KR20080062597A - Process for preparing plastic substrate - Google Patents
Process for preparing plastic substrate Download PDFInfo
- Publication number
- KR20080062597A KR20080062597A KR1020060138570A KR20060138570A KR20080062597A KR 20080062597 A KR20080062597 A KR 20080062597A KR 1020060138570 A KR1020060138570 A KR 1020060138570A KR 20060138570 A KR20060138570 A KR 20060138570A KR 20080062597 A KR20080062597 A KR 20080062597A
- Authority
- KR
- South Korea
- Prior art keywords
- film
- thin film
- layers
- nitrogen flow
- sccm
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 48
- 229920003023 plastic Polymers 0.000 title claims abstract description 44
- 239000004033 plastic Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000010408 film Substances 0.000 claims abstract description 56
- 239000010409 thin film Substances 0.000 claims abstract description 41
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims abstract description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical group C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000004695 Polyether sulfone Substances 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 229920006393 polyether sulfone Polymers 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- 239000012495 reaction gas Substances 0.000 claims description 6
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- 239000004713 Cyclic olefin copolymer Substances 0.000 claims description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 4
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 4
- 229920001230 polyarylate Polymers 0.000 claims description 3
- -1 polyethylene terephthalate Polymers 0.000 claims description 3
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 2
- QABCGOSYZHCPGN-UHFFFAOYSA-N chloro(dimethyl)silicon Chemical compound C[Si](C)Cl QABCGOSYZHCPGN-UHFFFAOYSA-N 0.000 claims description 2
- VSLPMIMVDUOYFW-UHFFFAOYSA-N dimethylazanide;tantalum(5+) Chemical compound [Ta+5].C[N-]C.C[N-]C.C[N-]C.C[N-]C.C[N-]C VSLPMIMVDUOYFW-UHFFFAOYSA-N 0.000 claims description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000001272 nitrous oxide Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- HSXKFDGTKKAEHL-UHFFFAOYSA-N tantalum(v) ethoxide Chemical compound [Ta+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] HSXKFDGTKKAEHL-UHFFFAOYSA-N 0.000 claims description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 239000005051 trimethylchlorosilane Substances 0.000 claims description 2
- AKQNYQDSIDKVJZ-UHFFFAOYSA-N triphenylsilane Chemical compound C1=CC=CC=C1[SiH](C=1C=CC=CC=1)C1=CC=CC=C1 AKQNYQDSIDKVJZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 2
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 29
- 230000004888 barrier function Effects 0.000 abstract description 18
- 230000008859 change Effects 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 4
- 239000000853 adhesive Substances 0.000 abstract description 3
- 230000001070 adhesive effect Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 2
- 230000000903 blocking effect Effects 0.000 abstract 3
- 230000004907 flux Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 238000002834 transmittance Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002585 base Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 239000002985 plastic film Substances 0.000 description 8
- 229920006255 plastic film Polymers 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1303—Apparatus specially adapted to the manufacture of LCDs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
- Liquid Crystal (AREA)
Abstract
Description
도 1은 종래 제조된 플라스틱 필름기판을 나타낸 것이고,1 illustrates a conventionally manufactured plastic film substrate,
도 2는 굴절율이 다른 두 기질을 통과하는 빛의 거동을 나타낸 모식도이며, (n1은 공기의 굴절율, n2는 박막의 굴절율, n3은 플라스틱 기재의 굴절율)2 is a schematic diagram showing the behavior of light passing through two substrates having different refractive indices, where n 1 is the refractive index of air, n 2 is the refractive index of a thin film, and n 3 is the refractive index of a plastic substrate.
도 3은 저반사 필름의 원리를 나타낸 모식도이고,3 is a schematic diagram showing the principle of a low reflection film,
도 4와 도 5는 본 발명에 따라 제조된 플라스틱 필름기판을 나타내며,4 and 5 show a plastic film substrate manufactured according to the present invention,
도 6은 실시예와 비교예의 광 투과율 측정 결과이고,6 is a light transmittance measurement results of Examples and Comparative Examples,
도 7은 베어 필름(Bare film)과 각 비교예 및 실시예의 550nm에서의 광 투과율 측정 값을 비교한 것이다. FIG. 7 compares a bare film with light transmittance measurement values at 550 nm of each Comparative Example and Example. FIG.
<도면 부호의 상세 설명><Detailed Description of Drawings>
1, 11, 21: 보호층 (유기 또는 유-무기 하이브리드 코팅)1, 11, 21: protective layer (organic or organic-inorganic hybrid coating)
2, 12, 22: 가스 차단층 (가스배리어막)2, 12, 22: gas barrier layer (gas barrier film)
3, 13, 23: 중간층 (유기 또는 유-무기 하이브리드 코팅)3, 13, 23: intermediate layer (organic or organic-inorganic hybrid coating)
4, 14, 24: 플라스틱 기재필름4, 14, 24: plastic base film
본 발명은 평판 디스플레이용 및 전자 종이용 필름 기판에 관한 것으로서, 보다 상세하게는 플라스틱 필름 기재 위에 무기산화박막 또는 무기질산화 박막을 형성하는데 있어서 플라즈마 화학증착법(Chemical Vapor Deposition:CVD)에서 질소유량을 조절함으로써, 증착된 산화 박막의 굴절율을 변화시켜 플라스틱 필름의 광 투과율을 증가시키고, 높은 수준의 기체 차단 특성을 가지는 무기 박막층이 형성된 평판 디스플레이용 및 전자 종이용 필름 기판의 제조방법에 관한 것이다.BACKGROUND OF THE
액정 디스플레이로 대표되는 평판 디스플레이는 이제까지 기판으로 유리를 사용하여 왔다. 유리 기판에 의한 디스플레이는 디자인이 제한적일 뿐만 아니라 충격에 약하고, 박형화 및 경량화에도 한계가 있었다. 이러한 유리 기판의 단점을 보완하기 위해서 플라스틱 기판의 개발이 요구되어 왔다. 플라스틱 기판은 유리기판 대비 두께는 1/3, 중량은 1/6 정도로 경량화 및 박형화가 가능하며, 내충격성도 우수하다. 플라스틱 기판으로 사용되는 재료로는 폴리에틸렌테레프탈레이트 (PET), 폴리에테르술폰 (PES), 폴리카보네이트 (PC), 폴리아릴레이트 (Par), 사이클릭 올레핀 코폴리머 (COC) 등이 있고, 이러한 재료 들은 광학 필름으로 일반적으로 사용되고 있다. 그러나, 플라스틱 필름은 유리 기판에 비해 광 투과율이 떨어지며, 산 소 및 수증기 등의 기체 투과도가 높아서 단시간에 필름면을 통해서 기체가 액정층에 녹아 들어가 액정 중에서 기포를 발생시키거나, 전극을 파손시키는 등의 현상이 발생하여 디스플레이의 품질을 저하시키는 요인이 되어 왔다.Flat panel displays, typified by liquid crystal displays, have used glass as a substrate. Displays based on glass substrates are not only limited in design, but also susceptible to impact and limited in thickness and weight. In order to make up for the shortcomings of such glass substrates, development of plastic substrates has been required. The plastic substrate is lighter and thinner than 1/3 of the glass substrate and 1/6 of the weight, and has excellent impact resistance. Materials used for plastic substrates include polyethylene terephthalate (PET), polyethersulfone (PES), polycarbonate (PC), polyarylate (Par), and cyclic olefin copolymer (COC). It is generally used as an optical film. However, plastic films have a lower light transmittance than glass substrates, and have a high gas permeability such as oxygen and water vapor, so that gas melts into the liquid crystal layer through the film surface in a short time to generate bubbles in the liquid crystal, or to break electrodes. Has been a factor of degrading the quality of the display.
이러한 단점을 보완하기 위해서는, 디스플레이에 사용되는 플라스틱 기판 필름에 가스 배리어 박막 (금속 및 금속 산화물 박막 또는 배리어 특성을 갖는 고분자 박막)을 형성하여, 기체 투과도를 가급적 최소화하여야 하며, 투과율, 내용제성, 표면경도 및 내열성 등의 조건을 만족시키기 위하여 일반적으로 투명한 무기막이 코팅되어 왔다. 이러한 무기막을 플라스틱 필름에 코팅하는 방법으로는 건식 코팅인 CVD 및 물리증착법 (physical vapor deposition; PVD) 등의 진공 증착법과 습식 코팅법이 이용되어 오고 있다.In order to compensate for these disadvantages, gas barrier thin films (metal and metal oxide thin films or polymer thin films having barrier properties) should be formed on the plastic substrate film used for the display to minimize gas permeability as much as possible. In order to satisfy conditions such as hardness and heat resistance, a transparent inorganic film has been generally coated. As a method of coating such an inorganic film on a plastic film, a vacuum deposition method such as CVD and physical vapor deposition (PVD), which are dry coating, and a wet coating method have been used.
하지만, 가스 차단막으로서 금속 또는 금속 산화물 박막을 증착법에 의해서 형성할 경우, 안정한 막을 형성하기 위하여 고온에서 처리해야 할 필요가 있다. 또한, 이러한 박막은 광투과율을 저하시키기 때문에 광학용 필름에는 사용이 제한적일 수 밖에 없었다. 저반사 또는 무반사 필름에 대한 개념들은 기존의 특허에 많이 개시되어 있다. 일반적으로 도 2에서 볼 수 있는 것처럼 입사되는 빛은 어떤 표면에서 일부는 투과되고 일부는 반사된다. 저반사 또는 무반사 필름의 제조는 반사되는 빛을 상쇄간섭이라는 광학이론을 근거로 해서 최소화시키는 원리를 이용하여 제조하는데, 그러기 위해서는 도 3에 나타난 것처럼 플라스틱 기재와 상이한 굴절율 을 가지면서 입사 파장의 (n+1/4)λ에 해당하는 두께를 갖는 별도의 박막이 필요하다. 따라서, 액정 디스플레이의 광원으로부터 방출되는 다양한 파장(λ)으로 이루어진 빛의 반사를 최소화시키기 위해서는 다양한 굴절률 및 두께를 가지는 박막이 필요하다. 기존의 특허에서는 이러한 두께를 가지는 별도의 박막을 형성하기 위하여 상이한 굴절율을 가지는 서로 다른 물질을 사용하여 무기막을 증착하였었다. 그러나, 이 방법은 공정상의 변화를 주기 위해서 진공상태를 여러 번 형성해야 하는 단점을 가지고 있다. 몇몇 특허에서는 산소와 무기물 유도체의 분압 비율을 변화시켜서 굴절율이 다른 박막을 증착하기도 했다. 그러나, 이때에도 중간에 공정 변수들이 2개 이상 동시에 변하는 상황이 발생하는 단점이 있다.However, when forming a metal or metal oxide thin film as a gas barrier film by the vapor deposition method, it is necessary to process at high temperature in order to form a stable film. In addition, since such a thin film reduces the light transmittance, its use is limited to the optical film. Concepts of low or antireflective films are disclosed in a number of existing patents. In general, as can be seen in Figure 2, the incident light is partially transmitted and partially reflected at some surface. The manufacture of low or antireflective films is made using the principle of minimizing the reflected light on the basis of the optical theory of destructive interference, which is shown in FIG. A separate thin film with a thickness corresponding to +1/4) λ is required. Therefore, thin films having various refractive indices and thicknesses are required to minimize reflection of light having various wavelengths λ emitted from the light source of the liquid crystal display. In the existing patent, inorganic films were deposited using different materials having different refractive indices to form a separate thin film having such a thickness. However, this method has the disadvantage of having to form a vacuum several times in order to change the process. Some patents have also described thin films with different refractive indices by varying the partial pressure ratios of oxygen and inorganic derivatives. However, even at this time, there are disadvantages in that two or more process variables are changed at the same time.
본 발명의 목적은 단일 무기막내에서 산소 또는 질소와 유기성분(탄소)의 비율을 조절함으로써 무기막내의 굴절률이 연속적으로 변화하고, 이에 따라 반사율이 현저히 감소하여 광투과율이 향상되고, 중간층과 무기막간의 접착력이 향상되어 무기막의 내구성 및 가스배리어 특성도 향상된 것을 특징으로 하는 디스플레이 및 전자 종이용 플라스틱 필름 기판을 제공하는 것이다.An object of the present invention is to adjust the ratio of oxygen or nitrogen and organic components (carbon) in a single inorganic film, the refractive index in the inorganic film is continuously changed, accordingly the reflectance is significantly reduced, the light transmittance is improved, between the intermediate layer and the inorganic film It is to provide a plastic film substrate for display and electronic paper, characterized in that the adhesion of the improved to improve the durability and gas barrier properties of the inorganic film.
본 발명은 탄화수소를 포함하는 복합 무기 전구체 및 반응가스를 플라즈마 화학증착법으로 투명 플라스틱 기재필름의 일면 또는 양면에 증착시켜 무기박막을 형성하는 단계를 포함하되, 상기 단계는 플라즈마 챔버 내의 질소유량을 증가시키는 조건하에서 수행되는 것을 특징으로 하는 플라스틱 기판의 제조방법을 제공한다.The present invention includes the step of depositing a composite inorganic precursor containing a hydrocarbon and a reaction gas on one or both sides of the transparent plastic substrate film by plasma chemical vapor deposition to form an inorganic thin film, the step of increasing the nitrogen flow in the plasma chamber It provides a method for producing a plastic substrate, characterized in that carried out under the conditions.
본 발명자들은 놀랍게도 플라즈마 화학증착법에서 반응챔버의 진공도, 무기물 유도체의 비율과 같은 다른 공정변수의 변화 없이, 질소유량의 조절만으로도 무기 박막의 탄소 함량이 연속적으로 변화하는 무기박막을 형성할 수 있다는 점을 밝혀내었다.The inventors have surprisingly found that in plasma chemical vapor deposition, an inorganic thin film in which the carbon content of the inorganic thin film is continuously changed can be formed only by controlling the nitrogen flow rate without changing other process variables such as the vacuum of the reaction chamber and the ratio of inorganic derivatives. Revealed.
질소유량을 증가시키는 조건은 특별히 제한되지 않으나, 질소유량의 범위는 범위는 500 sccm 이하이고, 바람직하게는 10~120 sccm이며, 보다 바람직하게는 25~75 sccm이고, 질소유량의 증가는 연속적으로 또는 불연속적으로 증가될 수 있다. 질소유량이 연속적으로 증가하는 경우를 예를 들면 25 sccm/분과 같이 일정한 속도, 경우에 따라서는 시간에 따라 상이한 속도로 질소유량을 증가시켜 500 sccm 이하의 범위, 바람직하게는 120 sccm이하의 범위로 질소유량을 증가시키는 경우를 의미한다. 또한 질소유량이 불연속적으로 증가하는 경우를 예를 들면 질소유량을 0 sccm, 25 sccm, 50 sccm 및 75 sccm으로 증가시키면서 1분간 증착공정을 진행시키는 경우를 의미한다. 질소유량의 증가속도는 특별히 제한되지 않으나 적절한 막 물성의 변화를 고려할 때, 15~25 sccm/분인 것이 바람직하다.The conditions for increasing the nitrogen flow rate are not particularly limited, but the range of the nitrogen flow rate is 500 sccm or less, preferably 10 to 120 sccm, more preferably 25 to 75 sccm, and the increase in the nitrogen flow is continuously Or discontinuously increased. When the nitrogen flow rate is continuously increased, the nitrogen flow rate is increased at a constant rate such as 25 sccm / min, and in some cases, depending on the time, so as to be in a range of 500 sccm or less, preferably 120 sccm or less. This means increasing the nitrogen flow rate. In addition, the case where the nitrogen flow rate is discontinuously increased, for example, means a case where the deposition process is performed for 1 minute while the nitrogen flow rate is increased to 0 sccm, 25 sccm, 50 sccm and 75 sccm. The rate of increase of the nitrogen flow rate is not particularly limited, but considering the appropriate change in the film properties, it is preferably 15 to 25 sccm / min.
또한 본 발명에 따른 제조방법에 있어서 화학증착법의 원료인 탄화수소를 포함하는 복합 무기 전구체 및 반응가스는 하기에 의해 구체화된다.In addition, in the production method according to the present invention, a composite inorganic precursor and a reaction gas containing a hydrocarbon which is a raw material of the chemical vapor deposition method are specified by the following.
상기 탄화수소를 포함하는 복합무기 전구체는 헥사메틸디실록산, 헥사메틸디실라잔, 테트라에톡시실란, 테트라메톡시실란, 메톡시트리메틸실란, 테트라메틸실란, 트리페닐실란, 테트라클로로실란, 트리클로로메틸실란, 트리메틸클로로실란, 디메틸디클로로실란, 디메틸클로로실란, 펜타키스디메틸아미노 탄탈륨, 펜타에톡시 탄탈륨, 티타늄 아이소프로폭사이드, 티타늄 부톡사이드, 지르코늄 테트라클로라이드 및 지르코늄 테트라-tert-부톡사이드로 이루어진 그룹으로부터 선택된 하나 이상 이상을 사용하는 것이 바람직하다.The complex inorganic precursor containing the hydrocarbon is hexamethyldisiloxane, hexamethyldisilazane, tetraethoxysilane, tetramethoxysilane, methoxytrimethylsilane, tetramethylsilane, triphenylsilane, tetrachlorosilane, trichloromethyl From the group consisting of silane, trimethylchlorosilane, dimethyldichlorosilane, dimethylchlorosilane, pentakisdimethylamino tantalum, pentaethoxy tantalum, titanium isopropoxide, titanium butoxide, zirconium tetrachloride and zirconium tetra-tert-butoxide Preference is given to using at least one selected.
또한 상기 반응 가스는 산소, 아산화질소 또는 암모니아를 포함하는 것이 바람직하다. 질소가스/반응가스의 비율은 필요에 따라 0 ~ 100 범위이고, 바람직하게는 0 ~ 40 이며, 보다 바람직하게는 0 ~ 15 의 비율로 조정함으로써, 연질막에서부터 경질막까지 다양한 조건의 막을 형성할 수 있다.In addition, the reaction gas preferably contains oxygen, nitrous oxide or ammonia. The ratio of nitrogen gas / reaction gas is in the range of 0 to 100, preferably 0 to 40, and more preferably 0 to 15, so as to form a film having various conditions from the soft film to the hard film. Can be.
한편 상기 플라스틱 기재필름은 폴리에틸렌테레프탈레이트, 폴리에테르술폰, 폴리카보네이트, 폴리이미드, 폴리아릴레이트, 또는 사이클릭 올레핀 코폴리머와 같은 열가소성 수지 또는 에폭시 수지 또는 불포화 에스테르 수지와 같은 열경화성 수지로 형성된 것을 사용할 수 있으나 이에 제한되지 않는다.The plastic base film may be formed of a thermoplastic resin such as polyethylene terephthalate, polyether sulfone, polycarbonate, polyimide, polyarylate, or a thermosetting resin such as an epoxy resin or an unsaturated ester resin. However, it is not limited thereto.
또한 본 발명에 따른 상기 무기박막은 Si, Ta, Ti 및 Zr로 이루어진 그룹에서 선택되는 1종 또는 2종 이상의 금속을 포함하는 금속산화물, 금속질산화물 또는 금속질화물인 것이 바람직하다.In addition, the inorganic thin film according to the present invention is preferably a metal oxide, a metal oxide or a metal nitride including one or two or more metals selected from the group consisting of Si, Ta, Ti and Zr.
본 발명에 따른 플라스틱 기판의 제조방법은 무기박막과의 접착력을 향상시키기 위하여 무기박막을 형성하는 단계 전에 투명 플라스틱 기재필름의 일면 또는 양면을 산소, 아르곤, 또는 질소 플라즈마로 전처리하는 단계를 추가로 포함하는 것이 바람직하다.The method of manufacturing a plastic substrate according to the present invention further includes a step of pretreating one or both sides of the transparent plastic base film with oxygen, argon, or nitrogen plasma before forming the inorganic thin film in order to improve adhesion with the inorganic thin film. It is desirable to.
또한 본 발명에 따른 플라스틱 기판의 제조방법은 플라스틱 기재의 표면 거칠기를 보안하고 무기박막과의 접착력을 향상시키기 위하여 무기박막을 형성하는 단계 전에 투명 플라스틱 기재필름의 일면 또는 양면에 아크릴레이트계 수지로 코팅하는 단계를 추가로 포함하는 것이 바람직하다.In addition, the manufacturing method of the plastic substrate according to the present invention is coated with an acrylate-based resin on one or both sides of the transparent plastic base film before the step of forming the inorganic thin film in order to secure the surface roughness of the plastic substrate and improve the adhesion to the inorganic thin film It is preferred to further comprise the step of.
표 1은 PET, PC, PES 및 PI의 플라스틱 기재들과 유리의 알칼리, 케톤, 알코올에 대한 내화학성 결과를 나타낸 것이다. 표 1에 나타낸 바와 같이 플라스틱 기재는 유리에 비하여 내화학성이 떨어진다. 따라서 플라스틱 기판의 내화학성을 향상시키기 위하여 기판의 최외곽층에 추가의 코팅 층을 형성하는 것이 바람직하다.Table 1 shows the chemical resistance results for alkali, ketone, alcohol of plastic substrates and glass of PET, PC, PES and PI. As shown in Table 1, the plastic substrate is inferior in chemical resistance to glass. Therefore, it is desirable to form an additional coating layer on the outermost layer of the substrate in order to improve the chemical resistance of the plastic substrate.
본 발명에 따른 플라즈마 화학증착법은 특별히 제한되지 않으나 본 발명의 목적을 고려할 때, 전자 사이클로트론 공진 플라즈마 화학증착법을 이용하는 것이 바람직하다.The plasma chemical vapor deposition method according to the present invention is not particularly limited, but in consideration of the object of the present invention, it is preferable to use the electron cyclotron resonance plasma chemical vapor deposition method.
이하 도면을 참고하여 본 발명에 따른 일 실시예를 설명하면 하기와 같다.Hereinafter, an embodiment according to the present invention will be described with reference to the accompanying drawings.
도 4 및 도 5는 본 발명에서 제조된 플라스틱 필름기판의 단면 및 양면으로 박막을 형성한 구조를 나타낸 것이다. 11(21)은 보호층, 12(22)는 가스차단층, 13(23)은 중간층, 14(24)는 플라스틱 기재필름을 나타낸다. 플라스틱 기재필름 (14)에는 단면에 아크릴레이트계 광경화 코팅제로 된 보호층(11)을 형성하여, 내용제성 및 내스크래치성을 확보하였다. 또한, 가스차단층 (12, 22)의 외곽에도 보호층 (11, 21)을 형성하였다. 가스차단층 (12, 22)과 플라스틱 기재필름 (14, 24) 간에 접착력을 향상시키기 위해서 중간층 (13, 23)을 형성하였다. 이는 무기물인 가스차단층 (12, 22)과 유기물인 기재필름 (14, 24)의 계면 친화력을 향상시킬 수 있는 실리콘 아크릴레이트계 코팅제를 사용함으로써 실란 커플링제를 사용하지 않고 접착력을 향상시켰다. 가스차단층 (12, 22)의 성막조건은 반응계의 진공도를 바꾸지 않고 질소의 유량을 조절하여서 굴절률이 점차 감소되는 방향으로 다층의 막질을 증착하였다. 이에 따라서 가스배리어 특성뿐만 아니라 광투과율도 향상되는 결과를 얻을 수 있었다.4 and 5 illustrate a structure in which a thin film is formed on one side and both sides of a plastic film substrate manufactured in the present invention. 11 (21) represents a protective layer, 12 (22) represents a gas barrier layer, 13 (23) represents an intermediate layer, and 14 (24) represents a plastic base film. On the
실시예 1Example 1
200μm 두께의 플라스틱 기재 필름(PET, PC, PES, COC, Par)을 150~180℃ 컨벡션 오븐에서 1일간 어닐링을 실시하였다. 필름의 한쪽 면을 자동 도공기를 이용하여 실리콘 아크릴레이트로 코팅하고 200mJ의 자외선(UV)를 이용하여 경화시켰다. 진공 챔버내에 필름을 장착하고 배기하여 챔버 내의 압력을 5x10-6 torr 로 낮추었다. 산소 가스 50 sccm, 아르곤 가스 15 sccm, 헥사메틸디실록산 (HMDSO)을 2.44 g/hr의 속도로 투입하면서 20℃, 5x10-1 torr에서 200W의 RF 플라즈마를 이용하여 1분간 증착을 실시하였다. 여기에 질소를 25 sccm, 50 sccm 및 75 sccm으로 투입하면서 각각 1분간 증착을 실시하였다. 기체 투입을 중단한 후 질소를 챔버에 불어넣어 압력을 대기상태로 높인 후 필름을 꺼내고, 필름의 양면에 자동 도공기를 이용하여 아크릴레이트계 하드코팅을 실시하였다. 제조된 기판의 모식도를 도 4에 나타냈다.Plastic substrate films (PET, PC, PES, COC, Par) having a thickness of 200 μm were annealed in a convection oven at 150 ° C. to 180 ° C. for 1 day. One side of the film was coated with silicone acrylate using an automatic coater and cured with 200mJ ultraviolet (UV). The film was mounted in a vacuum chamber and evacuated to lower the pressure in the chamber to 5 × 10 −6 torr. Deposition was carried out for 1 minute using 200W RF plasma at 20 ° C. and 5 × 10 −1 torr while introducing 50 sccm of oxygen gas, 15 sccm of argon gas, and hexamethyldisiloxane (HMDSO) at a rate of 2.44 g / hr. Nitrogen was added at 25 sccm, 50 sccm, and 75 sccm, and vapor deposition was performed for 1 minute. After stopping the gas injection, nitrogen was blown into the chamber to raise the pressure to atmospheric state, and the film was taken out, and acrylate-based hard coating was performed on both sides of the film by using an automatic coating machine. The schematic diagram of the produced board | substrate is shown in FIG.
실시예 2Example 2
실시예 1과 동일한 방법으로 실험을 진행하였으며, 필름의 양면에 증착을 실시하였다. 도 5는 이를 통해서 제조된 기판의 모식도이다.The experiment was conducted in the same manner as in Example 1, and the deposition was carried out on both sides of the film. 5 is a schematic view of the substrate produced through this.
비교예 1Comparative Example 1
200㎛ 두께의 폴리에테르술론(PES) 필름을 150~180℃ 컨벡션 오븐에서 1일간 어닐링하였다. 필름의 표면에 코팅을 실시하지 않고, 진공 챔버 내에 필름을 장착하고 배기하여 챔버 내의 압력을 5x10-6 torr로 낮추었다. 산소 가스 0 sccm, 아르곤가스 115 sccm, 헥사메틸디실록산(HMDSO)을 2.44 g/hr의 속도로 투입하면서, 20℃, 5x10-1 torr에서 200W의 RF 플라즈마를 이용하여 1분간 증착하였다. 여기에 산소를 100 sccm, 아르곤은 15 sccm, HMDSO를 2.44 g/hr의 속도로 투입하면서 플라즈마 파워 200W에서 1분간 증착하였다. 여기에 다시 HMDSO를 1.22 g/hr의 속도로 투입하면서 플라즈마 파워 250W에서 1분간 증착을 시도하였다. 기체 투입을 중단한 후 질소를 챔버에 불어넣어 압력을 대기상태로 높이고 필름을 꺼냈다.A 200 μm thick polyethersullon (PES) film was annealed in a 150-180 ° C. convection oven for 1 day. Without coating the surface of the film, the film was mounted and evacuated in a vacuum chamber to lower the pressure in the chamber to 5 × 10 −6 torr. 0 sccm of oxygen gas, 115 sccm of argon gas, and hexamethyldisiloxane (HMDSO) were added at a rate of 2.44 g / hr, and deposited at 20 ° C. and 5 × 10 −1 torr using 200 W RF plasma for 1 minute. Here, 100 sccm of oxygen, 15 sccm of argon, and HMDSO were added at a rate of 2.44 g / hr, and deposited for 1 minute at 200 W of plasma power. HMDSO was added again at a rate of 1.22 g / hr, and deposition was attempted for 1 minute at 250 W of plasma power. After stopping the gas input, nitrogen was blown into the chamber to raise the pressure to atmospheric state and the film was taken out.
비교예 2Comparative Example 2
실시예 1과 동일한 방법으로 PES 표면에 코팅을 실시한 후 진공 챔버내에 필름을 장착하고 배기하여 챔버내의 압력을 5x10-6 torr로 낮추었다. 산소 가스 0 sccm, 아르곤가스 115sccm, 헥사메틸디실록산 (HMDSO)을 2.44 g/hr의 속도로 투입하면서, 20℃, 5x10-1 torr에서 200W의 RF 플라즈마를 이용하여 1분간 증착하였다. 여기에 산소 100 sccm, 아르곤 15 sccm, HMDSO 2.44 g/hr의 속도로 투입하면서 플라즈마 파워 200W에서 1분간 증착하였다. 여기에 다시 HMDSO를 1.22 g/hr의 속도로 투입하면서 플라즈마 파워 250W에서 1분간 증착하였다. 기체 투입을 중단한 후 질소를 챔버에 불어넣어 압력을 대기상태로 높인 후 필름을 꺼내고 필름의 양면에 자동 도공기를 이용하여 아크릴레이트계 하드코팅을 실시하였다.After coating the PES surface in the same manner as in Example 1, the film was mounted in the vacuum chamber and evacuated to lower the pressure in the chamber to 5 × 10 −6 torr.
실험예Experimental Example
실시예 1 및 2와 비교예 1 및 2에서 제조된 플라스틱 기판은 투명하고, 구부러짐 현상이 발견되지 않았다. 질소유량의 증가가 플라스틱 기판에 증착된 박막의 물성에 미치는 영향을 하기와 같이 조사하였다.The plastic substrates prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were transparent and no bending phenomenon was found. The effect of increasing the nitrogen flow rate on the physical properties of the thin film deposited on the plastic substrate was investigated as follows.
1. 박막내 원소 함량의 변화1. Change of Element Content in Thin Films
질소유량의 증가가 박막내의 산소 및 탄소의 함량에 미치는 영향을 확인하기 위하여, 실시예 및 비교예에서 제조된 플라스틱 기판을 X-선 광전자 공명 장치(X-ray photoelectron resonance; XPS)로 측정하였다. 측정 결과를 하기 표 2에 요약하였다.In order to confirm the effect of increasing the nitrogen flow rate on the oxygen and carbon content in the thin film, the plastic substrates prepared in Examples and Comparative Examples were measured by X-ray photoelectron resonance (XPS). The measurement results are summarized in Table 2 below.
상기 표로부터 알 수 있듯이, 질소유량의 증가에 의해 박막내에서 산소와 탄소의 함량이 변화되는 것을 알 수 있다.As can be seen from the table, it can be seen that the content of oxygen and carbon in the thin film is changed by increasing the nitrogen flow rate.
2. 박막의 굴절율 변화2. Change of refractive index of thin film
질소유량의 증가가 플라스틱 기판에 증착된 박막의 굴절율에 미치는 영향을 조사하기 위하여, 실시예 및 비교예에서 제조된 플라스틱 기판의 굴절율을 분광타원해석기(ellipsometer)를 이용하여 측정하였다. 측정결과를 표 3에 요약하였다.In order to investigate the effect of the increase in nitrogen flow rate on the refractive index of the thin film deposited on the plastic substrate, the refractive index of the plastic substrates prepared in Examples and Comparative Examples was measured using a spectroscopic ellipsometer. The measurement results are summarized in Table 3.
질소 유량의 증가에 따라 박막의 굴절율이 점차 감소된 것으로 보아 다른 막질을 가진 박막이 형성되었음을 알 수 있다. 도 3 및 4는 이를 토대로 제조된 기판의 모식도를 나타낸다.As the refractive index of the thin film gradually decreased with increasing nitrogen flow rate, it can be seen that a thin film having a different film quality was formed. 3 and 4 show schematic diagrams of substrates prepared on this basis.
3. 박막의 가스차단 특성3. Gas barrier properties of thin film
모콘 (MOCON) 장비를 이용하여 가스 차단특성을 측정하여(ASTM F1249), 표 4에 요약하였다.Gas barrier properties were measured using MOCON equipment (ASTM F1249), summarized in Table 4.
*PES의 수증기 투과율: 60 gm/㎡?일* Water vapor transmission rate of PES: 60 gm / ㎡?
비교예에 의해 제조된 플라스틱 기판의 수증기 투과율은 실시예의 플라스틱 기판과 비교하여, 단면 증착의 경우 13배, 양면 증착의 경우 40배에 해당하여, 본 발명에 의해 제조된 플라스틱 기판이 높은 가스 차단특성을 갖고 있다는 것을 알 수 있다.The water vapor transmission rate of the plastic substrate produced by the comparative example is 13 times for single-sided deposition and 40 times for double-sided deposition, compared to the plastic substrate of the embodiment, and thus the plastic substrate produced by the present invention has high gas barrier properties. You can see that you have.
4. 박막의 광 투과율4. Light transmittance of thin film
플라스틱 기판의 광 투과율을 측정하기 위해 JASCO V560 (UV-visible meter)을 이용하여 550 nm에서 광 투과율을 측정하였고, 결과를 도 6 및 도 7에 도시하였다. 요약하면, 플라스틱 기재인 PES의 광투과율이 88%이고, 실시예 1에 의한 결과가 93%이며, 실시예 2에 의한 결과가 95%이고, 비교예 1에 의한 결과가 90%이며, 비교예 2에 의한 결과가 91%였다 (550nm에서 측정). 따라서, 실시예의 플라스틱 기판은 단면 증착의 경우에 비교예의 플라스틱 기판과 비교하여 광 투과율이 3% 증가하였고, 양면 증착의 경우 광 투과율이 4% 증가하였다는 것을 알 수 있다.In order to measure the light transmittance of the plastic substrate, the light transmittance was measured at 550 nm using a JASCO V560 (UV-visible meter), and the results are shown in FIGS. 6 and 7. In summary, the light transmittance of PES, which is a plastic substrate, was 88%, the result obtained in Example 1 was 93%, the result obtained in Example 2 was 95%, the result obtained in Comparative Example 1 was 90%, and Comparative Example The result by 2 was 91% (measured at 550 nm). Accordingly, it can be seen that the plastic substrate of the example increased the light transmittance by 3% compared to the plastic substrate of the comparative example in the case of single-sided deposition, and increased the light transmittance by 4% in the case of double-sided deposition.
본 발명에서는 플라스틱 기재 필름에 접착력이 향상된 중간층을 형성하고, 증착시의 질소유량의 변화를 통해서 여러 공정변수의 변화를 주지 않고도 박막의 굴절율을 효과적으로 변화시킴으로써, 서로 다른 굴절율을 가지는 고밀도의 박막을 형성하고, 이를 통하여 가스 배리어 특성 및 광투과율이 향상되는 효과가 있다.In the present invention, by forming an intermediate layer having improved adhesion to the plastic substrate film, and by effectively changing the refractive index of the thin film without changing various process variables through the change of nitrogen flow rate during deposition, to form a high-density thin film having different refractive index In this way, gas barrier properties and light transmittance are improved.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060138570A KR100927964B1 (en) | 2006-12-29 | 2006-12-29 | Manufacturing method of plastic substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060138570A KR100927964B1 (en) | 2006-12-29 | 2006-12-29 | Manufacturing method of plastic substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080062597A true KR20080062597A (en) | 2008-07-03 |
KR100927964B1 KR100927964B1 (en) | 2009-11-24 |
Family
ID=39814713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060138570A KR100927964B1 (en) | 2006-12-29 | 2006-12-29 | Manufacturing method of plastic substrate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100927964B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101040175B1 (en) * | 2008-12-11 | 2011-06-16 | 한국전자통신연구원 | The flexible substrate and the manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100566543B1 (en) * | 2003-03-04 | 2006-03-31 | (주)아이컴포넌트 | A plastic film for display panel and manufacturing method thereof |
KR100530319B1 (en) * | 2003-05-19 | 2005-11-22 | (주)아이컴포넌트 | A manufacturing method of plastic film for display panel |
JP2005320583A (en) | 2004-05-10 | 2005-11-17 | Konica Minolta Holdings Inc | Gas-barrier transparent plastic film, manufacturing method therefor and organic electroluminescence element using the gas-barrier transparent plastic film |
KR20060071452A (en) * | 2004-12-22 | 2006-06-27 | (주)아이컴포넌트 | A manufacturing method of plastic film for display panel having good durability |
-
2006
- 2006-12-29 KR KR1020060138570A patent/KR100927964B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101040175B1 (en) * | 2008-12-11 | 2011-06-16 | 한국전자통신연구원 | The flexible substrate and the manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100927964B1 (en) | 2009-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI732242B (en) | Cover lens film and method of forming a cover lens film | |
CA2587922C (en) | High integrity protective coatings | |
JP5394867B2 (en) | Gas barrier film and gas barrier film | |
US8227984B2 (en) | Barrier coatings | |
US6838197B2 (en) | Silica layers and antireflection film using same | |
JP5245892B2 (en) | Laminated film and method for producing the same | |
JP2010069675A (en) | Functional film, method of manufacturing the same, laminate, and electronic device | |
KR101523747B1 (en) | Thin film type hard coating film and method for manufacturing the same | |
JP2005017544A (en) | Antireflection film and image display apparatus | |
JP3699877B2 (en) | Manufacturing method of laminated film | |
JP2004258394A (en) | Optical functional film, anti-reflection film, polarizing plate, and display device | |
KR100927964B1 (en) | Manufacturing method of plastic substrate | |
KR20200065912A (en) | Barrier film having anti-glare function and manufacturing method thereof | |
JP3751922B2 (en) | Antireflection film, and display device and liquid crystal display device using the same | |
JP4332310B2 (en) | Method for producing titanium oxide layer, titanium oxide layer produced by this method, and antireflection film using titanium oxide | |
JP2004255635A (en) | Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device | |
JP2004223769A (en) | Transparent laminated film, antireflection film, polarizing plate using the same and liquid crystal display device | |
WO2022181371A1 (en) | Transparent substrate with multilayer film and image display device | |
KR20080041399A (en) | Process for preparing plastic substrate | |
KR101894788B1 (en) | Manufacturing method of a barrier film for flexible oled circuit boards and the barrier film made therefrom | |
JP2002200692A (en) | Titanium oxide layer and reflection preventing film employing the same | |
WO2023121646A1 (en) | Improved adhesion layer in flexible coverlens | |
KR20070071408A (en) | A plastic film for display panel and electronic paper having high light permeability and manufacturing method thereof | |
KR20120021759A (en) | Conductive film, method for manufacturing the same and touch panel having the same | |
JP2004131798A (en) | Titanium oxide layer and method for manufacturing the same, and antireflection film using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120831 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130830 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140919 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150903 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160902 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170905 Year of fee payment: 9 |