204 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20130204 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140206 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20140206 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150130 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20150130 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160125 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20160125 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170118 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20170118 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180129 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20180129 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190122 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20190122 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20200122 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20200122 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20210126 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20220124 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20230119 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20240123 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20250124 Start annual number: 17 End annual number: 17 |