KR20080042140A - 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치 - Google Patents

화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치 Download PDF

Info

Publication number
KR20080042140A
KR20080042140A KR1020087006939A KR20087006939A KR20080042140A KR 20080042140 A KR20080042140 A KR 20080042140A KR 1020087006939 A KR1020087006939 A KR 1020087006939A KR 20087006939 A KR20087006939 A KR 20087006939A KR 20080042140 A KR20080042140 A KR 20080042140A
Authority
KR
South Korea
Prior art keywords
image
dimensional image
dimensional
voxel
normalized
Prior art date
Application number
KR1020087006939A
Other languages
English (en)
Inventor
가즈오 하마다
가즈히로 니시까와
Original Assignee
니혼 메디피직스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니혼 메디피직스 가부시키가이샤 filed Critical 니혼 메디피직스 가부시키가이샤
Publication of KR20080042140A publication Critical patent/KR20080042140A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/35Determination of transform parameters for the alignment of images, i.e. image registration using statistical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Evolutionary Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Graphics (AREA)
  • Image Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Generation (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

자동으로 또한 높은 겹침의 정밀도로 퓨전 화상을 작성하기 위한 화상 처리 방법을 제공한다. 본 발명의 실시 형태에 따른 화상 처리 방법은, (a) 피험자의 임의의 부위로부터 얻어지는 복수의 제1 단층상에 기초하는 제1 삼차원 화상 및 동부위로부터 얻어지는 복수의 제2 단층상에 기초하는 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈 및 복셀 수를 동일하게 함으로써, 제1 삼차원 화상에 대응하는 제1 정규화 삼차원 화상 및 제2 삼차원 화상에 대응하는 제2 정규화 삼차원 화상을 생성하는 복셀 정규화 스텝과, (b) 제1 정규화 삼차원 화상 및 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상을 생성하는 퓨전 화상 생성 스텝을 포함한다.
삼차원 원화상, 복셀, 정규화 삼차원 화상, 단층상, 선형 보간법, 퓨전 화상

Description

화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치{IMAGE PROCESSING METHOD, IMAGE PROCESSING PROGRAM, AND IMAGE PROCESSING DEVICE}
본 발명은, 한 쌍의 삼차원 단층 화상을 서로 겹침으로써 퓨전 화상을 생성하기 위한 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치에 관한 것이다.
화상 진단에는, 단광자 방출형 단층 촬상(이하, 「SPECT」이라고 함), 양전자 방출형 단층 촬상(이하, 「PET」라고 함), 자기 공명 단층 화상(이하, 「MRI」라고 함), 및, X선 단층 촬상(이하, 「CT」라고 함)을 비롯한 화상이 이용된다. 이들 화상에 의하면, 비파괴로 피험자의 체내에 존재하는 병변부의 정보를 얻을 수 있다. 따라서, 화상 진단은, 현재의 진단 의료에서 없어서는 안되는 것으로 되어 있다.
지금까지 화상 진단 기술에 관한 다양한 검토가 행하여지고 있으며, 근년에는, 생체 내의 부위의 형태적 정보뿐만 아니라, 생체의 기능 정보를 화상화하는 기술이 고안되어, 임상 응용되고 있다. 예를 들면, 핵자기 공명 기술을 이용하여, 뇌 내의 국소적인 혈류량 변화를 화상화하는 기능적 자기 공명 단층 촬상(이하, 「fMRI」라고 함)이나, SPECT 및 PET라고 하는 핵의학 검사가 개발되어, 임상 응용되 고 있다.
이와 같은 기능 화상은, 생체 및 병변에서의 기능적 변화를 화상화한 것이다. 따라서, 기능 화상은, 병변부 검출의 특이도가 높다고 하는 이점을 갖고 있다. 한편, 기능 화상은, 병변부의 해부학적인 위치 정보가 부족하다고 하는 결점도 갖고 있다.
기능 화상이 갖는 이와 같은 결점을 보충할 목적으로, 퓨전 화상이 이용되고 있다. 퓨전 화상은, 기능 화상과 형태 화상을 서로 겹친 화상이다. 이 퓨전 화상에 의하면, 기능 화상에서 검출된 병변 부위의 해부학적인 위치를 형태 화상 상에서 확인하는 것이 가능하다. 따라서, 퓨전 화상은, 확정 진단이나 치료 방침의 결정 등에 유용하다.
또한, 퓨전 화상은, 이와 같은 서로 다른 모댈러티로부터 유래하는 화상, 즉 서로 다른 장치에 의해 취득된 화상뿐만 아니라, 동일 모댈러티로부터 유래한 화상으로부터도 작성할 수 있다. 예를 들면, 동일한 검사를 복수회 실시함으로써 얻어지는 복수의 핵의학 화상에 기초하는 퓨전 화상에 의하면, 동일한 부위에서의 값의 변화나, 동일 부위로부터의 상이한 혈류 정보 혹은 리셉터 분포 등을 얻을 수 있다.
퓨전 화상에 대한 이와 같은 니즈의 증대를 반영하여, 지금까지, 퓨전 화상을 자동으로 작성하기 위한 다양한 방법이 제안되어, 개발되어 있다. 예를 들면, Automatic Multimodality Image Registration법(이하, AMIR법이라고 함)(비특허 문헌 1을 참조), AC-PC 라인 위치 정렬법(비특허 문헌 2를 참조), 상호 정보량 최 대화법(비특허 문헌 3을 참조) 등이 개발되어, 실용화되어 있다.
비특허 문헌 1 : Babak A. Ardekani et al., "A Fully Automatic Multimodality Image Registration Algorithm.", Journal of Computer Assisted Tomography, (USA), 1995, 19, 4, p615-623
비특허 문헌 2 : 「Dr.View/LINUX 유저스 메뉴얼(제3 판)」, 아사히카세이 정보 시스템 주식회사, p.466-470
비특허 문헌 3 : F. Maes et al., "Multimodality Image Registration by Maximization of Mutual Information.", IEEE Transactions on Medical Imaging, (USA), 1997, 16, 2, p.187-198
<발명의 개시>
<발명이 해결하고자 하는 과제>
전술한 바와 같이, 퓨전 화상은 화상 진단의 분야에서 매우 유용하며, 지금까지 많은 퓨전 화상 작성법이 개발되어, 실용화되어 있다.
AMIR법은, 윤곽 추출을 행한 화상을 세그먼트로 분할하고, 평가 함수가 최소값을 취하는 조건을 구하여 퓨전 화상을 작성하는 방법이다. 이 방법은, 세그먼트로 분할 가능한 화상에 대해서는 유효하지만, 연부 조직을 대상으로 하는 화상과 같이, 윤곽이 불선명하여 세그먼트로의 분할이 곤란한 화상에는 부적합하다.
AC-PC 라인 위치 정렬법은, 정중 시상면 내에서 결정한 AC-PC 라인끼리를 서로 겹침으로써 퓨전 화상을 작성하는 방법이다. 이 방법에 의하면, 겹침을 행하는 각각의 화상에서의 AC-PC 라인만 결정되면, 용이하게 퓨전 화상을 작성하는 것이 가능하다. 그러나, 전제로서 정중 시상면의 화상을 작성하여 AC-PC 라인을 수동으로 결정해야만 하므로, 이 AC-PC 라인의 결정 조작 바로 그 자체가 번잡하다고 하는 결점이 있다. 또한,이 방법은, 두부 이외를 대상으로 하는 화상에의 응용도 할 수 없다.
한편, 상호 정보량 최대화법은, 각 화상이 갖는 정보량을 이용하여 위치 정렬을 행하는 방법이다. 즉, 이 방법은, 세그먼트 분할이나, AC-PC 라인의 확정 등의 조작을 필요로 하지 않는다. 따라서, 상호 정보량 최대화법은, 현시점에서, 가장 유용한 위치 정렬 방법 중 하나라고 말할 수 있다.
그러나, 상호 정보량 최대화법에 의해 자동 생성된 퓨전 화상의 겹침의 정밀도는, 반드시 높다고 할 수 있는 것은 아니며, 수동에 의한 재조정이 필요로 되는 경우가 적지 않다. 이와 같은 문제는, 예를 들면 SPECT 화상과 CT 화상을 이용한 퓨전 화상과 같이, 서로 다른 모댈러티로부터 유래하는 화상을 조합한 퓨전 화상에, 특히 많이 발생한다.
따라서, 본 발명은, 자동으로 또한 높은 겹침의 정밀도로 퓨전 화상을 작성하기 위한 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치를 제공하는 것을 목적으로 하고 있다.
<과제를 해결하기 위한 수단>
본원 발명자는 예의 검토를 거듭한 결과, 정밀도 좋게 퓨전 화상을 작성할 수 있기 위한 지견을 얻었다. 즉, 본원 발명자는, 한 쌍의 삼차원 화상 각각의 복셀 사이즈 및 복셀 수를 동일하게 한 후, 한 쌍의 삼차원 화상의 대응 위치를 구함 으로써, 정밀도 좋게 퓨전 화상을 작성할 수 있는 것을 발견하였다. 또한, 종래에서는,복셀 사이즈 및 복셀 수가 서로 다른 한 쌍의 삼차원 화상이, 양자의 대응 위치를 도출하기 위한 연산 처리에 그대로 입력되었다. 이것은, 상호 정보량 최대화법 등에서는, 각각의 복셀 사이즈 및 복셀 수가 서로 다른 한 쌍의 삼차원 화상을 이용한 대응 위치 도출을 위한 리스케일 처리가 도입되어 있기 때문이며, 종래에서는, 한 쌍의 삼차원 화상 각각의 복셀 사이즈 및 복셀 수를 동일하게 할 필요성이 인지되어 있지 않았다.
이러한 지견에 기초하는 본 발명의 일 측면에 따른 화상 처리 방법은, (a) 피험자의 임의의 부위로부터 얻어지는 복수의 제1 단층상에 기초하는 제1 삼차원 화상 및 동 부위로부터 얻어지는 복수의 제2 단층상에 기초하는 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈 및 복셀 수를 동일하게 함으로써, 제1 삼차원 화상에 대응하는 제1 정규화 삼차원 화상 및 제2 삼차원 화상에 대응하는 제2 정규화 삼차원 화상을 생성하는 복셀 정규화 스텝과, (b) 제1 정규화 삼차원 화상 및 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상을 생성하는 퓨전 화상 생성 스텝을 포함한다.
본 발명의 화상 처리 방법은, 복수의 제1 단층상으로 이루어지는 제1 삼차원 원화상 및 복수의 제2 단층상으로 이루어지는 제2 삼차원 원화상 각각의 복셀을, 입방체 형상의 복셀로 변환함으로써, 제1 삼차원 화상 및 제2 삼차원 화상을 생성하는 복셀 형상 변환 스텝을 더 포함하고 있어도 된다.
본 발명의 다른 일 측면에 따른 화상 처리 프로그램은, 컴퓨터에, 전술한 복 셀 정규화 스텝 및 퓨전 화상 생성 스텝을 실행시킨다. 또한, 본 발명의 화상 처리 프로그램은, 전술한 복셀 형상 변환 스텝을, 컴퓨터에 더 실행시켜도 된다.
본 발명의 또 다른 일 측면에 따른 화상 처리 장치는, (a) 피험자의 임의의 부위로부터 얻어지는 복수의 제1 단층상에 기초하는 제1 삼차원 화상 및 동 부위로부터 얻어지는 복수의 제2 단층상에 기초하는 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈 및 복셀 수를 동일하게 함으로써, 제1 삼차원 화상에 대응하는 제1 정규화 삼차원 화상 및 제2 삼차원 화상에 대응하는 제2 정규화 삼차원 화상을 생성하는 복셀 정규화 수단과, (b) 제1 정규화 삼차원 화상 및 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상을 생성하는 퓨전 화상 생성 수단을 구비한다.
또한, 본 발명의 화상 처리 장치는, 복수의 제1 단층상으로 이루어지는 제1 삼차원 원화상 및 복수의 제2 단층상으로 이루어지는 제2 삼차원 원화상 각각의 복셀을, 입방체 형상의 복셀로 변환함으로써, 제1 삼차원 화상 및 제2 삼차원 화상을 생성하는 복셀 형상 변환 수단을 더 구비하고 있어도 된다.
제1 정규화 삼차원 화상 및 제2 정규화 삼차원 화상은, 선형 보간법에 의해, 생성되는 것이 바람직하다. 또한, 제1 삼차원 화상 및 제2 삼차원 화상도, 선형 보간법에 의해, 생성되는 것이 바람직하다. 또한, 퓨전 화상이, 상호 정보량 최대화법에 의해 생성되어도 된다.
<발명의 효과>
본 발명에 따르면, 자동으로 또한 높은 겹침의 정밀도로 퓨전 화상을 작성 가능한 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치가 제공된다.
도 1은 본 발명의 실시 형태에 따른 화상 처리 방법의 플로우차트.
도 2는 도 1에 도시하는 복셀 형상 변환 스텝에서의 처리의 일례를 설명하는 플로우차트.
도 3은 도 1에 도시하는 복셀 정규화 스텝에서의 처리의 일례를 설명하는 플로우차트.
도 4는 도 1에 도시하는 퓨전 화상 생성 스텝에서의 처리의 일례를 설명하는 플로우차트.
도 5는 본 발명의 실시 형태에 따른 화상 처리 프로그램의 구성을, 기록 매체와 함께 도시하는 도면.
도 6은 기록 매체에 기억된 프로그램을 실행하기 위한 컴퓨터의 하드웨어 구성을 도시하는 도면.
도 7은 기록 매체에 기억된 프로그램을 실행하기 위한 컴퓨터의 사시도.
도 8은 본 발명의 실시 형태에 화상 처리 장치의 구성을 도시하는 도면.
도 9는 두부 SPECT 화상의 일례를 도시하는 도면.
도 10은 도 9와 동일한 피험자에서의 두부 CT 화상의 일례를 도시하는 도면.
도 11은 도 9 및 도 10에 도시한 화상을 이용하여, 상호 정보량 최대화법만에 의해 생성한 퓨전 화상을 도시하는 도면.
도 12는 도 9 및 도 10에 도시한 화상을 이용하여, 본 발명에 따른 화상 처리 방법에 의해 생성한 퓨전 화상을 도시하는 도면.
도 13은 흉부 SPECT 화상의 일례를 도시하는 도면.
도 14는 도 13과 동일한 피험자에서의 흉부 MRI 화상의 일례를 도시하는 도면.
도 15는 도 13 및 도 14에 도시한 화상을 이용하여, 상호 정보량 최대화법만에 의해 생성한 퓨전 화상을 도시하는 도면.
도 16은 도 13 및 도 14에 도시한 화상을 이용하여, 본 발명에 따른 화상 처리 방법에 의해 생성한 퓨전 화상을 도시하는 도면.
<부호의 설명>
10 : 화상 처리 프로그램
11 : 메인 모듈
12 : 삼차원 원화상 취득 모듈
14 : 복셀 형상 변환 모듈
16 : 복셀 정규화 모듈
18 : 퓨전 화상 생성 모듈
20 : 출력 모듈
30 : 화상 처리 장치
32 : 삼차원 원화상 취득부
34 : 복셀 형상 변환부
36 : 복셀 정규화부
38 : 퓨전 화상 생성부
40 : 출력부
100 : 기록 매체
110 : 컴퓨터
112 : 판독 장치
114 : 작업용 메모리
116 : 메모리
118 : 표시 장치
120 : 마우스
122 : 키보드
124 : 통신 장치
126 : CPU
<발명을 실시하기 위한 최량의 형태>
이하, 본 발명의 실시 형태에 따른 화상 처리 방법에 대해서, 도면을 참조하여 설명한다. 도 1은 본 발명의 실시 형태에 따른 화상 처리 방법의 플로우차트이다. 도 1에 도시한 화상 처리 방법은, 예를 들면, 이하에 설명하는 각 스텝의 명령을 컴퓨터에 부여함으로써, 실행할 수 있다.
도 1에 도시한 바와 같이, 이 화상 처리 방법에서는, 우선, 퓨전 화상을 작성하기 위한 제1 삼차원 원화상 및 제2 삼차원 원화상이 취득된다(스텝 S01). 제1 삼차원 원화상은, 피험자에서의 임의의 부위로부터 얻어지는 복수 단면의 제1 단층상으로 이루어지는 것이다. 마찬가지로, 제2 삼차원 원화상은, 동 부위로부터 얻 어지는 복수 단면의 제2 단층상으로 이루어지는 것이다.
본 실시 형태에서는, 제1 단층상 및 제2 단층상이, 서로 다른 모댈러티에 따라서 취득된 화상인 것으로 한다. 상세하게는, 제1 단층상이, SPECT 화상 및 PET 화상을 비롯한 기능 화상이며, 제2 단층상이, MRI 화상 및 CT 화상을 비롯한 형태화상인 것으로 한다. 이하, 형태 화상으로서 CT 화상을 이용하고, 기능 화상으로서 SPECT 화상을 이용한 경우를 예로 들어 설명한다.
또한, 제1 단층상 및 제2 단층상은, 동일한 모댈러티에 의해 취득된 것이어도 된다. 예를 들면, 제1 단층상 및 제2 단층상에는, 동 부위에 대한 촬상 일시나 투여한 방사성 의약품이 서로 다른 PET 화상 또는 SPECT 화상, 또는, 촬상 조건이 서로 다른 MRI 화상을 이용할 수도 있다.
복수의 제1 단층상 및 복수의 제2 단층상은, 체축에 대하여 거의 수직인 복수의 단면으로서, 체축 방향으로 연속하는 복수의 단면으로부터 취득된 단층상이다. 이들 화상은, 각각 공지의 방법에 의해 취득하는 것이 가능하다. 이하의 설명에서는,몸을 정면으로부터 본 경우에, 가로 방향을 x축 방향, 깊이 방향을 y축 방향, 체축 방향을 z축 방향으로 정의한다.
또한, 제1 삼차원 원화상 및 제2 삼차원 원화상 각각의 화상 데이터는 컴퓨터에 의해 판독 가능한 데이터 형식으로 보존되어 있으면 되고, 예를 들면, DICOM 형식에 의한 데이터를 이용할 수 있다. 이들 화상 데이터는, 예를 들면, 컴팩트 디스크를 비롯한 컴퓨터에 의해 판독 가능한 기억 매체에 저장한 형태로 제공된다. 화상 데이터를 저장한 기억 매체를 컴퓨터에 비치된 데이터 판독 장치에 삽입함으 로써, 화상 데이터가 컴퓨터에 읽어들여지고, 그 컴퓨터 상에서 이들 화상을 이용한 이하의 화상 처리를 행하는 것이 가능하게 된다. 또한, 그 데이터는, 반송파에 중첩된 컴퓨터 데이터 신호로서, 네트워크를 통해서 직접 취득되는 것이어도 된다.
다음으로, 본 실시 형태의 화상 처리 방법에서는, 복셀 형상 변환 스텝이 행해진다(스텝 S02). 제1 삼차원 원화상 및 제2 삼차원 원화상, 즉 복수의 단층상으로 이루어지는 삼차원 원화상에서는, 각 복셀이 z축 방향으로 연장되는 직방체 형상으로 되어 있는 경우가 있다. 복셀 형상 변환 스텝에서는, 제1 삼차원 원화상 및 제2 삼차원 원화상 각각의 복셀을 입방체 형상의 복셀로 변환하는 처리가 실행된다.
또한, 제1 삼차원 원화상 및 제2 삼차원 원화상 각각의 복셀이 입방체 형상인 경우에는, 본 스텝은 실행되지 않고, 제1 삼차원 원화상이 제1 삼차원 화상으로 되고, 제2 삼차원 원화상이 제2 삼차원 화상으로 된다. 또한, 제1 삼차원 원화상 및 제2 삼차원 원화상 중 한쪽의 삼차원 원화상의 복셀이 직방체 형상인 경우에는, 그 한쪽의 삼차원 원화상의 복셀이 입방체 형상의 복셀로 변환된다.
이하, 복셀 형상 변환 스텝(스텝 S02)에 대해서, 보다 상세하게 설명한다. 이 스텝의 처리는, 예를 들면, 바이리니어법이나 바이큐빅법 등의 공지의 선형 보간법에 따라서, 체축 방향의 픽셀 사이즈가 조정된다.
이하, 바이리니어법에 의한 선형 보간을 예로 들어, 본 스텝을 설명한다. 도 2는, 도 1에 도시한 복셀 형상 변환 스텝에서의 처리의 일례를 설명하는 플로우차트이다. 도 2에 도시한 복셀 형상 변환 스텝에서는, 바이리니어법에 기초하는 처 리가 채용되어 있다. 이 복셀 형상 변환 스텝에서는,이하에 설명하는 스텝 S11∼S13의 처리가, 제1 삼차원 원화상 및 제2 삼차원 원화상의 쌍방에 적용되어, 제1 삼차원 화상 및 제2 삼차원 화상이 생성된다. 또한,이하에서는, 설명을 간단히 하기 위해, 제1 삼차원 원화상 및 제2 삼차원 원화상을 「삼차원 원화상」이라고 한다. 또한, 복셀 형상 변환에 의해 생성되는 제1 삼차원 화상 및 제2 삼차원 화상을 「삼차원 화상」이라고 한다.
도 2에 도시한 바와 같이, 우선,이 복셀 형상 변환 스텝에서는,z축 방향의 복셀 수만을 조정하기 위해서, 유효 시야 내에서의 복셀 형상 변환 후의 z축 방향의 복셀 수가 산출된다(스텝 S11).
구체적으로는, 다음 수학식 1의 연산에 의해, z축 방향의 복셀 수가 산출된다.
Figure 112008020680255-PCT00001
수학식 1에서,Mz2는 복셀 형상 변환 후의 z축 방향의 복셀 수, FOVz는 z축 방향의 유효 시야, P1은 복셀의 x축 및 y축 방향에서의 한 변의 길이이다. 이와 같이하여, 한 변의 길이를 P1로 한 입방체 형상의 복셀의 z축 방향의 수가 산출된다.
다음으로, 복셀 형상 변환 후의 삼차원 화상용의 새로운 화상 공간이 메모리 상에 작성된다(스텝 S12). 이 화상 공간은, 삼차원 원화상의 x축 방향의 복셀 수 와 y축 방향의 복셀 수와 Mz2의 곱과 동수의 복셀 각각의 화소값을 기억하기 위한 공간이다.
다음으로, 스텝 S12에서 준비된 화상 공간 내의 각 복셀에, 화소값을 부여하여 새로운 삼차원 화상을 작성한다(스텝 S13). 이 스텝에서는, 삼차원 화상에서의 관상 단상 또는 시상 단상을 이용하여, z축 방향으로 바이리니어법에 의한 선형 보간을 적용함으로써 삼차원 화상이 작성된다. 이하, 관상 단상을 이용하여 선형 보간을 행하는 경우를 예로 들어 설명한다.
스텝 S13에서는, 복셀 형상 변환 후의 삼차원 화상 g에서의 임의의 복셀의 중심점 (x, z)를 둘러싸고 있는 근방의 4개의 격자점 (j1, k1), (j1+1, k1), (j1, k1+1) 및 (j1+1, k1+1) 각각의 삼차원 원화상 f의 화소값으로부터, 점 (x, z)에서의 화소값 g(x, z)가 다음 수학식 2에 의해 산출된다.
Figure 112008020680255-PCT00002
여기서, f(j1, k1), f(j1+1, k1), f(j1, k1+1) 및 f(j1+1, k1+1)은, 각각 점 (x, z)를 둘러싸는 삼차원 원화상에서의 관상 단상의 격자점 (j1, k1), (j1+1, k1), (j1, k1+1) 및 (j1+1, k1+1)에서의 화소값(화소의 농도값), j1=[x], r1=x-j1, k1=[z], s1=z-k1이다. 이 조작을 모든 관상 단상에서의 모든 복셀에 대해서 순차적으로 행 함으로써, 복셀 형상을 입방체로 변경한 새로운 화상, 즉 삼차원 화상 g가 형성되고, 복셀 형상 변경 처리가 종료된다.
도 1로 되돌아가서, 본 실시 형태의 화상 처리 방법에서는, 다음으로, 복셀 정규화 스텝(스텝 S03)이 실행된다. 이 복셀 정규화 스텝에서는, 제1 삼차원 화상 및 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈, 및 복셀 수를 동일한 값으로 하는 처리가 행해진다.
가장 바람직한 형태에서, 복셀 정규화 스텝에서는, 유효 시야가 작은 쪽의 화상에서의 복셀 사이즈 및 복셀 수가, 유효 시야가 큰 쪽의 화상의 복셀 사이즈 및 복셀 수와 동일하게 되도록 변환된다.
예를 들면, 제1 삼차원 화상의 유효 시야가 제2 삼차원 화상의 유효 시야보다도 작은 경우에는, 제1 삼차원 화상에서의 복셀 사이즈 및 복셀 수가 제2 삼차원 화상의 복셀 사이즈 및 복셀 수에 맞춰진다. 또한, 제1 삼차원 화상에서의 유효 시야 외에는, Null 코드(즉, 0값)가 부여된다.
이러한 복셀 정규화 스텝에서도, 바이리니어법이나 바이큐빅법 등의 공지의 선형 보완 처리를 채용하는 것이 가능하다. 도 3은 도 1에 도시한 복셀 정규화 스텝에서의 처리의 일례를 설명하는 플로우차트이다. 이하, 제2 삼차원 화상이 제1 삼차원 화상보다 큰 유효 시야를 갖고 있는 것으로 가정하고, 바이리니어법에 기초하는 복셀 정규화 스텝을, 도 3를 참조하면서 설명한다.
도 3에 도시한 바와 같이, 복셀 사이즈 등 정규화 스텝에서는, 우선, 제2 삼차원 화상과 동일한 복셀 사이즈 및 복셀 수를 갖는 삼차원의 화상 공간이, 컴퓨터 의 메모리 상에 준비된다(스텝 S21).
다음으로, 화상 공간 내에서의 각 복셀에, 제1 삼차원 화상으로부터의 선형 보간에 의해 요구되는 화소값을 부여함으로써, 제1 삼차원 정규화 화상이 생성된다. 또한, 본 실시 형태에서는, 제2 삼차원 화상이 그대로 제2 삼차원 정규화 화상으로 된다.
보다 구체적으로는, 우선, 제1 삼차원 화상의 횡단상을 이용하여, 바이리니어법에 의한 선형 보간을 행하여, 임시의 화소값을 산출하고, 상기 화상 공간의 각 복셀에 부여한다(스텝 S22). 이하, 스텝 S22의 보간 처리를, 「제1차 보간 처리」라고 한다.
구체적으로, 제1차 보간 처리에서는, 횡단상 상에 xy 좌표가 설정된다. 그리고, 화상 공간 상에 격자점이 가정되고, 제1차 보간 처리 후의 삼차원 화상 h1에서의 점 (x, y)를 둘러싸고 있는 4개의 격자점 (j2, k2), (j2+1, k2), (j2, k2+1) 및 (j2+1, k2+1) 각각의 제1 삼차원 화상 g의 화소값으로부터, 점 (x, y)에서의 화소값 h1(x, y)가, 다음 수학식 3에 의해 산출된다.
Figure 112008020680255-PCT00003
여기서, g(j2, k2), g(j2+1, k2), g(j2, k2+1) 및 g(j2+1, k2+1)은, 각각 점 (x, y)를 둘러싸는 격자점 (j2, k2), (j2+1, k2), (j2, k2+1) 및 (j2+1, k2+1)에서의 제1 삼차원 화상 g의 화소값, j2=[x], r2=x-j2, k2=[y], s2=y-k2이다. 이 조작을 모든 횡단상에서의 모든 복셀에 대해서 순차적으로 행하고, 얻어진 화소값을 각각의 복셀에 부여함으로써, 제1차 보간 처리가 완료된다.
다음으로, 시상 단상 또는 관상 단상에서 마찬가지의 보간 처리가 행해진다(스텝 S23). 이하, 스텝 S23의 처리를 제2차 보간 처리라고 한다. 또한,이하에서는, 관상 단상에서 보간 처리를 행하는 경우를 예로 들어, 제2차 보간 처리를 설명한다.
제2차 보간 처리에서는, 우선, 관상 단상 상에, xz 좌표가 설정된다. 그리고,이 좌표 상에서 격자점이 가정되고, 제1차 보간 처리가 부여되어 이루어지는 삼차원 화상 h1에서의 4개의 화소값으로서, 임의의 복셀의 중심점 (x, z)를 둘러싸고 있는 4개의 격자점 (j3, k3), (j3+1, k3), (j3, k3+1) 및 (j3+1, k3+1) 각각의 화소값으로부터, 점 (x, z)에서의 화소값 h2(x, z)가, 다음 수학식 4에 의해 산출된다.
Figure 112008020680255-PCT00004
여기서, h1(j3, k3), h1(j3+1, k3), h1(j3, k3+1) 및 h1(j3+1, k3+1)은, 각각 점 (x, z)를 둘러싸는 격자점 (j3, k3), (j3+1, k3), (j3, k3+1) 및 (j3+1, k3+1)에서의 화소값, j3=[x], r3=x-j3, k3=[z], s3=z-k3이다. 이 조작을 모든 복셀에 대해서 순차적으로 행하고, 얻어진 화소값을 각각의 복셀에 부여함으로써, 제1 정규화 삼차원 화상 h2가 얻어진다. 이에 의해, 제2차 보간 처리가 완료되고, 복셀 사이즈 등 정규화 처리가 완료된다.
또한, 제1 삼차원 화상이 제2 삼차원 화상보다 큰 유효 시야를 갖고 있는 경우에는, 제2 삼차원 화상에 대해서, 상기 스텝 S21∼스텝 S23과 마찬가지의 처리를 행하면 된다. 또한, 복셀 정규화 스텝에서는, 유효 시야가 큰 화상의 복셀 수를, 유효 시야가 작은 화상에 맞추는 처리를 행해도 된다. 예를 들면, 제1 삼차원 화상의 유효 시야가 제2 삼차원 화상의 유효 시야보다도 작은 경우에서, 제2 삼차원 화상의 복셀 사이즈 및 복셀 수를, 제1 삼차원 화상에서의 복셀 사이즈 및 복셀 수에 맞추는 처리를 행할 수 있다. 이 경우에서, 변환 후의 제2 삼차원 화상의 유효 시야 내에 포함되는 부위가, 제1 삼차원 화상의 유효 시야에 포함되는 부위와, 실질적으로 마찬가가지의 부위로 되도록, 제2 삼차원 화상을 변환할 필요가 있다. 구체적으로는, 마우스 등의 외부 입력 수단을 이용하여 제2 삼차원 화상 내에서 대상 부위, 즉 삼차원 관심 영역을 선택하고, 선택한 대상 부위에 대하여 선형 보간 처리를 행함으로써, 정규화 처리를 행할 수 있어, 대상 부위에서의 퓨전 화상의 고속 생성이 가능하게 된다.
다시 도 1을 참조한다. 본 실시 형태의 화상 처리 방법에서는, 복셀 정규화 스텝에 이어서, 퓨전 화상 생성 스텝(스텝 S04)이 실행된다. 이 퓨전 화상 생성 스텝에서는, 제1 정규화 삼차원 화상과 제2 정규화 삼차원 화상의 겹침 처리를 실행함으로써, 퓨전 화상이 작성된다.
이 겹침 처리는, 상호 정보량 최대화법(Maes F. et al., IEEE Trans. Med. Imaging, (1997), 16(2), p.187-198)을 이용하여 행해진다. 이하, 상호 정보량 최대화법에서의 화상의 겹침 처리에 대해서 설명한다. 상호 정보량 최대화법이란, 화상간의 상호 정보량이 최대로 되는 조건에서 겹침 화상을 작성하는 방법이다. 도 4는, 도 1에 도시한 퓨전 화상 생성 스텝에서의 처리의 일례를 설명하는 플로우차트이다.
구체적으로, 상호 정보량 최대화법에서는, 도 4에 도시한 바와 같이, 우선, 제공된 좌표 변환 파라미터에 의해 제1 정규화 삼차원 화상의 좌표 변환이 행해진다(스텝 S31). 이 좌표 변환 파라미터에는, 화상의 평행 이동을 행하기 위한 파라미터 (Tx, Ty, Tz) 및 화상의 회전을 행하기 위한 파라미터 (θx, θy, θz)의 합계 6개의 파라미터가 이용된다. 좌표 변환 파라미터의 초기값에는, 임의로 선택한 값을 이용할 수 있다. 예를 들면, 초기값으로서 좌표 변환 파라미터 모두를 0으로 설정할 수 있다.
다음으로, 제2 정규화 삼차원 화상, 및 좌표 변환 후의 제1 정규화 삼차원 화상을 이용한 퓨전 화상의 상호 정보량이 계산된다(스텝 S32). 이 상호 정보량 I(A, Bnew)의 값은, 다음 수학식 5∼8에 의해 산출된다.
Figure 112008020680255-PCT00005
Figure 112008020680255-PCT00006
Figure 112008020680255-PCT00007
Figure 112008020680255-PCT00008
여기서, I(A, Bnew)는 상호 정보량, H(A), H(Bnew) 및 H(A, Bnew)는 각각, 제2 정규화 삼차원 화상의 엔트로피, 좌표 변환 후의 제1 정규화 삼차원 화상의 엔트로피, 및 제2 정규화 삼차원 화상과 좌표 변환 후의 제1 정규화 삼차원 화상의 결합 엔트로피이다. NAi는 제2 정규화 삼차원 화상에서 화소값 Ai를 갖는 복셀의 수이며, NBi는 좌표 변환 후의 제1 정규화 삼차원 화상에서 화소값 Bi를 갖는 복셀의 수이다. NAiBi는, 퓨전 화상에서 화소값 Ai 및 Bi가 동시에 존재하고 있는 복셀의 수이다. MA, MB 및 MAB는 각각, 제2 정규화 삼차원 화상의 복셀 수(매트릭스 사이즈), 좌표 변환 후의 제1 정규화 삼차원 화상 복셀 수(매트릭스 사이즈), 퓨전 화상 복 셀 수(매트릭스 사이즈)이다.
퓨전 화상 생성 스텝에서는,이러한 상호 정보량의 계산이, 제1 정규화 삼차원 화상에 대한 좌표 변환 파라미터를 갱신시키면서 반복하여(스텝 S34) 실행되어, 상호 정보량이 최대로 되는 조건이 추출된다(스텝 S33). 그리고, 상호 정보량이 최대로 되는 좌표 변환 파라미터에 의해 좌표 변환된 제1 정규화 삼차원 화상과, 제2 정규화 삼차원 화상의 퓨전 화상이 생성된다(스텝 S35).
좌표 변환 파라미터의 갱신 및 최적화는, 다양한 공지의 알고리즘을 이용하여 행할 수 있다. 예를 들면, 심플렉스법이나 포웰법으로 대표되는 직접 탐색법, 최급 강하법(최대 구배법)이나 공액 구배법으로 대표되는 구배법(등산법)을 이용하여 행할 수 있다(나가오 토모하루저, 「최적화 알고리즘」, 초판, 주식회사 쇼코도, 2000; Frederik Maes et al., IEEE Transactions on Medical Imaging, 1997, 16, 2, p.187-198).
최적화 알고리즘의 일례로서, 최급 강하법을 이하에 설명한다. 최급 강하법에서는, 우선, 임의의 좌표 변환 파라미터 (Tx, Ty, Tz, θx, θy, θz)를 이용하여 제1 정규화 삼차원 화상을 좌표 변환하고, 변환 전의 제1 정규화 삼차원 화상을 이용하여 산출된 상호 정보량과, 변환 후의 제1 정규화 삼차원 화상을 이용하여 계산된 상호 정보량 사이의 변화율을 구한다. 이 계산을 좌표 변환 파라미터를 다양하게 변화시키면서 반복하고, 상호 정보량의 변화율이 최대로 되는 변환 파라미터의 조합을 추출한다.
다음으로, 추출된 좌표 변환 파라미터를 이용하여 변환시킨 제1 정규화 삼차 원 화상을 이용하여 계산한 상호 정보량과, 상이한 임의의 좌표 변환 파라미터를 이용하여 변환시킨 제1 정규화 삼차원 화상을 이용하여 계산한 상호 정보량 사이의 변화율을 구한다. 상기와 마찬가지의 조작을 행하여 상호 정보량의 변화율이 최대값으로 되는 변환 파라미터를 추출하고, 제1 정규화 삼차원 화상으로 재변환을 행한다. 이 조작을 반복하여 실행하고, 최종적으로 상호 정보량의 변화율을 0에 수속시킨다. 상호 정보량의 변화율을 0에 수속시키는 조건이, 상호 정보량을 최대로 하기 위한 변환 조건(좌표 변환 파라미터)에 상당한다. 이 조건을 이용하여 위치 및 방향의 변환을 행한 제1 정규화 삼차원 화상과, 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상이 작성된다.
다음으로, 본 발명의 실시 형태에 따른 화상 처리 프로그램에 대해서 설명한다. 도 5는, 본 발명의 실시 형태에 따른 화상 처리 프로그램의 구성을, 기록 매체와 함께 도시하는 도면이다. 도 5에 도시한 화상 처리 프로그램(10)은, 기록 매체(100)에 저장되어 제공된다. 기록 매체(100)로서는, 플렉시블 디스크, CD-ROM, DVD, 혹은 ROM 등의 기록 매체 혹은 반도체 메모리 등이 예시된다.
도 6은, 기록 매체에 기억된 프로그램을 실행하기 위한 컴퓨터의 하드웨어 구성을 도시하는 도면이고, 도 7은, 기록 매체에 기억된 프로그램을 실행하기 위한 컴퓨터의 사시도이다. 도 6에 도시한 바와 같이, 컴퓨터(110)는, 플렉시블 디스크 드라이브 장치, CD-ROM 드라이브 장치, DVD 드라이브 장치 등의 판독 장치(112)와, 오퍼레이팅 시스템을 상주시킨 작업용 메모리(RAM)(114)와, 기록 매체(100)에 기억된 프로그램을 기억하는 메모리(116)와, 디스플레이와 같은 표시 장치(118)와, 입 력 장치인 마우스(120) 및 키보드(122)와, 데이터 등의 송수신을 행하기 위한 통신 장치(124)와, 프로그램의 실행을 제어하는 CPU(126)를 구비하고 있다. 컴퓨터(110)는, 기록 매체(100)가 판독 장치(112)에 삽입되면, 판독 장치(112)로부터 기록 매체(100)에 저장된 화상 처리 프로그램(10)에 액세스 가능하게 되고, 그 화상 처리 프로그램(10)에 의해, 본 발명의 일 실시 형태에 따른 화상 처리 장치로서 동작하는 것이 가능하게 된다.
도 7에 도시한 바와 같이, 화상 처리 프로그램(10)은, 반송파에 중첩된 컴퓨터 데이터 신호(130)로서 네트워크를 통해서 제공되는 것이어도 된다. 이 경우, 컴퓨터(110)는, 통신 장치(124)에 의해 수신한 화상 처리 프로그램(10)을 메모리(116)에 저장하고, 그 화상 처리 프로그램(10)을 실행할 수 있다.
도 5에 도시한 바와 같이, 화상 처리 프로그램(10)은, 처리를 통괄하는 메인 모듈(11)과, 삼차원 원화상 취득 모듈(12)과, 복셀 형상 변환 모듈(14)과, 복셀 정규화 모듈(16)과, 퓨전 화상 생성 모듈(18)과, 출력 모듈(20)을 구비하고 있다.
삼차원 원화상 취득 모듈(12)은 상기의 스텝 S01의 처리를 컴퓨터에 실행시키고, 복셀 형상 변환 모듈(14)은 상기의 스텝 S02의 처리를 컴퓨터에 실행시키고, 복셀 정규화 모듈(16)은 상기의 스텝 S03의 처리를 컴퓨터에 실행시키고, 퓨전 화상 생성 모듈(18)은 상기의 스텝 S04의 처리를 컴퓨터에 실행시킨다. 또한, 출력 모듈(20)은, 얻어진 퓨전 화상을, 디스플레이와 같은 표시 장치에 출력시킨다. 바람직한 실시 양태에서, 퓨전 화상은, 서로 다른 단면의 화상에 대하여, 복수의 윈도우를 이용하여 동시에 표시된다. 이 경우, 1개의 윈도우에는 관상 단상을 표시 하고, 다른 윈도우에는 횡단상을 표시하면,보다 질환부의 위치 정보가 반영되기 때문에 바람직하다.
다음으로, 본 발명의 실시 형태에 따른 화상 처리 장치에 대해서 설명한다. 도 8은 본 발명의 실시 형태에 화상 처리 장치의 구성을 도시하는 도면이다. 도 8에 도시한 화상 처리 장치(30)는, 기능적으로, 삼차원 원화상 취득부(32)와, 복셀 형상 변환부(34)와, 복셀 정규화부(36)와, 퓨전 화상 생성부(38)와, 출력부(40)를 구비하고 있다.
삼차원 원화상 취득부(32)는 상기의 스텝 S01의 처리를 실행하는 부분이며, 복셀 형상 변환부(34)는 상기의 스텝 S02의 처리를 실행하는 부분이며, 복셀 정규화부(36)는 상기의 스텝 S03의 처리를 실행하는 부분이며, 퓨전 화상 생성부(38)는 상기의 스텝 S04의 처리를 실행하는 부분이다. 또한, 출력부(40)는, 얻어진 퓨전 화상을, 디스플레이와 같은 표시 장치에 출력하는 부분이다.
이러한 화상 처리 장치(30)는, 전술한 화상 처리 프로그램(10)에 따라서 동작하는 컴퓨터일 수 있다. 또한, 화상 처리 장치(30)는, 삼차원 원화상 취득부(32), 복셀 형상 변환부(34), 복셀 정규화부(36), 퓨전 화상 생성부(38), 및 출력부(40) 각각의 처리를 실행하는 전용 회로로 구성된 장치이어도 된다.
이하, 실시예 및 비교예에 기초하여 본 발명을 더 구체적으로 설명하지만, 본 발명은 이하의 실시예에 전혀 한정되지 않는다.
<비교예1>
두부 FDG PET 화상(도 9, 매트릭스 : 128×128, 슬라이스수 : 14슬라이스, 복셀 사이즈 : 2.00㎜×2.00㎜×6.50㎜)을 제1 삼차원 원화상으로 하고, 두부 MRI 화상(도 10, 매트릭스 : 256×256, 슬라이스수 : 99슬라이스, 복셀 사이즈 : 0.879㎜×0.879㎜×1.500㎜)을 제2 삼차원 원화상으로서 이용하여, NEUROSTAT(워싱톤 대학 메디컬 스쿨, 미노시마 사토시 교수로부터 공급)에 탑재된 Corege.exe ver.5 프로그램을 사용하고, 상호 정보량 최대화법(Cost Function 5)을 이용하여 퓨전 화상을 작성하였다. 즉, 복셀 형상 변환, 및 복셀 정규화를 행하지 않고, 상호 정보량 최대화법만에 의해 퓨전 화상을 생성하였다. Corege.exe ver.5 프로그램에서의 각종 설정 파라미터는, 이하의 값을 이용하였다.
Cost Function:=5
Cortical Threshold(%):=0.100000
Offset in Iteration(Phase 1):20.000000
MI Bins:=16
Create Realigned image(0=no, 1=yes):=1
Create Subtraction image(0=no, 1=yes):=0
Normalization Mode(0-2):=0
Pixel Scaling Factor for binary output(0.0=normalized to max; 1.0=fixed; or exact):=1.000000
Pixel Value to Indicate Out of Field-of-View:0.000000
작성한 퓨전 화상을 도 11에 도시한다. 도 11에서는, 퓨전 화상에서의 복수 단면의 화상을, 복수의 윈도우를 이용하여 표시하고 있다. 도 11에 도시한 바와 같이, 작성된 퓨전 화상에서의 겹침 정밀도는 양호하다고는 할 수 없고, 각 단면에서 한 쌍의 화상이 서로 어긋나서 서로 겹쳐진 화상으로 되어 있었다.
<실시예 1>
비교예 1에 이용한 제1 삼차원 원화상 및 제2 삼차원 원화상을 이용하여, 이하의 요령으로 퓨전 화상을 작성하였다.
우선, 제2 삼차원 원화상(MRI 화상)에 대하여, 슬라이스 방향(즉 z축 방향)으로 보간 처리를 행하여, 매트릭스 : 256×256, 슬라이스수 : 167슬라이스, 복셀 사이즈 : 0.879㎜×0.879㎜×0.879㎜의 화상으로의 변환을 행하여, 제2 삼차원 화상을 얻었다. 또한, 제1 삼차원 원화상을 그대로 제1 삼차원 화상으로 하였다.
다음으로, 제1 삼차원 화상(PET 화상)의 횡단면에 대해서 보간 처리를 행하여, 매트릭스 : 256×256, 픽셀 사이즈 : 0.879㎜×0.879㎜로의 변환을 행하였다. 다음으로, z축 방향으로 보간 처리를 행함으로써, 매트릭스 : 256×256, 슬라이스수 : 167슬라이스, 복셀 사이즈 : 0.879㎜×0.879㎜×0.879㎜의 화상으로의 변환을 행하여, 제1 정규화 삼차원 화상을 얻었다. 또한, 제2 삼차원 화상을, 그대로 제2 정규화 삼차원 화상으로 하였다.
제1 정규화 삼차원 화상 및 제2 정규화 삼차원 화상을 이용하여, NEUROSTAT(워싱톤 대학 메디컬 스쿨, 미노시마 사토시 교수로부터 공급)에 탑재된 Corege.exe ver.5 프로그램을 사용하고, 상호 정보량 최대화법(Cost Function 5)을 이용하여 퓨전 화상을 작성하였다. Corege.exe ver.5 프로그램에서의 각종 설정 파라미터는, 비교예 1과 마찬가지의 값을 이용하였다.
작성한 퓨전 화상을 도 12에 도시한다. 도 12에서는, 퓨전 화상에서의 복수 단면의 화상을, 복수의 윈도우를 이용하여 표시하고 있다. 도 12에 도시한 바와 같이, 얻어진 퓨전 화상에서의 겹침 정밀도는 양호하여, 본 발명에 따른 처리에 의해, 양호한 퓨전 화상을 자동적으로 작성할 수 있는 것이 확인되었다.
<비교예 2>
흉부 FDG PET 화상(도 13, 매트릭스 : 128×128, 슬라이스수 : 136슬라이스, 복셀 사이즈 : 4.29㎜×4.29㎜×4.29㎜)을 제1 삼차원 원화상으로 하고, 흉부 CT 화상(도 14, 매트릭스 : 256×256, 슬라이스수 : 81슬라이스, 복셀 사이즈 : 1.875㎜×1.875㎜×5.000㎜)을 제2 삼차원 원화상으로서 이용하여, NEUROSTAT(워싱톤 대학 메디컬 스쿨, 미노시마 사토시 교수로부터 공급)에 탑재된 Corege.exe ver.5 프로그램을 사용하고, 상호 정보량 최대화법(Cost Function 5)을 이용하여 퓨전 화상을 작성하였다. 즉, 복셀 형상 변환, 및 복셀 정규화를 행하지 않고, 상호 정보량 최대화법만에 의해 퓨전 화상을 생성하였다. Corege.exe ver.5 프로그램에서의 각종 설정 파라미터는, 비교예 1과 마찬가지의 값을 이용하였다.
작성한 퓨전 화상을 도 15에 도시한다. 도 15에서는, 퓨전 화상에서의 복수 단면의 화상을, 복수의 윈도우를 이용하여 표시하고 있다. 도 15에 도시한 바와 같이, 작성된 퓨전 화상에서의 겹침 정밀도는 양호하다고는 할 수 없고, 각 단면에서 한 쌍의 화상이 서로 어긋나서 서로 겹쳐진 화상으로 되어 있었다.
<실시예 2>
비교예 2에 이용한 제1 삼차원 원화상 및 제2 삼차원 원화상을 이용하여, 이하의 요령으로 퓨전 화상을 작성하였다.
우선, 제2 삼차원 원화상(CT 화상)에 대하여, 슬라이스 방향(즉 z축 방향)으로 보간 처리를 행하여, 매트릭스 : 256×256, 슬라이스수 : 312슬라이스, 복셀 사이즈 : 1.875㎜×1.875㎜×1.875㎜의 화상으로의 변환을 행하여, 제2 삼차원 화상을 얻었다. 또한, 제1 삼차원 원화상을 그대로 제1 삼차원 화상으로 하였다.
다음으로, 제1 삼차원 화상(PET 화상)의 횡단면에 대해서 보간 처리를 행하여, 매트릭스 : 256×256, 픽셀 사이즈 : 1.875㎜×1.875㎜로의 변환을 행하였다. 다음으로, z축 방향으로 보간 처리를 행함으로써, 매트릭스 : 256×256, 슬라이스수 : 312슬라이스, 복셀 사이즈 : 1.875㎜×1.875㎜×1.875㎜의 화상으로의 변환을 행하여, 제1 정규화 삼차원 화상을 얻었다. 또한, 제2 삼차원 화상을, 그대로 제2 정규화 삼차원 화상으로 하였다.
제1 정규화 삼차원 화상 및 제2 정규화 삼차원 화상을 이용하여, NEUROSTAT(워싱톤 대학 메디컬 스쿨, 미노시마 사토시 교수로부터 공급)에 탑재된 Corege.exe ver.5 프로그램을 사용하고, 상호 정보량 최대화법(Cost Function 5)을 이용하여 퓨전 화상을 작성하였다. Corege.exe ver.5 프로그램에서의 각종 설정 파라미터는, 비교예 1과 마찬가지의 값을 이용하였다.
작성한 퓨전 화상을 도 16에 도시한다. 도 16에서는, 퓨전 화상에서의 복수 단면의 화상을, 복수의 윈도우를 이용하여 표시하고 있다. 도 16에 도시한 바와 같이, 얻어진 퓨전 화상에서의 겹침 정밀도는 양호하여, 본 발명에 따른 처리에 의 해, 양호한 퓨전 화상을 자동적으로 작성할 수 있는 것이 확인되었다.
본 발명은, 퓨전 화상을 자동으로 또한 정밀도 좋게 작성하기 위해 유용하며, 화상 진단 장치의 분야에서 이용할 수 있다.

Claims (15)

  1. 피험자의 임의의 부위로부터 얻어지는 복수의 제1 단층상에 기초하는 제1 삼차원 화상 및 상기 부위로부터 얻어지는 복수의 제2 단층상에 기초하는 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈 및 복셀 수를 동일하게 함으로써, 상기 제1 삼차원 화상에 대응하는 제1 정규화 삼차원 화상 및 상기 제2 삼차원 화상에 대응하는 제2 정규화 삼차원 화상을 생성하는 복셀 정규화 스텝과,
    상기 제1 정규화 삼차원 화상 및 상기 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상을 생성하는 퓨전 화상 생성 스텝
    을 포함하는 화상 처리 방법.
  2. 제1항에 있어서,
    상기 복셀 정규화 스텝에서, 선형 보간법에 의해, 상기 제1 정규화 삼차원 화상 및 상기 제2 정규화 삼차원 화상을 생성하는 화상 처리 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 복수의 제1 단층상으로 이루어지는 제1 삼차원 원화상 및 상기 복수의 제2 단층상으로 이루어지는 제2 삼차원 원화상 각각의 복셀을, 입방체 형상의 복셀로 변환함으로써, 상기 제1 삼차원 화상 및 상기 제2 삼차원 화상을 생성하는 복셀 형상 변환 스텝을 더 포함하는 화상 처리 방법.
  4. 제3항에 있어서,
    상기 복셀 형상 변환 스텝에서, 선형 보간법에 의해, 상기 제1 삼차원 화상 및 상기 제2 삼차원 화상을 생성하는 화상 처리 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 퓨전 화상 생성 스텝에서, 상기 퓨전 화상을, 상호 정보량 최대화법에 의해 생성하는 화상 처리 방법.
  6. 컴퓨터에,
    피험자의 임의의 부위로부터 얻어지는 복수의 제1 단층상에 기초하는 제1 삼차원 화상 및 상기 부위로부터 얻어지는 복수의 제2 단층상에 기초하는 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈 및 복셀 수를 동일하게 함으로써, 상기 제1 삼차원 화상에 대응하는 제1 정규화 삼차원 화상 및 상기 제2 삼차원 화상에 대응하는 제2 정규화 삼차원 화상을 생성하는 복셀 정규화 스텝과,
    상기 제1 정규화 삼차원 화상 및 상기 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상을 생성하는 퓨전 화상 생성 스텝
    을 실행시키는 화상 처리 프로그램.
  7. 제6항에 있어서,
    상기 복셀 정규화 스텝에서, 컴퓨터에, 선형 보간법에 의해, 상기 제1 정규화 삼차원 화상 및 상기 제2 정규화 삼차원 화상을 생성시키는 화상 처리 프로그램.
  8. 제6항 또는 제7항에 있어서,
    컴퓨터에,
    상기 복수의 제1 단층상으로 이루어지는 제1 삼차원 원화상 및 상기 복수의 제2 단층상으로 이루어지는 제2 삼차원 원화상 각각의 복셀을, 입방체 형상의 복셀로 변환함으로써, 상기 제1 삼차원 화상 및 상기 제2 삼차원 화상을 생성하는 복셀 형상 변환 스텝을 더 실행시키는 화상 처리 프로그램.
  9. 제8항에 있어서,
    상기 복셀 형상 변환 스텝에서, 컴퓨터에, 선형 보간법에 의해, 상기 제1 삼차원 화상 및 상기 제2 삼차원 화상을 생성시키는 화상 처리 프로그램.
  10. 제6항 내지 제9항 중 어느 한 항에 있어서,
    상기 퓨전 화상 생성 스텝에서, 컴퓨터에, 상기 퓨전 화상을, 상호 정보량 최대화법에 의해 생성시키는 화상 처리 프로그램.
  11. 피험자의 임의의 부위로부터 얻어지는 복수의 제1 단층상에 기초하는 제1 삼 차원 화상 및 상기 부위로부터 얻어지는 복수의 제2 단층상에 기초하는 제2 삼차원 화상 각각의 유효 시야 내에서의 복셀 사이즈 및 복셀 수를 동일하게 함으로써, 상기 제1 삼차원 화상에 대응하는 제1 정규화 삼차원 화상 및 상기 제2 삼차원 화상에 대응하는 제2 정규화 삼차원 화상을 생성하는 복셀 정규화 수단과,
    상기 제1 정규화 삼차원 화상 및 상기 제2 정규화 삼차원 화상을 이용하여, 퓨전 화상을 생성하는 퓨전 화상 생성 수단
    을 구비하는 화상 처리 장치.
  12. 제11항에 있어서,
    상기 복셀 정규화 수단은, 선형 보간법에 의해, 상기 제1 정규화 삼차원 화상 및 상기 제2 정규화 삼차원 화상을 생성하는 화상 처리 장치.
  13. 제11항 또는 제12항에 있어서,
    상기 복수의 제1 단층상으로 이루어지는 제1 삼차원 원화상 및 상기 복수의 제2 단층상으로 이루어지는 제2 삼차원 원화상 각각의 복셀을, 입방체 형상의 복셀로 변환함으로써, 상기 제1 삼차원 화상 및 상기 제2 삼차원 화상을 생성하는 복셀 형상 변환 수단을 더 구비하는 화상 처리 장치.
  14. 제13항에 있어서,
    상기 복셀 형상 변환 수단은, 선형 보간법에 의해, 상기 제1 삼차원 화상 및 상기 제2 삼차원 화상을 생성하는 화상 처리 장치.
  15. 제11항 내지 제14항 중 어느 한 항에 있어서,
    상기 퓨전 화상 생성 수단은, 상기 퓨전 화상을, 상호 정보량 최대화법에 의해 생성하는 화상 처리 장치.
KR1020087006939A 2005-08-23 2006-08-17 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치 KR20080042140A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00241624 2005-08-23
JP2005241624 2005-08-23

Publications (1)

Publication Number Publication Date
KR20080042140A true KR20080042140A (ko) 2008-05-14

Family

ID=37771471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087006939A KR20080042140A (ko) 2005-08-23 2006-08-17 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치

Country Status (12)

Country Link
US (1) US8126243B2 (ko)
EP (1) EP1926053A4 (ko)
JP (1) JP4879901B2 (ko)
KR (1) KR20080042140A (ko)
CN (1) CN101248461A (ko)
AU (1) AU2006282500A1 (ko)
CA (1) CA2620216A1 (ko)
IL (1) IL189660A0 (ko)
NO (1) NO20081344L (ko)
RU (1) RU2008110951A (ko)
TW (1) TW200729075A (ko)
WO (1) WO2007023723A1 (ko)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189962B2 (en) * 2006-12-19 2012-05-29 Hitachi Kokusai Electric Inc. Image processing apparatus
JP2008306512A (ja) * 2007-06-08 2008-12-18 Nec Corp 情報提供システム
USD765081S1 (en) 2012-05-25 2016-08-30 Flir Systems, Inc. Mobile communications device attachment with camera
WO2012170946A2 (en) 2011-06-10 2012-12-13 Flir Systems, Inc. Low power and small form factor infrared imaging
US9451183B2 (en) 2009-03-02 2016-09-20 Flir Systems, Inc. Time spaced infrared image enhancement
US9208542B2 (en) 2009-03-02 2015-12-08 Flir Systems, Inc. Pixel-wise noise reduction in thermal images
US10757308B2 (en) 2009-03-02 2020-08-25 Flir Systems, Inc. Techniques for device attachment with dual band imaging sensor
US9756264B2 (en) 2009-03-02 2017-09-05 Flir Systems, Inc. Anomalous pixel detection
US9674458B2 (en) 2009-06-03 2017-06-06 Flir Systems, Inc. Smart surveillance camera systems and methods
US9473681B2 (en) 2011-06-10 2016-10-18 Flir Systems, Inc. Infrared camera system housing with metalized surface
US9843742B2 (en) 2009-03-02 2017-12-12 Flir Systems, Inc. Thermal image frame capture using de-aligned sensor array
US9986175B2 (en) 2009-03-02 2018-05-29 Flir Systems, Inc. Device attachment with infrared imaging sensor
US9948872B2 (en) 2009-03-02 2018-04-17 Flir Systems, Inc. Monitor and control systems and methods for occupant safety and energy efficiency of structures
US9517679B2 (en) 2009-03-02 2016-12-13 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
US9635285B2 (en) 2009-03-02 2017-04-25 Flir Systems, Inc. Infrared imaging enhancement with fusion
US10244190B2 (en) 2009-03-02 2019-03-26 Flir Systems, Inc. Compact multi-spectrum imaging with fusion
US9998697B2 (en) 2009-03-02 2018-06-12 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
US9235876B2 (en) 2009-03-02 2016-01-12 Flir Systems, Inc. Row and column noise reduction in thermal images
US9819880B2 (en) 2009-06-03 2017-11-14 Flir Systems, Inc. Systems and methods of suppressing sky regions in images
US9756262B2 (en) 2009-06-03 2017-09-05 Flir Systems, Inc. Systems and methods for monitoring power systems
US9716843B2 (en) 2009-06-03 2017-07-25 Flir Systems, Inc. Measurement device for electrical installations and related methods
US9292909B2 (en) 2009-06-03 2016-03-22 Flir Systems, Inc. Selective image correction for infrared imaging devices
US10091439B2 (en) 2009-06-03 2018-10-02 Flir Systems, Inc. Imager with array of multiple infrared imaging modules
US9843743B2 (en) 2009-06-03 2017-12-12 Flir Systems, Inc. Infant monitoring systems and methods using thermal imaging
WO2011025943A2 (en) * 2009-08-28 2011-03-03 Dartmouth College System and method for providing patient registration without fiducials
US9848134B2 (en) 2010-04-23 2017-12-19 Flir Systems, Inc. Infrared imager with integrated metal layers
US9207708B2 (en) 2010-04-23 2015-12-08 Flir Systems, Inc. Abnormal clock rate detection in imaging sensor arrays
US9706138B2 (en) 2010-04-23 2017-07-11 Flir Systems, Inc. Hybrid infrared sensor array having heterogeneous infrared sensors
US9098904B2 (en) 2010-11-15 2015-08-04 Dartmouth College System and method for registering ultrasound and magnetic resonance images
US9235023B2 (en) 2011-06-10 2016-01-12 Flir Systems, Inc. Variable lens sleeve spacer
KR101778353B1 (ko) 2011-06-10 2017-09-13 플리어 시스템즈, 인크. 적외선 이미징 장치용 불균일성 교정 기술
US9058653B1 (en) 2011-06-10 2015-06-16 Flir Systems, Inc. Alignment of visible light sources based on thermal images
US9509924B2 (en) 2011-06-10 2016-11-29 Flir Systems, Inc. Wearable apparatus with integrated infrared imaging module
US10079982B2 (en) 2011-06-10 2018-09-18 Flir Systems, Inc. Determination of an absolute radiometric value using blocked infrared sensors
US10389953B2 (en) 2011-06-10 2019-08-20 Flir Systems, Inc. Infrared imaging device having a shutter
EP2719166B1 (en) 2011-06-10 2018-03-28 Flir Systems, Inc. Line based image processing and flexible memory system
US10841508B2 (en) 2011-06-10 2020-11-17 Flir Systems, Inc. Electrical cabinet infrared monitor systems and methods
US10169666B2 (en) 2011-06-10 2019-01-01 Flir Systems, Inc. Image-assisted remote control vehicle systems and methods
US9900526B2 (en) 2011-06-10 2018-02-20 Flir Systems, Inc. Techniques to compensate for calibration drifts in infrared imaging devices
US9961277B2 (en) 2011-06-10 2018-05-01 Flir Systems, Inc. Infrared focal plane array heat spreaders
US10051210B2 (en) 2011-06-10 2018-08-14 Flir Systems, Inc. Infrared detector array with selectable pixel binning systems and methods
US9143703B2 (en) 2011-06-10 2015-09-22 Flir Systems, Inc. Infrared camera calibration techniques
US9706137B2 (en) 2011-06-10 2017-07-11 Flir Systems, Inc. Electrical cabinet infrared monitor
US9811884B2 (en) 2012-07-16 2017-11-07 Flir Systems, Inc. Methods and systems for suppressing atmospheric turbulence in images
US9552533B2 (en) * 2013-03-05 2017-01-24 Toshiba Medical Systems Corporation Image registration apparatus and method
US9684674B2 (en) * 2013-04-02 2017-06-20 Blackford Analysis Limited Image data processing
US9973692B2 (en) 2013-10-03 2018-05-15 Flir Systems, Inc. Situational awareness by compressed display of panoramic views
US11297264B2 (en) 2014-01-05 2022-04-05 Teledyne Fur, Llc Device attachment with dual band imaging sensor
JP5689205B1 (ja) * 2014-11-21 2015-03-25 日本メジフィジックス株式会社 頭部核医学画像の評価法
JP6092336B1 (ja) * 2015-09-28 2017-03-08 国立大学法人 筑波大学 画像処理システム、画像処理方法及び画像処理プログラム
JP2017080161A (ja) 2015-10-29 2017-05-18 住友重機械工業株式会社 中性子捕捉療法システム
KR101923183B1 (ko) * 2016-12-14 2018-11-28 삼성전자주식회사 의료 영상 표시 방법 및 의료 영상 표시 장치
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
CN113382683A (zh) 2018-09-14 2021-09-10 纽罗因恒思蒙特实验有限责任公司 改善睡眠的系统和方法
CN110146880B (zh) * 2019-06-06 2021-06-08 深圳市重投华讯太赫兹科技有限公司 成像方法、终端设备以及计算机存储介质
CN111429571B (zh) * 2020-04-15 2023-04-07 四川大学 一种基于时空图像信息联合相关的快速立体匹配方法
US11494955B2 (en) * 2020-06-10 2022-11-08 Siemens Medical Solutions Usa, Inc. Data driven reconstruction in emission tomography

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129700B2 (ja) 1998-07-23 2001-01-31 五大株式会社 画像処理装置、画像処理方法及び画像処理プログラムを記録した記録媒体
US6904163B1 (en) * 1999-03-19 2005-06-07 Nippon Telegraph And Telephone Corporation Tomographic image reading method, automatic alignment method, apparatus and computer readable medium
US6728424B1 (en) * 2000-09-15 2004-04-27 Koninklijke Philips Electronics, N.V. Imaging registration system and method using likelihood maximization

Also Published As

Publication number Publication date
IL189660A0 (en) 2008-06-05
AU2006282500A1 (en) 2007-03-01
WO2007023723A1 (ja) 2007-03-01
NO20081344L (no) 2008-05-23
JP4879901B2 (ja) 2012-02-22
EP1926053A1 (en) 2008-05-28
EP1926053A4 (en) 2011-08-10
US8126243B2 (en) 2012-02-28
RU2008110951A (ru) 2009-09-27
TW200729075A (en) 2007-08-01
CN101248461A (zh) 2008-08-20
AU2006282500A2 (en) 2008-07-03
JPWO2007023723A1 (ja) 2009-02-26
CA2620216A1 (en) 2007-03-01
US20090148019A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
KR20080042140A (ko) 화상 처리 방법, 화상 처리 프로그램, 및 화상 처리 장치
US9495725B2 (en) Method and apparatus for medical image registration
US10803354B2 (en) Cross-modality image synthesis
JP4576228B2 (ja) 生理学的モデルに基づく非剛体画像位置合わせ
JP5814853B2 (ja) 立体モデルデータ生成装置および方法並びにプログラム
JP6316671B2 (ja) 医療画像処理装置および医用画像処理プログラム
US9471987B2 (en) Automatic planning for medical imaging
CN106485691B (zh) 信息处理装置、信息处理系统和信息处理方法
JP2013071016A (ja) ライブ蛍光透視画像を用いた冠動脈モデルの非剛体2d/3dレジストレーション
EP2960870B1 (en) A visualization method for a human skeleton from a medical scan
CN115311191A (zh) 使用深度学习估计的扫描方案遮罩来生成三维解剖结构扫描的重新格式化视图
US20190197762A1 (en) Cpr image generation apparatus, method, and program
JP6734111B2 (ja) 所見情報作成装置及びシステム
JP6934948B2 (ja) 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム
EP4285828A1 (en) Learned model generation method, machine learning system, program, and medical image processing device
Carminati et al. Reconstruction of the descending thoracic aorta by multiview compounding of 3-d transesophageal echocardiographic aortic data sets for improved examination and quantification of atheroma burden
Al-Shayea et al. An efficient approach to 3d image reconstruction
JP2019500114A (ja) 位置合わせ精度の決定
JP5068334B2 (ja) 医用画像変換装置および方法並びにプログラム
Faliagka et al. Registration and fusion techniques for medical images: Demonstration and evaluation
Dandekar et al. Image registration accuracy with low-dose CT: How low can we go?
Sun A Review of 3D-2D Registration Methods and Applications based on Medical Images
Faliagka et al. Diagnosis-a global alignment and fusion medical system
JP6811872B2 (ja) 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム
JP2023033234A (ja) データ拡張方法、データ拡張装置及びプログラム

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid