KR20080090781A - Electronic display paper made with cellulose - Google Patents

Electronic display paper made with cellulose Download PDF

Info

Publication number
KR20080090781A
KR20080090781A KR1020070034078A KR20070034078A KR20080090781A KR 20080090781 A KR20080090781 A KR 20080090781A KR 1020070034078 A KR1020070034078 A KR 1020070034078A KR 20070034078 A KR20070034078 A KR 20070034078A KR 20080090781 A KR20080090781 A KR 20080090781A
Authority
KR
South Korea
Prior art keywords
cellulose
cell structure
electronic display
injected
paper
Prior art date
Application number
KR1020070034078A
Other languages
Korean (ko)
Inventor
김재환
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020070034078A priority Critical patent/KR20080090781A/en
Priority to PCT/KR2007/004763 priority patent/WO2008123643A1/en
Publication of KR20080090781A publication Critical patent/KR20080090781A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/68Green display, e.g. recycling, reduction of harmful substances

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

An electronic paper display is provided to produce an environment-friendly electronic paper display device such as flexible paper, by forming a cell structure of cellulose, sealing the cell structure with cellulose, and forming transparent electrodes on upper and lower surfaces of the cell structure. A cell structure of micro unit is formed in flexible cellulose plate type materials. Transparent electrodes(3,4) are formed above and below the cell structure. Organic luminous bodies(2-1,2-2,2-3) or an electro-phoretic dispersion liquid is injected between the transparent electrodes. The lower transparent electrode is formed on a lower surface of the cell structure before the organic luminous bodies are injected into the cell structure. The injected organic luminous bodies are sealed by an upper portion of the cellulose materials and a sealing layer(5), and then the upper transparent electrode is formed on an upper surface of the cell structure. The upper and lower transparent electrodes are coated with cellulose surface layers(6,7), respectively.

Description

셀룰로오스로 만든 전자 디스플레이 종이{Electronic Display Paper Made with Cellulose}Electronic Display Paper Made with Cellulose}

도 1은 본 발명에 따른 전자 디스플레이 종이의 단위 부분에 대한 일반적 구성의 실시예를 보인 예시도,1 is an exemplary view showing an embodiment of a general configuration of a unit portion of an electronic display paper according to the present invention;

도 2는 본 발명의 다른 실시예를 보인 예시도,2 is an exemplary view showing another embodiment of the present invention;

도 3은 본 발명의 또 다른 실시예를 보인 예시도, 및3 is an exemplary view showing another embodiment of the present invention, and

도 4는 본 발명에 따른 셀 구조물이 만들어지는 실시예를 나타낸 공정도이다.Figure 4 is a process diagram showing an embodiment in which the cell structure according to the present invention is made.

본 발명은 셀룰로오스로 만든 유연성의 경량 디스플레이 장치로서, 제조 비용이 저렴한 전자 종이(E-Paper)에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic paper (E-Paper) of low cost, which is a flexible, lightweight display device made of cellulose.

전자 종이는 표시 매체 중 가장 우수한 시각 특성이 있는 디지털 종이이다. 일반 종이처럼 둘둘 말아서 간편하게 휴대할 수 있는 전자 종이는 PDP 및 LCD와 같은 평판 디스플레이의 다음 세대로 여겨지고 있다. 전자 종이는 언제 어디서나 정보를 접할 수 있는 유비쿼터스 컴퓨팅 시대가 필요로 하는 기반 기술로서, 일반 종 이 인쇄물과 종래의 디스플레이 장치를 대신할 수 있어서 머지않아 종이와 같이 간편하게 휴대할 수 있는 시대가 올 것이다. 전자 종이는 종래의 종이 인쇄처럼 높은 해상도, 넓은 시야각, 밝은 배경을 가지고 있으며 LCD와 같이 백라이트가 필요없기 때문에 배터리의 수명이 오래가고, 원가절감 및 경량화의 장점이 있다.Electronic paper is a digital paper having the best visual characteristics among display media. E-paper, which can be easily rolled up like ordinary paper, is considered the next generation of flat panel displays such as PDPs and LCDs. Electronic paper is the foundation technology required by the ubiquitous computing era where information can be accessed anytime and anywhere, and general paper can replace printed materials and conventional display devices, and it will soon be as portable as paper. Electronic paper has a high resolution, a wide viewing angle, a bright background like conventional paper printing, and does not need a backlight like LCD, so the battery life is long, cost reduction and light weight.

종래 기술의 전자 종이는 대체로 유연성 LCD를 비롯하여 유기발광다이오드(OLED), 전기영동 등 다양한 원리가 활용되고 있다. OLED는 넓은 시야각, 초고속 응답, 및 자체발광 등의 장점이 있어서 소형에서 대형에 이르기까지 어떠한 동화상 표시매체로서도 손색이 없고, 백라이트가 필요 없기 때문에 소비전략이 작고 경량 박형으로 제작할 수 있는 장점이 있다. 또한 제작 공정이 간단하여 제조 비용을 낮출 수가 있다. 현재, 전자 종이의 개발 동향에 따르면, 미국의 IBM, Sarnoff, UDC, E-ink, Bell Lab, Palo Alto Research Center 등이 유연성 LCD, OLED, 및 마이크로캡슐을 이용하여 전자 종이의 전반적인 연구를 수행하고 있다. 일본에서는 히타치, 소니, AIST, 세이코-엡슨 등이 OTFT, 다결정실리콘 TFT, OLED에 대한 연구를 수행하고 있다. 그 밖에도 트위스트 볼을 이용한 Gyricon사의 Gyricon 디스플레이, 전기영동을 이용한 Neolux사 및 Kent사의 콜레스테롤 액정 디스플레이, 필립스사의 electrowetting 디스플레이, Iridigm사의 MEMS 기술을 이용한 전자 종이, 브리지스톤사의 LPD가 있으며, 국내에서는 삼성전자, 삼성 SDI, 엘지전자, 소프트픽셀, 아이컴포넌트, ETRI, KETI 및 여러 대학에서 유연성 LCD, OLED, 전기영동을 이용한 전자 종이 및 LPD 등을 연구하고 있다. 1975년 제록스사 의 초보적인 전자 종이 구현과, 1999년 E-ink사의 ImmediaTM 제품의 출시 이래로 많은 시제품이 선보이고 있지만, 지금까지 개발된 대부분의 전자 종이는 셀 구조물이나 기판 등에 유리를 사용하고 있어서 유연성이 떨어지며 이로 인해 플라스틱 기판을 사용할 필요성이 있다. 그러나, 이를 위해서는 플라스틱 기판에 투명전극 형성과 기판의 가스 차단성의 문제가 해결되어야 한다. 이에 대해서, 소니 및 세이코-엡슨에서는 우수한 다결정 실리콘의 제작 및 전사(transfer)기술을 바탕으로 고분자 기판상에 매우 우수한 특성의 다결정 실리콘 TFT를 가진 디스플레이를 개발하였다. 그러나, 이러한 플라스틱 기판은 유리기판에 비하여 유연성은 확보되지만 폐기될 경우에 썩지 않기 때문에 환경오염 문제를 유발한다. 환경오염을 일으키지 않는 전자 종이로서 텍사스 오스틴 대학에서는 셀룰로오스에 염료를 코팅하여 색상을 변화시키는 전자 종이를 시도하였으나 이는 응답속도가 늦고 제작 공정이 복잡한 단점이 있다.BACKGROUND ART [0002] Conventional electronic papers generally use various principles such as flexible LCDs, organic light emitting diodes (OLEDs), and electrophoresis. OLED has the advantages of wide viewing angle, ultra-fast response, and self-luminous, so it is suitable for any moving picture display medium from small to large, and it does not need a backlight, and thus has a small consumption strategy and a light weight. In addition, the manufacturing process is simple, which can lower the manufacturing cost. Currently, according to the development trend of electronic paper, IBM, Sarnoff, UDC, E-ink, Bell Lab, Palo Alto Research Center, etc. in the US are conducting the overall research of electronic paper using flexible LCD, OLED, and microcapsules. have. In Japan, Hitachi, Sony, AIST, and Seiko-Epson are conducting research on OTFTs, polysilicon TFTs, and OLEDs. In addition, Gyricon's Gyricon display using twisted ball, Neolux and Kent's cholesterol liquid crystal display using electrophoresis, electrowetting display of Philips, electronic paper using Iridigm's MEMS technology, LPD's LPD in Korea, Samsung Electronics, Samsung SDI, LG Electronics, SoftPixel, i-Components, ETRI, KETI, and various universities are studying electronic paper and LPD using flexible LCD, OLED, and electrophoresis. Xerox's rudimentary implementation of electronic paper in 1975 and Immedia TM in 1999 by E-ink Although many prototypes have been introduced since the launch of the product, most of the electronic papers developed so far use glass for cell structures, substrates, etc., and thus are inflexible, which necessitates the use of plastic substrates. However, for this purpose, the problem of forming a transparent electrode on the plastic substrate and gas barrier property of the substrate should be solved. On the other hand, Sony and Seiko-Epson have developed displays with polycrystalline silicon TFTs having very excellent properties on polymer substrates based on excellent polycrystalline silicon fabrication and transfer techniques. However, such plastic substrates are more flexible than glass substrates, but cause environmental pollution because they do not rot when discarded. As an electronic paper that does not cause environmental pollution, the University of Texas at Austin attempted to change the color by coating a dye on cellulose, but this has the disadvantage of slow response time and complicated manufacturing process.

본 발명은 유연성이 부족한 유리나 환경공해가 있는 플라스틱을 사용하지 않고 생분해성의 셀룰로오스로 셀 구조물이나 기판을 사용하여 전자 종이를 만드는 것에 관한 것이다. 전자 종이의 기판은 전자 종이를 지탱하는 구조 재료로서 유연성에 매우 큰 영향을 끼치는 반면 폐기시에는 환경공해를 일으키지 않는 것이 바람직하다. 플라스틱 필름은 생분해가 되지 않음으로 환경 폐기물이 되고, 투명 전극 형성을 위한 인쇄에도 어려움이 있다. 이에 반해, 셀룰로오스는 종이를 이루는 주성분으로서 유연하고 구조적으로도 질기며 박막 형성이 용이하고 값이 싸다. 특히, 생분해성으로 폐기시에 썩어 없어지므로 환경문제를 일으키지 않는다. The present invention relates to the production of electronic paper using cell structures or substrates from biodegradable cellulose without using glass having low flexibility or plastic with environmental pollution. The substrate of the electronic paper is a structural material for supporting the electronic paper, which has a great influence on flexibility, but it is preferable not to cause environmental pollution during disposal. Plastic films are not biodegradable and thus become environmental waste, and there is a difficulty in printing for forming transparent electrodes. In contrast, cellulose is a main component of paper, which is flexible, structurally tough, easy to form a thin film, and inexpensive. In particular, it is biodegradable and does not cause environmental problems since it decays upon disposal.

셀룰로오스로 전자 종이를 만들고자 하는 경우에는, 전자 종이의 기본 요소인 마이크로 단위의 디스플레이 셀 구조를 만들 수 있어야 한다. 따라서, 본 발명에서는 셀룰로오스로 만든 전자 종이의 개념과 제조방법을 개시한다.If the electronic paper is to be made of cellulose, it is necessary to be able to make a display cell structure in micro units, which is a basic element of the electronic paper. Accordingly, the present invention discloses the concept and manufacturing method of an electronic paper made of cellulose.

셀룰로오스로 만든 전자 디스플레이 종이에 대한 본 발명의 일반적 구성 실시예는 도 1에 나타내어져 있다. 유연한 셀룰로오스 판 형상의 재료에 마이크로 단위의 셀 구조물(1)을 만들고 이러한 셀 구조물(1)의 상부 및 하부에 각각 투명전극(3, 4)을 장착한 후에 두 전극(3, 4) 사이에 유기 발광체 또는 전기 영동 분산액 (2-1, 2-2, 2-3)을 주입한다. 유기 발광체(2-1, 2-2, 2-3)를 주입하기 전에 격벽을 갖는 셀룰로오스 셀 구조물(1)의 하부면에 하부 투명전극(4)을 설치하고 유기 발광체를 셀에 주입하며, 주입된 유기 발광체는 셀룰로오스의 상부 밀봉층(5)으로 다시 밀봉(encapsulation)한 후 상부 투명전극(3)을 설치한다. 상부와 하부 전극(3, 4) 위는 다시 셀룰로오스의 표피층(6, 7)을 입힘으로써 투명한 디스플레이 소자를 셀룰로오스 종이에 만들 수가 있다.A general structural embodiment of the present invention for an electronic display paper made of cellulose is shown in FIG. 1. The microstructure cell structure 1 is made of a flexible cellulose plate-like material, and the transparent electrodes 3 and 4 are mounted on the upper and lower portions of the cell structure 1, respectively, and then the organic material is formed between the two electrodes 3 and 4. Inject light emitter or electrophoretic dispersions (2-1, 2-2, 2-3). Before injecting the organic light emitting bodies 2-1, 2-2, 2-3, the lower transparent electrode 4 is installed on the lower surface of the cellulose cell structure 1 having the partition walls, and the organic light emitting body is injected into the cell. The organic light emitting body is encapsulated again with the upper sealing layer 5 of cellulose, and then the upper transparent electrode 3 is installed. On the upper and lower electrodes 3, 4 again, by coating the skin layers 6, 7 of cellulose, a transparent display element can be made of cellulose paper.

유기 발광체(2-1, 2-2, 2-3)의 상부와 하부에는 일반적인 OLED 기술과 같이 각각 전자수송층(Electron Transpot Layer, ETL), 정공 수송층(Hole Transport Layer, HTL) 및 정공 주입층(Hole Injection Layer, HIL) 등을 적층함으로써 전압이 가하여 졌을 때 음극과 양극에서 각각 전자와 정공이 유기 발광체내로 주입되어 발광체 내에서 전자-정공의 재결합 과정을 거쳐 빛이 생성된다. OLED는 두 개의 전극 사이에 한 개의 유기물층을 넣은 단층구조로 만들어질 수 있고, 전하의 주입을 더욱 활성화하기 위하여 발광체의 상부 및 하부에 각각 전자수송층, 정공수송층, 정공주입층 등을 적층할 수도 있다. OLED의 유기물층은 저분자 및 고분자 물질이 사용될 수 있으며, 형광(fluorescene) 및 인광(phosphorecence) 방식 모두 사용될 수 있다. 또한, OLED의 구동방식은 수동형(passive matrix)과 능동형(active matrix)이 사용될 수 있다. 수동형의 경우 양극 배선과 음극 배선 사이에 유기물층이 삽입되어 있는 단순한 구조를 이루며 소비전력이 상대적으로 높으나 제작비가 적게 든다. 이에 반해, 능동형의 경우에는 각각의 화소마다 TFT가 붙어 있어 소비전력이 작고 해상도 등의 화질이 우수했지만 제작비가 높다. On the upper and lower portions of the organic light emitters 2-1, 2-2, and 2-3, an electron transport layer (ETL), a hole transport layer (HTL), and a hole injection layer (ETL) are formed as in general OLED technology. When a voltage is applied by stacking a hole injection layer (HIL) or the like, electrons and holes are injected into the organic light emitting body from the cathode and the anode, respectively, and light is generated through the electron-hole recombination process in the light emitting body. The OLED may be made of a single layer structure in which one organic material layer is sandwiched between two electrodes, and an electron transport layer, a hole transport layer, and a hole injection layer may be stacked on the upper and lower portions of the light emitter to further activate charge injection. . As the organic layer of the OLED, low molecular weight and high molecular materials may be used, and both fluorescent and phosphorescent methods may be used. In addition, a passive matrix and an active matrix may be used as the driving method of the OLED. The passive type has a simple structure in which an organic material layer is inserted between the anode wiring and the cathode wiring. The power consumption is relatively high, but the manufacturing cost is low. On the other hand, in the active type, TFTs are attached to each pixel, so that power consumption is small and image quality such as resolution is excellent, but manufacturing cost is high.

한편, 셀룰로오스 셀 구조물(1)에 전기영동 방식의 마이크로 캡슐을 채우면 전기신호에 따라 빛의 반사가 달라지는 반사형 전자 종이를 만들 수가 있다. 이러한 반사형 전자 종이는, 전기영동에 따라 색이 변하는 잉크의 종류에 의해서 흑백 및 컬러 모두가 가능하다. On the other hand, when the microcapsule of the electrophoresis method is filled in the cellulose cell structure 1, it is possible to produce a reflective electronic paper in which the reflection of light varies according to the electric signal. Such a reflective electronic paper is capable of both black and white and color depending on the type of ink whose color changes with electrophoresis.

셀룰로오스 셀 구조물(1)은 크기가 수십 또는 수백 미크론으로 대면적의 셀룰로오스 종이 또는 필름에 동일한 셀 구조물을 만드는 것은 쉽지 않다. 특히, 셀룰로오스를 용액으로 녹인 후 종이나 필름 형태로 만들 경우 수축 팽창이 크다. 따라서, 본 발명에서는 미세주형법(micro-molding)을 이용하여 셀룰로오스 종이에 셀 구조물을 제조하는 방법을 개시하고 있다. 이때, 셀룰로오스는 셀룰로오스 섬유를 DMAc(N,N-dimethylacetamide) 용매를 사용하여 녹인 혼합액을 이용할 수도 있고 셀룰로오스 아세테이트를 사용할 수도 있다. 도 4는 미세주형법의 실시예를 나타낸 것으로, 셀룰로오스 섬유를 DMAc 용매로 녹인 용액을 사용하여 셀 구조물을 만드는 과정을 나타내고 있다. 셀룰로오스 용액을 이미 셀 구조물의 형틀이 만들어진 실리콘 웨이퍼(12) 위에 코팅한다. 코팅된 셀룰로오스 필름(11)은 실리콘 웨이퍼(12)와 함께 오븐에서 일정 온도와 시간 동안 가열한 뒤, 세척 및 건조 과정을 거쳐 셀 구조물을 가진 셀룰로오스 종이를 형성한다. The cellulose cell structure 1 is tens or hundreds of microns in size, making it difficult to produce the same cell structure on a large area of cellulose paper or film. In particular, when cellulose is dissolved in a solution and then made into a paper or film form, the shrinkage and expansion is large. Accordingly, the present invention discloses a method for producing a cell structure on a cellulose paper by using micro-molding. In this case, the cellulose may use a mixed solution in which cellulose fibers are dissolved using a DMAc (N, N-dimethylacetamide) solvent, or cellulose acetate may be used. Figure 4 shows an example of the micro-molding method, showing a process of making a cell structure using a solution of cellulose fibers dissolved in DMAc solvent. The cellulose solution is coated onto the silicon wafer 12 on which the cell structure has already been formed. The coated cellulose film 11 is heated with a silicon wafer 12 in an oven for a predetermined temperature and time, and then washed and dried to form a cellulose paper having a cell structure.

건조된 셀룰로오스 필름은 마이크로 셀 구조물을 갖게 되는데 셀이 형성되지 않은 하부면에 ITO(Indium Tin Oxide)를 코팅하고 마이크로 패터닝하여 하부 투명전극을 형성한다. OLED층을 셀 구조물에 형성하는 방법에는 열 진공증착(Thermal Vacuum Deposition), 유기 증기상 증착(Organic Vapor Phase Deposition), 레이저 유도 열 이미징(Laser-Induced Thermal Imaging)과 같은 방법이 저분자 재료에 많이 사용되고, 습식법(Wet Process), 잉크젯(Ink Jet), 스핀 코팅(Spin Coating), LITI 등이 고분자 재료에 많이 사용된다. 최근에는 대면적의 발광층 형성을 위해 잉크젯 방식이 사용되고 있는데, 격벽이 주기적으로 형성되어 있는 셀룰로오스 셀 구조물에 선택된 영역만 수용액에 용해된 유기물 고분자를 잉크젯으로 프린팅한다. 이 방법은 면적에 상관없이 선택된 영역에 발광층을 형성할 수 있고, 소재의 손상이 없기 때문에 생산성 면에서 유리하다. 컬러 OLED에서는 도 1 내지 3에서 나타낸 바와 같이 적색(2-1), 녹색(2-2), 및 청색(2-3)의 세 가지 발광체를 사용하는데 이들을 순차적으로 셀 구조물에 채우고 전극(4)을 형성한 다음 밀봉한다. 셀 구조물(1)의 형태는 정사각형, 직사각형, 원형, 육각형 등 다양한 형태를 이룰 수 있으며, 셀의 깊이는 발광체가 충분히 묻힐 정도이다.The dried cellulose film has a micro cell structure, and indium tin oxide (ITO) is coated on the lower surface where the cell is not formed and micro patterned to form a lower transparent electrode. The method of forming the OLED layer in the cell structure is widely used in low molecular materials such as thermal vacuum deposition, organic vapor phase deposition, and laser-induced thermal imaging , Wet Process, Ink Jet, Spin Coating, LITI, etc. are widely used in polymer materials. Recently, an inkjet method is used to form a light emitting layer of a large area, and an organic polymer dissolved in an aqueous solution is printed by inkjet only in a selected region of a cellulose cell structure in which partition walls are periodically formed. This method can form a light emitting layer in a selected area irrespective of the area, and is advantageous in terms of productivity because there is no damage to the material. In the color OLED, as shown in FIGS. 1 to 3, three light emitters, red (2-1), green (2-2), and blue (2-3), are sequentially filled with the cell structure, and the electrode 4 Form and then seal. The cell structure 1 may have various shapes such as square, rectangular, circular, hexagonal, and the like, and the depth of the cell is sufficiently buried in the light emitting body.

발광체 층의 형성 후에 도체 층을 코팅하고 마이크로 패터닝하여 상부 전극(3)을 만든다. 그런 다음 상하층 외부에 다시 셀룰로오스 용액으로 코팅하여 밀봉한다. 이때, 금, 알루미늄, 백금 등과 같은 도체 층으로 불투명하게 코팅을 하면 발광층에서 나온 빛은 하부층으로만 나가게 되어 한 쪽 방향에서만 빛을 볼 수 있는 전자 종이가 된다. 반면에, 상부 전극을 ITO와 같은 투명 전극으로 만들면 양방향에서 볼 수 있는 투과형 OLED 전자 종이가 된다. 셀룰로오스는 빛의 투과율이 가시광선 범위에서 가장 좋기 때문에 투과형 전자 종이를 만드는 것이 가능하다. 또한, 빛이 나오는 면에 색의 혼합과 빛의 선명도를 좋게 하기 위해, 도 2 및 3에 나타낸 바와 같이 마이크로 렌즈 어레이(8-1, 8-2)를 설치할 수도 있다. 이에 대한 실시예로, 도 2는 하부에만 마이크로 렌즈 어레이(8-1)를 설치한 상태를 나타내고 도 3은 상하 모두에 마이크로 렌즈 어레이(8-1, 8-2)를 설치한 상태를 나타내고 있다.After formation of the emitter layer, the conductor layer is coated and micropatterned to make the upper electrode 3. Then, the outer layer is coated with a cellulose solution and sealed again. At this time, if the opaque coating with a conductor layer such as gold, aluminum, platinum, etc., the light emitted from the light emitting layer goes out only to the lower layer, which becomes an electronic paper which can see light only in one direction. On the other hand, when the upper electrode is made of a transparent electrode such as ITO, it becomes a transmissive OLED electronic paper that can be seen in both directions. Since cellulose has the best light transmittance in the visible range, it is possible to make a transmissive electronic paper. In addition, microlens arrays 8-1 and 8-2 may be provided as shown in Figs. In this embodiment, FIG. 2 shows a state in which the micro lens arrays 8-1 are provided only in the lower portion, and FIG. 3 shows a state in which the micro lens arrays 8-1 and 8-2 are provided in both the upper and lower portions. .

상기한 바와 같이, 셀룰로오스로 셀 구조물을 만들고 이렇게 만들어진 셀 구조물에 OLED 발광층 또는 전기영동 잉크층 등을 설치하고 셀룰로오스로 밀봉한 후 투명 전극을 상하부 면에 설치함으로써 유연한 종이와 같이 친환경적인 전자 종이 를 만들 수 있다. 셀룰로오스의 생분해성으로 인하여 폐기시에는 환경공해 문제를 일으키지 않고 인체에 무해하다. 또한 이에 대한 제조비용이 저렴하다는 효과가 있다.As described above, a cell structure is made of cellulose, and an OLED light emitting layer or an electrophoretic ink layer is installed on the cell structure thus formed, sealed with cellulose, and transparent electrodes are installed on upper and lower surfaces to make an eco-friendly electronic paper such as a flexible paper. Can be. Due to the biodegradability of cellulose, it is harmless to human body without causing environmental pollution problem at the time of disposal. In addition, there is an effect that the manufacturing cost for this.

Claims (7)

셀 구조물(1), 발광체 또는 전기 영동 분산액(2), 상부 투명전극(3), 하부 투명전극(4), 상부 밀봉층(5) 및 표피층(6, 7)으로 이루어진 전자 디스플레이 종이에 있어서, 셀 구조물(1), 밀봉층(5) 및 표피층(6, 7)의 적어도 하나가 셀룰로오스로 만들어진 전자 디스플레이 종이.In an electronic display paper consisting of a cell structure (1), a luminous body or electrophoretic dispersion (2), an upper transparent electrode (3), a lower transparent electrode (4), an upper sealing layer (5) and a skin layer (6, 7), Electronic display paper in which at least one of the cell structure 1, the sealing layer 5 and the skin layers 6, 7 is made of cellulose. 제 1항에 있어서, 셀룰로오스 셀 구조물(1)에 발광체(2)를 주입하고 셀룰로오스의 천연 투명재료로 밀봉한 후 투명전극(3, 4)을 상하면에 설치하여 양방향으로 디스플레이가 되도록 한 전자 디스플레이 종이.The electronic display paper according to claim 1, wherein the light emitting body (2) is injected into the cellulose cell structure (1), sealed with a natural transparent material of cellulose, and the transparent electrodes (3, 4) are installed on the upper and lower surfaces to display in both directions. . 제 1항에 있어서, 셀룰로오스 셀 구조물(1)에 발광체(2)를 주입하고 셀룰로오스의 천연 투명재료로 밀봉한 후 투명전극(3)을 한 면에만 설치하여 단일 방향으로만 디스플레이가 되도록 한 전자 디스플레이 종이.The electronic display according to claim 1, wherein the light emitting body (2) is injected into the cellulose cell structure (1) and sealed with a natural transparent material of cellulose, and then the transparent electrode (3) is installed on only one side to display the display in only one direction. paper. 제 1항에 있어서, 발광체(2) 대신에 전기장을 가할 경우 빛을 선택적으로 반 사하는 잉크를 주입한 전자 디스플레이 종이.The electronic display paper according to claim 1, injected with ink that selectively reflects light when an electric field is applied instead of the light emitter (2). 제 1항에 있어서, 흑백과 컬러 색상이 선택적으로 표현되도록 흑백 또는 컬러 발광체나 잉크를 주입한 전자 디스플레이 종이.The electronic display paper according to claim 1, wherein black and white or color emitters or inks are injected so that black and white and color colors are selectively expressed. 제 1항에 있어서, 셀에 해당하는 화소의 작동을 수동적인 방법 또는 능동적인 방법으로 하는 전자 디스플레이 종이. The electronic display paper as set forth in claim 1, wherein operation of the pixel corresponding to the cell is performed in a passive or active manner. 상기 항 중 어느 한 항에 있어서, 디스플레이가 되는 면에 마이크로 렌즈 어레이(8)를 설치하여 색의 혼합과 빛의 선명도를 향상시킨 전자 디스플레이 종이.The electronic display paper according to any one of the preceding claims, wherein a microlens array (8) is provided on the surface of the display to improve color mixing and sharpness of light.
KR1020070034078A 2007-04-06 2007-04-06 Electronic display paper made with cellulose KR20080090781A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070034078A KR20080090781A (en) 2007-04-06 2007-04-06 Electronic display paper made with cellulose
PCT/KR2007/004763 WO2008123643A1 (en) 2007-04-06 2007-09-28 Electronic display paper made with cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070034078A KR20080090781A (en) 2007-04-06 2007-04-06 Electronic display paper made with cellulose

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020080135946A Division KR100967273B1 (en) 2008-12-29 2008-12-29 Fabricating Method of Electronic Display Paper Made with Cellulose

Publications (1)

Publication Number Publication Date
KR20080090781A true KR20080090781A (en) 2008-10-09

Family

ID=39831087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070034078A KR20080090781A (en) 2007-04-06 2007-04-06 Electronic display paper made with cellulose

Country Status (2)

Country Link
KR (1) KR20080090781A (en)
WO (1) WO2008123643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900959B2 (en) 2015-11-13 2018-02-20 Electronics And Telecommunications Research Institute Light emitting paper and method of forming the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087801B2 (en) 2010-04-29 2015-07-21 Apple Inc. Power efficient organic light emitting diode display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420322B2 (en) * 2003-06-27 2008-09-02 Casio Computer Co., Ltd. Display device including a flat panel display panel
EP1678701A2 (en) * 2003-10-01 2006-07-12 Board Of Regents The University Of Texas System Compositions, methods and systems for making and using electronic paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900959B2 (en) 2015-11-13 2018-02-20 Electronics And Telecommunications Research Institute Light emitting paper and method of forming the same

Also Published As

Publication number Publication date
WO2008123643A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US8077374B2 (en) Display devices using electrochromism and polymer dispersed liquid crystal and methods of driving the same
JP4460150B2 (en) A new addressing scheme for electrophoretic displays.
KR100865629B1 (en) Electrochromic device with improved display properties and preparing method of the same
CN100565302C (en) Liquid crystal display cells
CN102243405B (en) Display panels and manufacture method thereof
CN102967979B (en) Active matrix display device
CN110048005A (en) A kind of OLED display device and preparation method thereof
GB2438436A (en) Electronic ink panel having three types of electrophoretic particles each responsive to a different voltage level
CN106537486A (en) Display device and electronic device
CN101847651A (en) The manufacture method of organic El device, organic El device, electronic equipment
CN101595567A (en) Semiconductor device and display unit
CN109285858A (en) A kind of double face display panel and display device
US20130244362A1 (en) Display, method of manufacturing the same, and electronic unit
CN104241327B (en) Display device
CN109860438A (en) A kind of display base plate and preparation method thereof, display device
Garner et al. Cholesteric liquid crystal display with flexible glass substrates
CN104216193A (en) Electronic paper module, electronic paper display device and electronic paper module manufacturing method
CN100374869C (en) Apparatus for testing liquid crystal display device and testing method thereof
KR100662194B1 (en) Electrophoretic display device
KR20080090781A (en) Electronic display paper made with cellulose
US7999996B2 (en) Electrophoresis device comprising hole-containing structure and method for fabricating the same
KR100967273B1 (en) Fabricating Method of Electronic Display Paper Made with Cellulose
KR100972471B1 (en) Electrophoretic display and method of fabricating the same
US20120170106A1 (en) Electronic paper display device and method of manufacturing the same
Gu et al. Transparent and energy-efficient electrochromic AR display with minimum crosstalk using the pixel confinement effect

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
E902 Notification of reason for refusal
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20081201

Effective date: 20100225