KR20080051131A - A near-field photocatalyst including nanowire of zinc oxide - Google Patents
A near-field photocatalyst including nanowire of zinc oxide Download PDFInfo
- Publication number
- KR20080051131A KR20080051131A KR1020087004664A KR20087004664A KR20080051131A KR 20080051131 A KR20080051131 A KR 20080051131A KR 1020087004664 A KR1020087004664 A KR 1020087004664A KR 20087004664 A KR20087004664 A KR 20087004664A KR 20080051131 A KR20080051131 A KR 20080051131A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- photocatalyst
- nanomaterial
- zinc oxide
- nano
- Prior art date
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 65
- 239000002070 nanowire Substances 0.000 title claims abstract 7
- 239000011787 zinc oxide Substances 0.000 title claims description 41
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 239000002086 nanomaterial Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 42
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002071 nanotube Substances 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 8
- 239000002073 nanorod Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 6
- 238000005566 electron beam evaporation Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000005297 pyrex Substances 0.000 claims abstract description 4
- 239000010453 quartz Substances 0.000 claims abstract description 4
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 4
- 239000010980 sapphire Substances 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 239000010703 silicon Substances 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims abstract description 4
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 239000012808 vapor phase Substances 0.000 claims abstract description 4
- 229910005540 GaP Inorganic materials 0.000 claims abstract description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 17
- 125000002524 organometallic group Chemical group 0.000 claims description 10
- SDGKUVSVPIIUCF-UHFFFAOYSA-N 2,6-dimethylpiperidine Chemical compound CC1CCCC(C)N1 SDGKUVSVPIIUCF-UHFFFAOYSA-N 0.000 claims description 9
- 239000002351 wastewater Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910002367 SrTiO Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 2
- 238000001947 vapour-phase growth Methods 0.000 claims description 2
- 238000004887 air purification Methods 0.000 claims 4
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 43
- 230000008569 process Effects 0.000 abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000010936 titanium Substances 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 5
- 238000002207 thermal evaporation Methods 0.000 abstract description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 229910019714 Nb2O3 Inorganic materials 0.000 abstract 1
- 229910002370 SrTiO3 Inorganic materials 0.000 abstract 1
- 238000005137 deposition process Methods 0.000 abstract 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract 1
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten dioxide Inorganic materials O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 abstract 1
- 238000000927 vapour-phase epitaxy Methods 0.000 abstract 1
- 239000004408 titanium dioxide Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000011701 zinc Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- -1 hydroxide ions Chemical class 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 230000036417 physical growth Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
- B01D53/885—Devices in general for catalytic purification of waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0238—Impregnation, coating or precipitation via the gaseous phase-sublimation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 광촉매에 관한 것으로서, 보다 구체적으로는 산화아연 나노세선을 이용한 근접장 광촉매에 관한 것이다.The present invention relates to a photocatalyst, and more particularly, to a near-field photocatalyst using zinc oxide nano fine wire.
광촉매란 빛을 받으면 촉매반응을 일으키는 촉매물질로서, 본 명세서에서는 이 중에서 광반응을 가속시키는 촉매물질을 의미하며 특히 자외선을 흡수하여 강력한 산화력 또는 환원력을 가진 물질을 생성할 수 있는 물질을 말한다. 이러한 광촉매는 다량의 화학품 또는 난분해성 오염물질을 친환경적으로 처리하는데 사용될 수 있다. 광촉매중 이산화티타늄(TiO2)이 가장 많이 사용되고 있는데, 이산화티타늄이 내산성, 내알카리성 등이 좋으며 인체에 무해하기 때문이다.The photocatalyst is a catalyst material that causes a catalysis when light is received, and in this specification, a catalyst material that accelerates a photoreaction, and in particular, refers to a material capable of absorbing ultraviolet light to generate a material having strong oxidizing or reducing power. Such photocatalysts can be used to environmentally treat large quantities of chemicals or hardly degradable contaminants. Among photocatalysts, titanium dioxide (TiO 2 ) is used most often because titanium dioxide has good acid resistance and alkali resistance and is harmless to human body.
도 1에 나타낸 바와 같이, 이산화티타늄 광촉매는 n형 반도체로서 이산화티타늄의 밴드 갭(band gap) 이상의 에너지(λ<400 nm)를 가지는 파장의 빛(예를 들어 자외선)을 받으면 이산화티타늄 표면의 전자는 밸런스 밴드(valence band)에서 컨덕션 밴드(conduction band)로 전이를 일으키게 되고, 이로 인하여 밸런스 밴드에는 정공이 생성되고 컨덕션 밴드에는 잉여 전자가 유도되게 된다.As shown in Fig. 1, a titanium dioxide photocatalyst is an n-type semiconductor, and when electrons on the surface of the titanium dioxide are subjected to light (for example, ultraviolet rays) having a wavelength of more than the band gap of titanium dioxide (λ <400 nm) Is a transition from the balance band (conduction band) to the conduction band (conduction band), thereby generating holes in the balance band and excess electrons are induced in the conduction band.
이와 같은 전자와 정공은 이산화티타늄 표면으로 확산이동하여, 이산화티타늄 표면에 흡착된 물이나 수산화이온(OH-)과 정공이 반응하면 히드록시 라디칼(OH)이 생성되며, 수중에 존재하는 산소와 전자가 반응하면 수퍼 옥사이드(O2 2-)가 생성된다. 이와 같이 생성된 히드록시 라디칼 및 수퍼 옥사이드는 유기물질을 산화시켜 물과 탄산가스로 변화시키는 산화제로 작용한다. 또한 세균도 유기 화합물이므로 광촉매의 강한 산화작용에 의해 산화분해 되어 살균된다. 이와 같은 이산화티타늄의 작용에 대해서는 대한민국 공개특허 제10-2003-0083901호에 개시되어 있다.In this electron-hole of the diffusion go to the titanium dioxide surface, the water and hydroxide ions (OH -) adsorbed on the titanium dioxide surface when the hole the reaction and hydroxyl radical (OH) are generated, the presence in the water of oxygen and electrons, When reacted, superoxide (O 2 2- ) is produced. The hydroxy radicals and super oxides thus produced act as oxidants to oxidize organic materials and convert them into water and carbon dioxide. In addition, since bacteria are organic compounds, they are oxidatively decomposed and sterilized by the strong oxidation of the photocatalyst. The action of such titanium dioxide is disclosed in Korean Patent Publication No. 10-2003-0083901.
그러나 이러한 티타늄은 매우 희소한 금속으로서 이산화티타늄은 매우 고가의 재료이며, 이러한 점은 이산화티타늄을 널리 상용화함에 있어 심각한 문제점이 되고 있다.However, such titanium is a very rare metal and titanium dioxide is a very expensive material, which is a serious problem in the commercialization of titanium dioxide.
뿐만 아니라, 이산화티타늄은 티탄산스트론튬(SrTO3)과 더불어 위와 같은 작용 이외에도 광화학전지의 전극으로도 이용되고 있다. 즉, 이산화티타늄은 태양광 등의 빛을 받아 광기전력을 발생시키고 상기 광기전력에 의하여 전기화학반응을 일으키는 반도체 광촉매로서, 수중에 백금 전극과 산화티타늄 전극을 배치하여 이 산화티타늄 전극에 빛을 조사함으로써 물을 전기분해 하여 수소를 발생시키는 데에도 활용되고 있다. 이와 같은 이산화티타늄의 작용 및 활용에 대해서는 대한민국 등록특허 제10-0377825호에 개시되어 있다.In addition, titanium dioxide is used as an electrode of a photochemical battery in addition to the above-described action with strontium titanate (SrTO 3 ). That is, titanium dioxide is a semiconductor photocatalyst that generates photovoltaic power by receiving light such as sunlight and causes an electrochemical reaction by the photovoltaic power. The titanium dioxide electrode is irradiated with light by arranging a platinum electrode and a titanium oxide electrode in water. It is also used to generate hydrogen by electrolyzing water. The action and utilization of such titanium dioxide is disclosed in Korean Patent Registration No. 10-0377825.
그러나 이산화티타늄의 광촉매를 태양광에 의한 물의 전기분해에 적용하는 경우에 물의 전해에 필요한 최소한의 기전력(이론값 1.23 V) 이상의 광기전력을 구비하는 것이 필요하다. 따라서 별도의 외부 전압을 인가하게 되는데, 이로 인해 수소 발생의 장치 및 공정이 매우 복잡해지게 되는 단점이 있다. 뿐만 아니라 백금과 같은 희소 금속을 전극으로 사용하게 되므로 이로 인해 제조비용이 상승하는 단점도 있게 된다.However, when applying a photocatalyst of titanium dioxide to the electrolysis of water by sunlight, it is necessary to have a photovoltaic power of at least the electromotive force required for the electrolysis of water (theoretical value 1.23 V). Therefore, a separate external voltage is applied, which makes the hydrogen generating apparatus and process very complicated. In addition, since a rare metal such as platinum is used as an electrode, the manufacturing cost increases due to this.
한편, 근접장광(optical near field)은 고해상도 광학 현미경, 고밀도 광학 메모리, 원자 조작 등에 이용되어 왔다 [Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998].On the other hand, near field (optical near field) has been used in high resolution optical microscope, high density optical memory, atomic manipulation and the like (Near-Field Nano / Atom Optics and Technology, Springer, Tokyo, 1998).
상기와 같은 종래 기술의 문제점들을 해결하기 위해서 티타늄을 대신하여 아연산화물을 포함하는 광촉매를 제공하는데 본 발명의 목적이 있다. 티타늄과 달리 아연은 염가로 대량을 구입할 수 있는 값싼 금속으로서 광촉매 제조비용을 크게 낮출 수 있는 장점이 있다.It is an object of the present invention to provide a photocatalyst including zinc oxide in place of titanium in order to solve the problems of the prior art as described above. Unlike titanium, zinc is an inexpensive metal that can be purchased in large quantities at a low cost, which greatly lowers the photocatalyst manufacturing cost.
본 발명의 또 다른 목적은 산화아연을 나노 세선장으로 구성한 광촉매를 제공함에 있다. 나노 세선의 첨단에 발생하는 근접장에 의해 별도의 전극의 이용 및 추가 전압의 인가 없이도 수소 발생에 필요한 전위를 얻을 수 있다.Still another object of the present invention is to provide a photocatalyst comprising zinc oxide as a nano fine wire. The near field generated at the tip of the nano fine wire can obtain a potential for generating hydrogen without using an additional electrode and applying an additional voltage.
상기한 목적을 달성하기 위하여 본 발명은 근접광 광촉매를 제공한다. 이 근접광 광촉매는 기판, 및 상기 기판 상에 형성되고, ZnO, TiO2, GaP, ZrO2, SiCdS, KTaO2, KTaNBO, CdSe, SrTiO3, Nb2O3, Fe2O3, WO2, SaO2 또는 그 혼합물로 이루어진 군으로부터 선택된 적어도 하나를 주성분으로 하는 나노소재로 이루어진 기재를 포함하며, 상기 나노소재는 나노바늘, 나노막대 또는 나노튜브를 포함하는 나노세선의 형태를 갖는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a proximity photocatalyst. The proximity photocatalyst is formed on a substrate and the substrate, and includes ZnO, TiO 2 , GaP, ZrO 2 , SiCdS, KTaO 2 , KTaNBO, CdSe, SrTiO 3 , Nb 2 O 3 , Fe 2 O 3 , WO 2 , At least one selected from the group consisting of SaO 2 or a mixture comprising a base material consisting of a nanomaterial, the nanomaterial is characterized in that it has a form of nano fine wire including a nano needle, a nano rod or a nanotube. .
특히, 상기 나노소재는 산화아연을 주성분으로 하는 것이 바람직하다.In particular, the nanomaterial is preferably composed mainly of zinc oxide.
상기 나노소재의 형태는 나노바늘의 나노세선 형태가 바람직하며, 나노소재의 직경은 5-200 nm이고, 길이는 0.5-100 ㎛인 것을 특징으로 한다.The nanomaterial is preferably in the form of a nano fine wire of the needle, the diameter of the nanomaterial is 5-200 nm, the length is characterized in that 0.5-100 ㎛.
상기 기판은 실리콘 기판, 유리 기판, 석영 기판, 파이렉스 기판, 사파이어 기판 및 플라스틱 기판으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.The substrate is characterized in that it is selected from the group consisting of a silicon substrate, a glass substrate, a quartz substrate, a Pyrex substrate, a sapphire substrate and a plastic substrate.
또한 상기 나노소재는 상기 기판 상에 수직으로 배향된 것을 특징으로 한다.In addition, the nanomaterial is characterized in that it is oriented vertically on the substrate.
또한 상기 나노소재는 유기금속 기상성장법, 유기금속 화학기상증착법, 스퍼터링법, 열 또는 전자빔 증발법, 펄스 레이저 증착법, 기상 이송법 또는 화학적 합성 중 어느 하나에 의해 상기 기판 상에 형성되는 것을 특징으로 한다.In addition, the nanomaterial is formed on the substrate by any one of organometallic vapor phase growth method, organometallic chemical vapor deposition method, sputtering method, heat or electron beam evaporation method, pulse laser deposition method, vapor phase transfer method or chemical synthesis. do.
또한 상기 나노소재는 주 성분인 산화아연 외에 Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, As, Co, Cr, B, N, Sb 및 H로 이루어진 군으로부터 선택된 하나 이상의 원소를 불순물로서 더 포함하는 것을 특징으로 한다.In addition, the nanomaterial is Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P , As, Co, Cr, B, N, Sb and H characterized in that it further comprises one or more elements selected from the group consisting of impurities.
또한 상기 산화물계 나노 소재는 MgO, CdO, GaN, AlN, InN, GaAs, GaP, InP 또는 이들의 화합물로 이루어진 군으로부터 선택된 화합물로 코팅된 것을 특징으로 한다.In addition, the oxide-based nanomaterial is characterized in that the coating with a compound selected from the group consisting of MgO, CdO, GaN, AlN, InN, GaAs, GaP, InP or a compound thereof.
한편, 본 발명은 상기 본 발명에 따른 광촉매를 이용하는 것을 특징으로 하는 수소 발생 방법을 제공하며, 또한 상기 본 발명에 따른 광촉매를 포함하는 수소 발생 장치를 제공한다.On the other hand, the present invention provides a hydrogen generating method characterized by using the photocatalyst according to the present invention, and also provides a hydrogen generating apparatus comprising the photocatalyst according to the present invention.
또한, 본 발명은 상기 본 발명에 따른 광촉매를 이용하는 것을 특징으로 하는 폐수 또는 공기의 정화 방법을 제공하며, 또한 상기 본 발명에 따른 광촉매를 포함하는 폐수 또는 대기 정화 장치를 제공한다.In addition, the present invention provides a method for purifying wastewater or air characterized by using the photocatalyst according to the present invention, and also provides a wastewater or air purifying apparatus including the photocatalyst according to the present invention.
이러한 본 발명의 광촉매는 종래 광촉매에 사용되어오던 티타늄을 값싼 아연으로 대체하여 비용절감 효과를 얻을 수 있을 뿐만 아니라, 산화아연 나노세선 첨단에 발생하는 근접장광을 이용함으로써 별도의 외부 전압을 인가할 필요가 없이 수소발생에 충분한 과전압을 얻을 수 있어 백금과 같은 고가의 전극의 사용을 피하고 공정을 단순화할 수 있는 장점이 있다.The photocatalyst of the present invention not only obtains a cost-saving effect by replacing titanium, which has been used in the conventional photocatalyst, with cheap zinc, but also needs to apply a separate external voltage by using near field light generated at the tip of the zinc oxide nanowire. It is possible to obtain a sufficient overvoltage for hydrogen generation without the need to avoid the use of expensive electrodes such as platinum and to simplify the process.
이하, 본 발명을 보다 상세히 설명한다. 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, the present invention will be described in more detail. In the following description of the present invention, when it is determined that detailed descriptions of related well-known technologies or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. Terms to be described later are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 근접장 광촉매는 종래에 널리 사용되던 고가의 이산화티타늄을 대체하여 산화아연을 주성분으로 하는 나노소재를 포함하는 것을 기본적인 특징으로 한다. 도 2에 나타낸 바와 같이, 산화아연은 이산화티타늄과 에너지 밴드 갭 및 수소 발생에 대한 촉매 활성 준위가 동등한 수준에 있는 물질로서, 이산화티타늄과 동등한 수준의 수소 발생 재료서의 사용이 가능하며, 특히 물의 전기분해에 사용될 수 있다.The near-field photocatalyst of the present invention is characterized in that it comprises a nanomaterial mainly composed of zinc oxide in place of expensive titanium dioxide widely used in the prior art. As shown in FIG. 2, zinc oxide is a material having a level of catalytic activity for titanium dioxide and an energy band gap and hydrogen generation, and it is possible to use a hydrogen generating material having a level equivalent to titanium dioxide. It can be used for electrolysis.
또한 본 발명은 기판 상에 산화아연을 주성분으로 하는 나노소재가 나노막대, 나노튜브 또는 바람직하게는 나노바늘의 나노세선 형태를 하고 있는 것을 특징으로 하는 근접광 광촉매에 관한 것이다.The present invention also relates to a proximity photocatalyst, characterized in that the nanomaterial mainly composed of zinc oxide on the substrate is in the form of nanorods, nanotubes or, preferably, nanoneedles.
특히 나노바늘 형태의 나노세선의 산화아연 나노소재의 경우에 있어서, 도 6 및 도 7에 나타낸 바와 같이, 그 성장 조건을 조절함으로써 한쪽 첨단이 매우 날카로운 형상으로 제작하는 것이 가능하다.Particularly in the case of the nanoneedle-shaped nanofine zinc oxide nanomaterial, as shown in Figs. 6 and 7, it is possible to produce a very sharp tip by controlling the growth conditions thereof.
특히 상기 산화아연 나노소재의 직경이 5-200 nm이고, 길이는 0.5-100 ㎛이 되도록 제작하는 것이 바람직하다. In particular, the diameter of the zinc oxide nanomaterial is 5-200 nm, it is preferable to produce so that the length is 0.5-100 ㎛.
원격장광(optical far field)의 경우, 장(field)의 세기(intensity)가 파장보다 작은 중성 분자에 있어 균일하다(uniform). 이 경우 분자 내에 전자만이 동일한 상(phase) 및 세기를 가지는 전기장에 응답을 하게 되며, 따라서 원격장의 경우 분자 진동 (molecular vibration)의 에너지를 높일 수는 없게 된다.In the case of an optical far field, the intensity of the field is uniform for neutral molecules whose wavelength is smaller than the wavelength. In this case, only electrons in the molecule will respond to the electric field having the same phase and intensity, and thus, in the case of a remote field, the energy of molecular vibration cannot be increased.
반면 근접장광의 경우, 그 위치에 따른 가파른 구배(steep spatial gradient)로 인해 분자 내의 장의 세기가 균일하지 않게 된다. 이 경우, 도 3에 나타낸 바와 같이, 분자 오비탈이 변화하게 되어 전자는 불균일하게 응답하고, 이러한 전자의 불균일한 응답으로 인해서 분자는 극성화하게 된다.On the other hand, in the case of near-field light, the intensity of the field in the molecule is not uniform due to the steep spatial gradient according to its position. In this case, as shown in Fig. 3, the molecular orbitals change, and the electrons respond non-uniformly, and due to the non-uniform response of the electrons, the molecules become polarized.
본 발명에 따라 상기의 구조를 가지는 광촉매에 원격장광을 조사하는 경우 그 첨단(apex)에 근접장광이 발생하게 된다. 첨단에 발생된 근접장광은 그 전기장 구배가 매우 가파르게 형성되기 때문에 이것에 의해서 별도로 외부전압을 인가해줄 필요 없이 수소를 발생시키기 위해 충분한 과전압을 얻을 수 있다.According to the present invention, when the long field light is irradiated to the photocatalyst having the above structure, the near field light is generated at the apex. Since the near-field light generated at the tip has a very steep electric field gradient, it is possible to obtain sufficient overvoltage to generate hydrogen without applying an external voltage separately.
앞서 언급한 바와 같이, 이산화티타늄의 광촉매를 물의 전기분해에 사용하는 경우에 물의 전해에 필요한 최소한의 기전력(이론값 1.23 V) 이상의 광기전력을 구비하기 위해 백금과 같은 희소 금속을 전극으로 사용하여 외부 전압을 인가하게 되는데, 본 발명의 경우에 있어서는 백금과 같은 고가의 전극의 사용 및 별도의 외부 전압의 인가 없이도 수소발생에 필요한 과전압을 얻을 수 있어 수소 발생의 장치 및 공정을 매우 단순화시키고 제조단가를 저렴하게 할 수 있다는 장점을 가지게 된다.As mentioned above, when a photocatalyst of titanium dioxide is used for the electrolysis of water, a rare metal such as platinum is used as an electrode to provide a photovoltaic power of at least the electromotive force necessary for electrolysis of water (theoretical value 1.23 V). In the case of the present invention, an overvoltage necessary for hydrogen generation can be obtained without the use of an expensive electrode such as platinum and the application of a separate external voltage, which greatly simplifies the apparatus and process for generating hydrogen and reduces the manufacturing cost. It has the advantage of being inexpensive.
뿐만 아니라 광촉매의 재료로서 산화아연 나노바늘 구조를 이용하는 경우, 가시영역으로의 반응 효율이 향상되는 효과도 있어, 전체적인 에너지의 변환효율도 크게 증가하는 효과를 보이게 된다.In addition, when the zinc oxide nanoneedle structure is used as the material of the photocatalyst, the reaction efficiency to the visible region is improved, and the overall conversion efficiency of the energy is also greatly increased.
본 발명의 광촉매에 있어서 기판은 기판 상에 형성될 산화물계 나노 소재와 일반적으로 반응성이 없는 소재로서, 이의 비제한적인 예에는 실리콘 기판, 유리 기판, 석영 기판, 파이렉스 기판, 사파이어 기판 또는 플라스틱 기판 등이 포함된다.In the photocatalyst of the present invention, the substrate is a material which is generally not reactive with the oxide-based nanomaterial to be formed on the substrate, and non-limiting examples thereof include a silicon substrate, a glass substrate, a quartz substrate, a Pyrex substrate, a sapphire substrate, a plastic substrate, and the like. This includes.
한편, 본 발명의 산화아연 나노소재는 기판에 수직으로 배향된 형태의 구조가 바람직하나, 본 발명에 따른 광촉매로서는 기판 상에 나노소재가 수직으로 배향되지 않은 형태를 취할 수도 있다. On the other hand, the zinc oxide nanomaterial of the present invention is preferably a structure in the form oriented perpendicular to the substrate, the photocatalyst according to the present invention may take a form in which the nanomaterial is not oriented vertically on the substrate.
또한 상기한 금속/산화물반도체 이종 접합 구조를 이용하면 빛을 받아서 생성된 전자를 금속쪽으로 모이게 할 수 있으므로, 전자와 정공의 재결합 속도를 느리게 할 수 있다. 이에 따라, 전자와 정공이 외부의 산소 또는 물과 용이하게 결합하게 되며, 그 결과 외부 오염 물질을 광분해하는 효율이 증대하는 효과를 기대할 수 있다.In addition, by using the metal / oxide semiconductor heterojunction structure described above, electrons generated by receiving light can be collected toward the metal, thereby slowing the recombination rate of electrons and holes. Accordingly, electrons and holes are easily combined with external oxygen or water, and as a result, an effect of increasing photodegradation efficiency of external pollutants can be expected.
본 발명의 나노 소재는, 유기금속 기상성장법(MOVPE), 유기금속 기상증착법을 포함하는 화학 기상증착법 또는 스퍼터링법(sputtering), 열 또는 전자빔 증발법(thermal or electron beam evaporation), 펄스레이저 증착법(pulse laser deposition) 등과 같은 물리적 성장 방법뿐만 아니라 금과 같은 금속촉매를 이용하는 기상 이송법(vapor-phase transport process), 화학적 합성 등에 의하여 다양한 기판 상에 형성된다. 바람직하게는, 유기금속 기상성장법(MOVPE) 또는 유기금속 화학기상증착법(MOCVD)에 의하여 성장시킬 수 있다.The nanomaterials of the present invention may be organic metal vapor deposition (MOVPE), chemical vapor deposition or sputtering including organic metal vapor deposition, thermal or electron beam evaporation, thermal or electron beam evaporation, and pulsed laser deposition. It is formed on various substrates by physical growth methods such as pulse laser deposition, as well as vapor-phase transport processes using chemical catalysts such as gold, chemical synthesis, and the like. Preferably, it can be grown by organometallic vapor deposition (MOVPE) or organometallic chemical vapor deposition (MOCVD).
본 발명의 광촉매 제조 방법의 구체예에 있어서, 산화아연 나노바늘은 다음과 같은 공정에 따라 기판 상에 형성된다. 먼저, 아연-함유 유기금속 및 산소-함유 기체 또는 산소-함유 유기물을 별개의 라인을 통해 각각 유기금속 기상증착 반응기에 주입한다. 상기 아연-함유 유기금속의 비제한적인 예에는 디메틸아연[Zn(CH3)2], 디에틸아연[Zn(C2H5)2], 아연아세테이트[Zn(OOCCH3)2·H2O], 아연아세테이트 무수물[Zn(OOCCH3)2] 또는 아연 아세틸아세토네이트[Zn(C5H7O2)2] 등이 포함되며, 상기 산소-함유 기체의 비제한적인 예에는 O2, O3, NO2, 수증기, CO2 등이 포함된다. 산소-함유 유기물의 비제한적인 예에는 C4H8O이 포함된다. In an embodiment of the photocatalyst production method of the present invention, the zinc oxide nanoneedle is formed on a substrate according to the following process. First, zinc-containing organometallic and oxygen-containing gases or oxygen-containing organics are respectively injected into the organometallic vapor deposition reactor via separate lines. Non-limiting examples of the zinc-containing organometals include dimethyl zinc [Zn (CH 3 ) 2 ], diethyl zinc [Zn (C 2 H 5 ) 2 ], zinc acetate [Zn (OOCCH 3 ) 2 H 2 O. ], Zinc acetate anhydride [Zn (OOCCH 3 ) 2 ] or zinc acetylacetonate [Zn (C 5 H 7 O 2 ) 2 ], and the like. Non-limiting examples of the oxygen-containing gas include O 2 , O 3 , NO 2 , water vapor, CO 2 and the like. Non-limiting examples of oxygen-containing organics include C 4 H 8 O.
이후, 10-5 내지 760 mmHg의 압력 및 200 내지 900 ℃의 온도 조건 하에서 상기 반응물을 반응시켜 기판 상에 산화아연 나노바늘을 증착 및 성장시킨다. 상기 반응 압력, 온도 및 반응물질의 흐름속도를 조절하여 기판 상에 형성되는 나노바늘의 직경, 길이 및 밀도가 조절함으로써, 원하는 총 표면적을 갖는 나노소재를 기판 상에 형성할 수 있다. Thereafter, the reactants are reacted under a pressure of 10 −5 to 760 mmHg and a temperature of 200 to 900 ° C. to deposit and grow zinc oxide nanoneedle on the substrate. By adjusting the reaction pressure, temperature and the flow rate of the reactant to adjust the diameter, length and density of the nanoneedle formed on the substrate, it is possible to form a nanomaterial having a desired total surface area on the substrate.
본 발명에 따른 광촉매의 산화아연 나노소재는 나노 소재의 전자 및 정공 형성 능력을 향상시키기 위하여 Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, As, Co, Cr, B, N, Sb 및 H로 이루어진 군으로부터 선택된 하나 이상의 원소를 불순물로서 더 포함할 수 있다. 이 경우, 상기 불순물의 농도가 높을 경우에는 산화물 반도체 물질의 합금이라 명명될 수도 있다. 상기 원소를 함유한 유기 금속 등을 아연-함유 유기금속과 함께 유기금속 기상증착 반응기에 공급함으로써, 본 발명의 나노소재의 성분에 상기 원소를 포함시킬 수 있다.Zinc oxide nanomaterial of the photocatalyst according to the present invention is Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta in order to improve the electron and hole formation ability of the nanomaterial At least one element selected from the group consisting of Nb, Ga, In, S, Se, P, As, Co, Cr, B, N, Sb, and H may be further included as an impurity. In this case, when the concentration of the impurity is high, it may be referred to as an alloy of an oxide semiconductor material. By supplying an organic metal or the like containing the above element with the zinc-containing organometal to the organometallic vapor deposition reactor, the element can be included in the component of the nanomaterial of the present invention.
한편, 본 발명에 따른 광촉매의 나노 소재는 MgO, CdO, GaN, AlN, InN, GaAs, GaP, InP 또는 이들의 화합물로 이루어진 군으로부터 선택된 화합물로 코팅된 구조를 가질 수 있다. 도 4에는 기판 상에 수직배향된 산화물계 나노바늘에 GaN이 코팅된 구조의 나노 바늘이 도시되어 있으며, 도 5에는 이러한 구조를 갖는 나노 바늘의 투과전자 현미경 사진이 도시되어 있다. 상기 물질의 코팅층은 전자 및 정공 형성 능력을 향상시키고, 나노 소재의 보호층을 형성하는 등 본 발명의 광촉매에 대하여 다양한 작용을 할 수 있다.Meanwhile, the nanomaterial of the photocatalyst according to the present invention may have a structure coated with a compound selected from the group consisting of MgO, CdO, GaN, AlN, InN, GaAs, GaP, InP, or a compound thereof. 4 illustrates a nanoneedle having a structure coated with GaN on an oxide-based nanoneedle vertically oriented on a substrate, and FIG. 5 illustrates a transmission electron micrograph of a nanoneedle having such a structure. The coating layer of the material may have various functions with respect to the photocatalyst of the present invention, such as improving electron and hole forming ability and forming a protective layer of nanomaterials.
광촉매 기술은 근년 폭넓은 분야에서 실용화되고 세계적으로 주목받고 있으며, 본 발명의 산화아연 나노세선을 이용한 근접장 광촉매 기술은, 고가의 산화티타늄을 대체하는 재료로서 실용상 매우 중요하며, 또한 전극을 필요로 하지 않는 본 발명은 프로세스의 간략화에도 크게 의미가 있다고 할 수 있다.Photocatalyst technology has been practically used in a wide range of fields in recent years, and has attracted worldwide attention, and the near-field photocatalyst technology using zinc oxide nanowires of the present invention is very important in practical use as a material to replace expensive titanium oxide, and also requires an electrode. The present invention, which does not, has great significance for the simplification of the process.
도 1은 광촉매 반응의 원리를 도시한 개념도이다.1 is a conceptual diagram showing the principle of the photocatalytic reaction.
도 2는 대표적인 광촉매 재료의 밴드구조와 물의 산화, 환원 준위를 도시한 개념도이다.FIG. 2 is a conceptual diagram illustrating the band structure of an exemplary photocatalyst material and oxidation and reduction levels of water.
도 3은 근접장광에 의해 분자 진동 모드가 여기되는 원리를 도시한 개념도이다.3 is a conceptual diagram showing the principle that the molecular vibration mode is excited by the near field light.
도 4 및 도 5는 본 발명에 따른 산화아연 나노바늘 광촉매로서 나노바늘 상에 GaN이 코팅된 광촉매의 일실시예의 구조도 및 투과전자현미경(TEM) 사진이다.4 and 5 are structural diagrams and transmission electron microscopy (TEM) photographs of one embodiment of a photocatalyst coated with GaN on a nanoneedle as a zinc oxide nanoneedle photocatalyst according to the present invention.
도 6은 본 발명의 일실시예에 따라 제조된 산화아연 나노바늘 광촉매의 주사전자현미경(SEM) 사진이다.6 is a scanning electron microscope (SEM) photograph of a zinc oxide nanoneedle photocatalyst prepared according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따라 제조된 산화아연 나노바늘 광촉매의 TEM 사진이다.7 is a TEM photograph of a zinc oxide nanoneedle photocatalyst prepared according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 산화아연 나노바늘 광촉매에 광을 조사한 후에 나노바늘의 표면에 대한 SEM 사진이다.8 is a SEM photograph of the surface of the nanoneedle after irradiating light to the zinc oxide nanoneedle photocatalyst according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 산화아연 나노바늘 광촉매에 대한 EDX 분석결과를 나타낸 그래프이다.9 is a graph showing the results of EDX analysis for the zinc oxide nanoneedle photocatalyst according to an embodiment of the present invention.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited only to the following examples.
실시예Example 1: 산화아연 1: zinc oxide 나노바늘을Nano needle 포함하는 Containing 광촉매의Photocatalyst 제조( Produce( MOCVDMOCVD ))
유기금속 화학기상증착(MOCVD) 반응기에 유리 기판을 넣은 다음, 디메틸아연(Zn(CH3)2) 및 O2 기체 각각을 개별 라인을 이용하여 상기 반응기에 0.1 내지 10 sccm 및 10 내지 100 sccm 범위의 흐름속도로 주입하였다. 이 때, 운반기체로서 아르곤(Ar)을 사용하였다.The glass substrates were placed in an organometallic chemical vapor deposition (MOCVD) reactor, and then dimethylzinc (Zn (CH 3 ) 2 ) and O 2 gases were each used in separate lines in the reactor in the range of 0.1 to 10 sccm and 10 to 100 sccm. Injected at a flow rate of. At this time, argon (Ar) was used as a carrier gas.
상기 반응기 내부를 0.2 torr의 압력 및 500℃의 온도로 1 시간 동안 유지하면서, 상기 유리 기판 상에서 디메틸아연 및 산소를 화학반응시켜 산화아연 나노바늘을 성장 및 증착시켰다. While maintaining the inside of the reactor at a pressure of 0.2 torr and a temperature of 500 ° C. for 1 hour, dimethylzinc and oxygen were chemically reacted on the glass substrate to grow and deposit zinc oxide nanoneedle.
그 결과 제조된 유리 기판 상에 수직배향된 산화아연 나노바늘을 도 6에 나타내었으며, 그 직경은 60nm였고, 길이는 1㎛였으며, 밀도는 1010/cm2였다.As a result, a zinc oxide nanoneedle vertically oriented on the prepared glass substrate was shown in FIG. 6, the diameter was 60 nm, the length was 1 μm, and the density was 10 10 / cm 2 .
실시예Example 2: 산화아연 2: zinc oxide 나노바늘을Nano needle 포함하는 Containing 광촉매의Photocatalyst 제조( Produce( MOVPEMOVPE ))
반응기에 기판을 넣은 다음, 기판 온도를 400-500 ㅀC로 하여, 가스 근원인 디메틸아연(Zn(CH3)2) 및 O2 각각을 개별 라인을 이용하여 상기 반응기에 0.1 내지 10 sccm 및 10 내지 100 sccm 범위의 흐름속도로 주입하였다. 이 때, 운반기체로서 아르곤(Ar)을 사용하였다.After the substrate was placed in the reactor, the substrate temperature was 400-500 ° C., and each of the gas sources dimethylzinc (Zn (CH 3 ) 2 ) and O 2, each in a separate line, was used in the reactor with 0.1 to 10 sccm and 10 Injection was performed at a flow rate in the range of from 100 sccm. At this time, argon (Ar) was used as a carrier gas.
상기 반응기 내부를 0.2 torr의 압력 및 500℃의 온도로 1 시간 동안 유지하면서, 상기 유리 기판 상에서 디메틸아연 및 산소를 화학반응시켜 산화아연 나노바늘을 성장 및 증착시켰다. 도 7에 나타내는 것 같이 첨단이 날카로워진 나노바늘이 기판에 대해서 수직에 형성되었다.While maintaining the inside of the reactor at a pressure of 0.2 torr and a temperature of 500 ° C. for 1 hour, dimethylzinc and oxygen were chemically reacted on the glass substrate to grow and deposit zinc oxide nanoneedle. As shown in FIG. 7, the sharpened nanoneedle was formed perpendicular to the substrate.
평가예Evaluation example 1 One
상기 실시예 1 및 실시예 2에서 제조된 산화아연 나노바늘 광촉매를 초순수 증류수에 침지하여 파장 325 nm의 He-Cd레이저를 30 초간 조사하였다. 그 결과 이산화티타늄의 경우와 같이 초 친수성을 나타내는 결과를 얻을 수 있었다. The zinc oxide nanoneedle photocatalysts prepared in Examples 1 and 2 were immersed in ultrapure distilled water and irradiated with a He-Cd laser having a wavelength of 325 nm for 30 seconds. As a result, the same results as in the case of titanium dioxide were obtained.
또한, 조사 부근에 수분 중의 물질이 석출되고 있는 것을 표면의 전자 현미경상으로부터 확인할 수 있었으며, 이를 도 8에 나타내었다. 또한, 상기 석출이 나노바늘의 첨단만을 잇듯이 형성되어 있는 것으로부터 나노바늘 첨단에 발생하고 있는 근접장광에 의해 물질이 석출했다는 것을 확인할 수 있었다.Moreover, it was confirmed from the electron microscope image of the surface that the substance in water precipitated in the vicinity of irradiation, and this is shown in FIG. In addition, it was confirmed that the above-mentioned precipitation was formed like only the tip of the nanoneedle, so that the material precipitated by the near-field light generated at the tip of the nanoneedle.
평가예Evaluation example 2 2
본 발명의 광촉매의 첨단을 잇듯이 표면에 부착한 물질에 대해서 조성 분석을 실시하였으며, 그 결과를 도 9에 나타내었다. 도 9에서, #1은 광조사 영역에 대한 것이고 #2는 비조사 영역에 대한 것이다. 도 9을 보면, 빛을 조사한 장소에 탄소 및 질소의 성분이 많아지고 있는 것을 확인할 수 있으며, 이는 수분 중의 유 기 불순물 및 질소가 석출한 사실을 나타내고 있으며, 이로부터 산화아연 나노바늘를 이용함으로써 수질이 개선되었다는 것을 확인할 수 있다.Composition analysis was carried out for the material attached to the surface as the tip of the photocatalyst of the present invention, the results are shown in FIG. In FIG. 9, # 1 is for the light irradiation area and # 2 is for the non-irradiation area. 9, it can be seen that the components of carbon and nitrogen are increasing in the place irradiated with light, which indicates the fact that organic impurities and nitrogen in water have been precipitated, and from this, the quality of water can be obtained by using zinc oxide nanoneedle. You can see that the improvement.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020087004664A KR20080051131A (en) | 2008-02-27 | 2005-08-31 | A near-field photocatalyst including nanowire of zinc oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020087004664A KR20080051131A (en) | 2008-02-27 | 2005-08-31 | A near-field photocatalyst including nanowire of zinc oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080051131A true KR20080051131A (en) | 2008-06-10 |
Family
ID=39806222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087004664A KR20080051131A (en) | 2008-02-27 | 2005-08-31 | A near-field photocatalyst including nanowire of zinc oxide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20080051131A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI573288B (en) * | 2010-10-18 | 2017-03-01 | 鴻海精密工業股份有限公司 | Light emitting diode and manufacture method for same |
RU2633160C1 (en) * | 2016-12-19 | 2017-10-11 | федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) | Method for aluminium nitride nanowires synthesis |
-
2005
- 2005-08-31 KR KR1020087004664A patent/KR20080051131A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI573288B (en) * | 2010-10-18 | 2017-03-01 | 鴻海精密工業股份有限公司 | Light emitting diode and manufacture method for same |
RU2633160C1 (en) * | 2016-12-19 | 2017-10-11 | федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) | Method for aluminium nitride nanowires synthesis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100831650B1 (en) | A photocatalyst including oxide-based nano-material | |
Li et al. | One-dimensional copper-based heterostructures toward photo-driven reduction of CO 2 to sustainable fuels and feedstocks | |
Zhu et al. | Simultaneous phosphorylation and Bi modification of BiOBr for promoting photocatalytic CO2 reduction | |
Mishra et al. | α-Fe2O3 as a photocatalytic material: A review | |
Zhang et al. | Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: an overview | |
Liu et al. | Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties | |
Rehman et al. | Strategies of making TiO2 and ZnO visible light active | |
Paramasivam et al. | A review of photocatalysis using self‐organized TiO2 nanotubes and other ordered oxide nanostructures | |
Zhang et al. | The development of better photocatalysts through composition‐and structure‐engineering | |
CN101252988A (en) | Near-field photocatalyst containing zinc bloom nanometer line | |
Duan et al. | The Z-scheme heterojunction between TiO2 nanotubes and Cu2O nanoparticles mediated by Ag nanoparticles for enhanced photocatalytic stability and activity under visible light | |
Sharma et al. | Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review | |
Meenakshi et al. | Synthesis and characterization of zinc oxide nanorods and its photocatalytic activities towards degradation of 2, 4-D | |
JP2009505829A (en) | Near-field photocatalyst of zinc oxide nanowires | |
Zhang et al. | Preparation of vertically aligned GaN@ Ga2O3 core-shell heterostructured nanowire arrays and their photocatalytic activity for degradation of Rhodamine B | |
Chao et al. | Polarization-induced selective growth of Au islands on single-domain ferroelectric PbTiO3 nanoplates with enhanced photocatalytic activity | |
Kalyanasundaram | Photochemical applications of solar energy: photocatalysis and photodecomposition of water | |
Liang et al. | Fabrication of graphdiyne and its analogues for photocatalytic application | |
Liu et al. | K+-doped ZnO/g-C3N4 heterojunction: controllable preparation, efficient charge separation, and excellent photocatalytic VOC degradation performance | |
Raub et al. | Photocatalytic activity enhancement of nanostructured metal-oxides photocatalyst: a review | |
KR20060133681A (en) | Photocatalyst titanium dioxide thin film chemoreceptible to visible light and manufacturing method thereof | |
Ali et al. | Doped metal oxide (ZnO) and photocatalysis: a review | |
KR20080051131A (en) | A near-field photocatalyst including nanowire of zinc oxide | |
Gao et al. | Enhanced photocatalytic properties of Ag-loaded N-doped TiO2 nanotube arrays | |
Akiyama et al. | Synthesis of a Gold-Inserted Iron Disilicide and Rutile Titanium Dioxide Heterojunction Photocatalyst via the Vapor–Liquid–Solid Method and Its Water-Splitting Reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |