KR20080030314A - Metallization process of non-conductive polymer substrates using wet surface treatment technology - Google Patents

Metallization process of non-conductive polymer substrates using wet surface treatment technology Download PDF

Info

Publication number
KR20080030314A
KR20080030314A KR1020060096242A KR20060096242A KR20080030314A KR 20080030314 A KR20080030314 A KR 20080030314A KR 1020060096242 A KR1020060096242 A KR 1020060096242A KR 20060096242 A KR20060096242 A KR 20060096242A KR 20080030314 A KR20080030314 A KR 20080030314A
Authority
KR
South Korea
Prior art keywords
polymer material
polymer
film
metallization
proceeding
Prior art date
Application number
KR1020060096242A
Other languages
Korean (ko)
Other versions
KR101298746B1 (en
Inventor
이홍기
손성호
구석본
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020060096242A priority Critical patent/KR101298746B1/en
Publication of KR20080030314A publication Critical patent/KR20080030314A/en
Application granted granted Critical
Publication of KR101298746B1 publication Critical patent/KR101298746B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2013Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Abstract

A metallization method of a surface of a non-conductive polymer material using wet surface treatment technology and a polymer film prepared by the metallization method are provided to form a uniform metal film on the surface of the polymer material, enable one or both faces of the polymer material to be subjected to a metallization treatment process, and expect to improve economic efficiency and productivity by a batch process. A metallization method of a surface of a non-conductive polymer material comprises: a first step of proceeding degreasing and cleaning processes to remove contaminants from the polymer material; a second step of proceeding a surface modification process to impart a functional group to the polymer material and impart roughness onto a surface of the polymer material; a third step of proceeding a catalytic treatment process and an activating process to adsorb precious metal particles onto the surface of the polymer material and reduce the precious metal particles into metal particles; and a fourth step of proceeding an electroless plating process to form a final metal film layer. The metallization method further comprises a fifth step of proceeding an electroplating process after the fourth step.

Description

습식표면처리기술을 이용한 비전도성 폴리머 기판의 금속화 방법{Metallization process of non-conductive polymer substrates using wet surface treatment technology}Metallization method of non-conductive polymer substrates using wet surface treatment technology

도 1은 본 발명에 따른 비전도성 폴리머 기판의 금속화 공정을 나타낸 그림이다.1 is a diagram illustrating a metallization process of a nonconductive polymer substrate according to the present invention.

도 2는 본 발명의 방법에 따라 제조된 폴리이미드 필름 표면의 무전해 니켈도금 피막층을 전자현미경으로 관찰한 그림이다.2 is an electron microscope observation of the electroless nickel plated coating layer on the surface of the polyimide film prepared according to the method of the present invention.

도 3은 본 발명의 방법에 따라 제조된 폴리이미드 필름 표면의 무전해 동도금 피막층을 전자현미경으로 관찰한 그림이다.3 is an electron microscope observation of the electroless copper plating film layer on the surface of the polyimide film prepared according to the method of the present invention.

도 4는 본 발명의 방법에 따라 제조된 PET 필름 표면의 무전해 니켈도금 피막층을 전자현미경으로 관찰한 그림이다.Figure 4 is an electron microscope observation of the electroless nickel plated coating layer on the surface of the PET film prepared according to the method of the present invention.

도 5는 본 발명의 방법에 따라 제조된 PET 필름 표면의 무전해 동도금 피막층을 전자현미경으로 관찰한 그림이다.5 is an electron microscope observation of the electroless copper plating film layer on the surface of the PET film prepared according to the method of the present invention.

도 6은 본 발명의 방법에 따라 제조된 폴리이미드 필름 표면의 무전해 동도금 피막층에 전기 동도금을 한 후 관찰한 그림이다.Figure 6 is a picture observed after electroplating the electroless copper plating film layer on the surface of the polyimide film prepared according to the method of the present invention.

본 발명은 습식표면처리기술을 이용한 비전도성 폴리머 소재 표면의 금속화 방법 및 그에 의하여 제조된 폴리머 필름에 관한 것으로서, 구체적으로 오염물질을 제거하기 위해 탈지 및 세정공정을 진행하는 제1 단계; 관능기 및 상기 폴리머 표면에 거칠기를 부여하는 표면개질공정을 진행하는 제2 단계; 상기 폴리머 표면에 귀금속 입자를 흡착하고 금속입자로 환원하는 촉매처리 및 활성화 공정을 진행하는 제3 단계; 및 상기 제3 단계의 결과물에 최종 금속피막층을 형성하기 위한 무전해 도금 공정을 진행하는 제4 단계를 포함하는 비전도성 폴리머 소재 표면의 금속화 방법 및 그에 의하여 제조된 폴리머 필름에 관한 것이다. The present invention relates to a metallization method of the surface of a non-conductive polymer material using a wet surface treatment technology and a polymer film prepared thereby, specifically, a first step of performing a degreasing and cleaning process to remove contaminants; A second step of performing a surface modification process for imparting roughness to the functional group and the surface of the polymer; A third step of performing a catalytic treatment and an activation process of adsorbing noble metal particles on the surface of the polymer and reducing them to metal particles; And a fourth step of performing an electroless plating process for forming the final metallization layer on the resultant of the third step, and a method of metallization of the surface of the non-conductive polymer material and the polymer film manufactured thereby.

최근, 프라즈마 이온에 의한 폴리머소재의 표면개질(Surface modification) 처리 후 스퍼터링 혹은 금속증착 등 건식표면처리기술을 이용하여 전도성 금속 접합 층을 폴리머 표면에 형성시키고, 제품조건에 따라 전기도금기술을 이용하여 금속피막층의 두께를 조절하는 방식이 개발되어 양산에 적용되고 있다. 이러한 건식표면처리기술은 관련 산업에서 요구하는 미세 회로패턴구조에 따라 회로층에 해당되는 금속피막층 두께를 기존의 방식보다 얇게 조절할 수 있는 장점이 있어 점차 그 응용범위가 늘어나고 있는 추세에 있다. 그러나 건식표면처리 후 전기도금에 의해 금속피막을 형성하는 생산방식은 고가의 진공챔버에서 폴리머표면의 개질처리 와 얇은 금속 접합층을 형성하는 금속증착공정을 수행한 후 별도의 습식도금라인에서 최종 금속피막층을 형성하는 작업을 수행하게 되어있어 일괄 연속 생산방식이 불가능한 것으로 알려져 있다. 건식표면처리기술에 의한 폴리머필름소재의 금속화 공정에서는 증착금속입자의 분균일성, 기공형성에 의한 불량 발생과 함께 생산 공정의 이원화에 의한 상대적으로 낮은 생산성과 고가의 설비투자 등 단점을 가지고 있다.Recently, after the surface modification of the polymer material by plasma ions, a conductive metal bonding layer is formed on the polymer surface by using a dry surface treatment technique such as sputtering or metal deposition, and using electroplating technique according to the product conditions. A method of controlling the thickness of the metal film layer has been developed and applied to mass production. Such dry surface treatment technology has an advantage that the thickness of the metal film layer corresponding to the circuit layer can be adjusted thinner than the conventional method according to the fine circuit pattern structure required in the related industry, and its application range is gradually increasing. However, in the production method of forming a metal film by electroplating after dry surface treatment, the metal surface is modified in an expensive vacuum chamber and the metal deposition process for forming a thin metal bonding layer is carried out in a separate wet plating line. It is known that the batch continuous production method is impossible because the work to form the coating layer is performed. In the metallization process of polymer film material by dry surface treatment technology, there are disadvantages such as uniformity of deposited metal particles, defects caused by pore formation, relatively low productivity and expensive equipment investment due to dualization of production process. .

특히, 현재 습식표면처리에 의한 폴리머 필름소재의 금속화공정은 일괄 생산방식과 함께 단순한 공정 및 설비, 높은 생산성과 균일한 금속피막층 등의 장점이 있으나, 폴리머표면의 개질처리와 금속 접합층 형성을 위한 처리공정조건이 기초소재에 따라 매우 까다롭고, 금속 접착층과 폴리머 표면과의 낮은 밀착성 등 물성특성이 응용제품 적용에 많은 문제점을 내포하고 있다. 따라서 상대적으로 균일한 금속 접합층 형성이 쉽지 않고 고가의 제조비용이 요구되는 건식표면처리기술이 폴리머필름소재의 금속화공정에 널리 사용되어지고 있는 현실이다. In particular, the metallization process of polymer film material by wet surface treatment has advantages such as simple process and equipment, high productivity and uniform metal coating layer along with batch production method, but it does not modify polymer surface and form metal bonding layer. The treatment process conditions are very demanding depending on the basic material, and the physical properties such as the low adhesion between the metal adhesive layer and the polymer surface have many problems in application. Therefore, it is a reality that dry surface treatment technology, which is relatively difficult to form a uniform metal bonding layer and requires expensive manufacturing cost, is widely used in the metallization process of polymer film materials.

이에 본 발명자는 탈지, 표면개질 공정, 귀금속 촉매에 의한 활성화 처리 및 무전해도금 공정에 의해 상기와 같은 습식표면처리기술에 의한 폴리머 필름 소재의 금속화 공정 시 발생하는 문제점을 해결할 수 있었으며, 따라서 본 발명을 완성하였다.Accordingly, the present inventors have been able to solve the problems occurring during the metallization process of the polymer film material by the wet surface treatment technique by the degreasing, surface modification process, activation treatment using a noble metal catalyst and electroless plating process. The invention has been completed.

본 발명의 하나의 목적은 습식표면처리기술을 이용한 폴리머 소재 표면의 금속화 방법을 제공하는 것이다. 즉, 탈지 및 수세 공정으로 폴리머 소재 표면의 오염원을 제거하고, 이 폴리머 표면을 일정한 혼합용액에 침지하여 개질하여 관능기 및 거칠기를 부여하고, 이에 귀금속 촉매에 의한 활성화 처리 및 무전해도금 등의 방법으로 금속화된 폴리머 필름을 하나의 공정으로 제조하는 방법을 제공하는 것이다.One object of the present invention is to provide a method for metallization of polymer material surfaces using wet surface treatment techniques. That is, the decontamination and washing process remove the contaminant on the surface of the polymer material, and the surface of the polymer is immersed in a certain mixed solution and modified to impart functional groups and roughness, which is activated by a noble metal catalyst and electroless plating. To provide a method for producing a metallized polymer film in one process.

본 발명의 다른 하나의 목적은 상기 방법에 의하여 제조된 폴리머 필름을 제공하는 것이다.Another object of the present invention is to provide a polymer film produced by the above method.

하나의 양태로서, 본 발명은 습식표면처리기술을 이용한 폴리머 소재 표면의 금속화 방법에 관한 것이다. 즉, 본 발명은 오염물질을 제거하기 위해 탈지 및 세정공정을 진행하는 제1 단계; 관능기 및 상기 폴리머 표면에 거칠기를 부여하는 표면개질공정을 진행하는 제2 단계; 상기 폴리머 표면에 귀금속 입자를 흡착하고 금속입자로 환원하는 촉매처리 및 활성화 공정을 진행하는 제3 단계; 및 상기 제3 단계의 결과물에 최종 금속피막층을 형성하기 위한 무전해 도금 공정을 진행하는 제4 단계를 포함하는 방법에 관한 것이다.In one aspect, the present invention relates to a method for metallization of polymer material surfaces using wet surface treatment techniques. That is, the present invention comprises a first step of proceeding a degreasing and cleaning process to remove contaminants; A second step of performing a surface modification process for imparting roughness to the functional group and the surface of the polymer; A third step of performing a catalytic treatment and an activation process of adsorbing noble metal particles on the surface of the polymer and reducing them to metal particles; And a fourth step of performing an electroless plating process for forming a final metallization layer on the resultant of the third step.

본 발명에 사용되는 폴리머는 폴리이미드(polyimide), 폴리에스테르계 PET(Polyethylene Terephthalate Polyester) 및 아라마이드(aramid) 필름을 포함하며, 주로 연성인쇄회로기판(Flexible Printed Circuit Board; FPCB)에 사용되는 중간소재인 연성동적층기판(Flexible copper clad Laminate; FCCL) 및 전자회로패턴(electronic circuit pattern) 제작을 위하거나 전자파간섭(Electromagnetic Interference; EMI) 차폐용으로 사용되는 필름을 말한다.Polymers used in the present invention include polyimide, polyester-based polyethylene terephthalate polyester (PET) and aramid film, and are mainly used in flexible printed circuit boards (FPCBs). It refers to a film used for the manufacture of flexible copper clad laminate (FCCL) and electronic circuit pattern, or for electromagnetic interference (EMI) shielding.

본 발명의 폴리머 소재 표면의 금속화 방법은 폴리머 필름의 단면 또는 양면에 적용될 수 있다. 또한, 본 발명의 금속화 방법은 1장의 폴리머 필름 뿐만 아니라, 두 개의 폴리머 필름을 접착(lamination)하고 금속화 시킨 후 두 겹의 필름을 분리(declamination)하여 2장의 단면 금속화 처리된 폴리머 필름을 제조할 수 있다. 또한, 본 발명의 금속화 방법은 단면 금속화 처리를 위한 폴리머 필름(예로, 폴리이미드 필름)에 다른 종류의 폴리머 필름(예로, PET)을 접착하여 표면에 금속피막을 석출한 후 다른 종류의 폴리머 필름을 제거하는 방법으로 서로 다른 종류의 폴리머 필름 표면에 금속피막층을 형성할 수 있다.The metallization method of the polymer material surface of the present invention may be applied to one or both sides of the polymer film. In addition, the metallization method of the present invention is not only one polymer film, but also two polymer films are laminated and metallized, and then two layers of film are declaminated to remove two single-sided metallized polymer films. It can manufacture. In addition, the metallization method of the present invention by adhering another polymer film (e.g. PET) to the polymer film (e.g., polyimide film) for the single-sided metallization treatment to deposit a metal film on the surface and then another polymer By removing the film, a metal coating layer may be formed on the surface of the polymer film of different types.

하나의 구체적 실시에서, 도 1에서 보는 바와 같이, 본 발명의 폴리머 소재 표면의 금속화 방법은 먼저, 피도금체인 폴리머 필름을 일정하게 공급해주는 공정(Unwinding); 탈지용액을 이용하여 피도금체의 표면에 묻은 오염물질을 제거하는 탈지(Degreasing)공정; 표면에 잔존하는 탈지용액과 오염물을 세척하는 분사식 수세공정(Rinsing); 금속 접합층 형성시 촉매역할을 하는 귀금속 금속입자 등의 흡 착을 용이하게 하는 표면개질처리 공정(Surface Modifiaction); 반응생성물 및 처리용액의 제거를 위한 초음파 수세공정; 수세수 유입에 의한 촉매 용액의 불안정성을 방지하고 개질 처리된 폴리머 표면의 pH와 전하(charge)를 조절해 주는 프리딥(Pre-dip)공정; 폴리머 표면에 귀금속 등 촉매입자를 흡착시키는 활성화처리 공정(Activation); 촉매처리 후 표면에 염의 형태로 있는 귀금속 촉매성분을 금속입자의 형태로 환원시키는 촉진시키는 가속화공정(Acceleration); 가속화 용액을 피도금체 표면에서 세척하는 수세공정; 금속 접합층을 석출시키기 위한 무전해 도금(Electroless Plating)공정; 도금된 표면의 세척을 위한 수세공정으로 이루어져 있다. 습식표면개질 및 무전해 도금을 통해 형성된 금속 접합층은 전기도금(Electrolplating)공정 혹은 추가적 무전해 도금공정을 통해 최종 금속피막 층을 형성한 후 표면에 부식방지를 위한 방청공정, 방청처리후 표면에 남아있는 방청액을 제거하기 위한 수세공정, 표면의 잔존하는 수용액을 제거하는 건조공정, 제작된 폴리머 필름을 다시 감는 공정(Rewinding)으로 구성되어 있다.In one specific embodiment, as shown in Figure 1, the metallization method of the surface of the polymer material of the present invention, first, the process (Unwinding) to constantly supply a polymer film to be plated; Degreasing process for removing contaminants on the surface of the plated body by using a degreasing solution; Spray washing to clean the degreasing solution and contaminants remaining on the surface; A surface modification process (Surface Modifiaction) for facilitating the adsorption of noble metal particles, such as a catalyst when forming a metal bonding layer; Ultrasonic washing step for removing reaction product and treatment solution; A pre-dip process for preventing instability of the catalyst solution due to water inflow and controlling pH and charge of the modified polymer surface; Activation process of adsorbing catalyst particles such as noble metal on the polymer surface; Acceleration to accelerate the reduction of the noble metal catalyst component in the form of a salt on the surface after the catalytic treatment in the form of metal particles; A washing process for washing the accelerated solution from the surface of the plated body; Electroless plating process for depositing a metal bonding layer; It consists of a washing process for cleaning the plated surface. The metal bonding layer formed through wet surface modification and electroless plating forms the final metal coating layer through electroplating or additional electroless plating, and then the surface is prevented from corrosion. It consists of a washing process to remove the remaining rust preventive solution, a drying process to remove the remaining aqueous solution on the surface, and rewinding the produced polymer film.

상기 탈지 공정은 알칼리 금속의 탄산염(Carbonate)이 10 내지 50g/ℓ, 인산염(Phosphate)이 10 내지 50g/ℓ 및 표면활성제(Surfactant)가 1 내지 3g/ℓ 혼합된 알칼리성 화합물에 30 내지 70℃에서 1 내지 5분 동안 폴리머 소재 기판을 침적한다. 상기 알칼리 금속은 나트륨(Na), 및 칼륨(K) 등이며, 상기 표면활성제는 알킬술폰산나트륨(SAS), 알킬황산에스테르나트륨(AS), 올레핀술폰산나트륨(AOS), 알킬베젠술폰산염(LAS) 등의 음이온 계면활성제, 양이온 계면활성제, 또는 중성 계면 활성제 등이 사용될 수 있다. 상기 탈지공정은 폴리머 필름 제조과정 혹은 취급과정에서 발생되어 표면에 잔류하는 부산물, 먼지 또는 오염물질 등을 제거하게 된다. 특히, 폴리머 필름 생산 공정에서 자연적으로 표면에 형성되는 극히 미세한 모세관 또는 공동(空洞)들을 막고 있는 오염물질을 제거하기 위해서는 소수성 폴리머 표면을 친수화시키는 동시에 상기 언급한 표면활성제를 첨가하여 처리용액의 표면장력을 낮추어 폴리머 필름과 처리용액의 젖음성을 향상시켜야 한다. 그러나, 종래부터 사용된 아세톤 혹은 에틸알코올 등의 탈지 용액은 폴리머 필름상의 균일한 탈지가 어렵고 물의 젖음성이 낮아질 수 있어 금속피막과 폴리머 필름소재의 접착력에 나쁜 영향을 미칠 수 있는 문제점이 있으나, 상기와 같은 알칼리성 화합물을 사용한 탈지 공정의 경우에는 이러한 문제점을 해소할 수 있다.The degreasing process is performed at 30 to 70 ° C. in an alkaline compound of 10 to 50 g / l of alkali metal carbonate, 10 to 50 g / l of phosphate, and 1 to 3 g / l of surfactant (Surfactant). The polymer material substrate is deposited for 1-5 minutes. The alkali metal is sodium (Na), potassium (K) and the like, and the surface active agent is sodium alkyl sulfonate (SAS), sodium alkyl sulfate sodium (AS), sodium olefin sulfonate (AOS), alkyl bezen sulfonate (LAS) Anionic surfactants, cationic surfactants, neutral surfactants and the like can be used. The degreasing process is generated during polymer film manufacturing or handling to remove by-products, dust or contaminants remaining on the surface. In particular, in the polymer film production process, in order to remove contaminants blocking the extremely fine capillaries or cavities formed naturally on the surface, the hydrophobic polymer surface is hydrophilized and the surface active agent mentioned above is added by adding the surface active agent mentioned above. Should be lowered to improve the wettability of the polymer film and treatment solution. However, conventionally used degreasing solutions such as acetone or ethyl alcohol have a problem that it is difficult to uniform degreasing on the polymer film and the wettability of water may be lowered, which may adversely affect the adhesion between the metal film and the polymer film material. In the case of the degreasing process using the same alkaline compound, this problem can be solved.

상기 표면개질처리공정을 위한 표면개질처리용액은 비이온수(D.I. Water) 당 알칼리금속 수산화물 3 내지 10mol, 질소화합물 50 내지 200㎖ 및 계면활성제 1 내지 5g 혼합된 용액이다. 상기 수산화물은 예를 들어, 수산화나트륨(NaOH), 수산화칼륨(KOH) 등이 있다. 상기 질소화합물은 암모늄염 또는 아민화합물 등을 포함한다. 암모늄염은 예를 들어, 수산화암모늄, 염화암모늄, 황산암모늄, 탄산암모늄 또는 트리에틸암모늄염, 테트라에틸암모늄염, 트리메틸암모늄염, 테트라메틸암모늄염, 트리플루오르암모늄염, 테트라플루오르암모늄염 등의 알킬기나 아릴기가 치환된 암모늄염 등이다. 아민화합물은 예를 들어, 메틸아민, 에틸아민, 디메틸아민, 디에틸아민, 트리메틸아민, 에틸렌디아민, 디에틸렌트리아민 등의 지방족 아민화합 물, 또는 우레아 및 히드라진 유도체 등이다. 상기 계면활성제는 알킬술폰산나트륨(SAS), 알킬황산에스테르나트륨(AS), 올레핀술폰산나트륨(AOS), 알킬베젠술폰산염(LAS) 등의 음이온 계면활성제, 양이온 계면활성제, 또는 중성 계면활성제 등을 사용할 수 있다. 20 내지 50℃에서 약 2 내지 6분 동안 상기 표면개질 처리용액에 폴리머 필름을 침적하여 표면개질 처리를 한다. The surface modification treatment solution for the surface modification treatment process is a mixed solution of 3 to 10 mol of alkali metal hydroxide, 50 to 200 ml of nitrogen compound and 1 to 5 g of surfactant per D.I.Water. The hydroxide is, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH) and the like. The nitrogen compound includes an ammonium salt or an amine compound. The ammonium salt is, for example, ammonium salt substituted with an alkyl group or an aryl group, such as ammonium hydroxide, ammonium chloride, ammonium sulfate, ammonium carbonate or triethylammonium salt, tetraethylammonium salt, trimethylammonium salt, tetramethylammonium salt, trifluoroammonium salt, tetrafluoroammonium salt, or the like. to be. The amine compound is, for example, an aliphatic amine compound such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, ethylenediamine, diethylenetriamine, or urea and hydrazine derivatives. The surfactant may be anionic surfactants such as sodium alkyl sulfonate (SAS), sodium sodium sulfate ester (AS), sodium olefin sulfonate (AOS), alkyl bezen sulfonate (LAS), cationic surfactants, or neutral surfactants. Can be. Surface modification treatment is performed by depositing a polymer film in the surface modification treatment solution at 20 to 50 ° C. for about 2 to 6 minutes.

표면개질처리공정을 통하여 소수성 폴리머 필름 표면을 친수성으로 전환하는 동시에 카르복실기, 아민기, 하이드록실기 등의 관능기(Functional groups)를 폴리머 필름 표면에 도입하여 금속이온의 흡착을 용이하게 하고, 동시에 폴리머 필름 표면에 미세한 공동을 형성시켜 표면 거칠기(roughness)를 높여 석출된 금속피막이 폴리머 표면과의 밀착력을 향상시키게 된다. Through the surface modification process, the hydrophobic polymer film surface is converted to hydrophilic, and functional groups such as carboxyl group, amine group and hydroxyl group are introduced to the polymer film surface to facilitate the adsorption of metal ions and at the same time. By forming a fine cavity on the surface to increase the surface roughness (roughness), the deposited metal film is to improve the adhesion to the polymer surface.

상기 수세공정은 표면에 잔존하는 처리용액 및 부유물을 제거하는 역할을 하며, 세정효과를 높이기 위해 수세수를 분사하거나, 수세수 분사와 동시에 초음파 혹은 진동 교반을 하는 것이 바람직하다. 수세수에 존재하는 불순물 및 부유입자는 필터 및 이온교환수지를 통해 연속적으로 걸러주게 된다. The washing process serves to remove the remaining treatment solution and suspended matter on the surface, it is preferable to spray the washing water or ultrasonic or vibration stirring at the same time as the washing water to increase the cleaning effect. Impurities and suspended particles present in the wash water are continuously filtered through a filter and an ion exchange resin.

상기 표면 활성화 공정은 Pd, Pt, Ro, Rh, Ag, Au 등의 귀금속을 함유한 콜로이드 용액 또는 귀금속 착이온 등을 사용할 수 있으며, 바람직하게는 Pd-Sn 콜로이드 용액, Ag 또는 Pd 착염을 사용할 수 있다. 구체적 실시에서, 상기 콜로이드 용액은 비이온수(D.I. Water) 1리터 당 염산 100 내지 250㎖, 염화나트륨 혹은 염 화칼륨 150 내지 300g, 염화주석(SnCl2) 5 내지 60g, 염화팔라듐(PdCl2) 0.1 내지 2g 포함된 용액을 사용하며, 처리조건은 상온에서 1 내지 5분이다. The surface activation process may use a colloidal solution containing a noble metal such as Pd, Pt, Ro, Rh, Ag, Au, or a noble metal complex ion, preferably Pd-Sn colloidal solution, Ag or Pd complex salt have. In a specific embodiment, the colloidal solution is 100 to 250 ml of hydrochloric acid per liter of non-ionic water (DI Water), 150 to 300 g of sodium chloride or potassium chloride, 5 to 60 g of tin chloride (SnCl 2 ), and 0.1 to palladium chloride (PdCl 2 ). The solution containing 2g is used, and the treatment conditions are 1 to 5 minutes at room temperature.

상기 표면 활성화 공정 이전에 사전침적(pre-dip)공정으로 수세수의 유입을 방지하고 귀금속 촉매의 안정성을 부여하며, pH 및 표면전하를 조절하며 촉매입자의 흡착 효율을 상승시킬 수 있다. 처리용액의 조성은 비이온수 1리터당 200 내지 400g의 염산, 및 염화나트륨 또는 염화칼륨의 화합물을 포함하며, 처리조건은 상온에서 1 내지 5분이다.Before the surface activation process, the pre-dip process prevents the inflow of water and imparts stability of the noble metal catalyst, adjusts pH and surface charge, and increases the adsorption efficiency of the catalyst particles. The composition of the treatment solution contains 200 to 400 g of hydrochloric acid and a compound of sodium chloride or potassium chloride per liter of non-ionized water, and the treatment conditions are 1 to 5 minutes at room temperature.

상기 가속화 공정은 촉매처리공정 후 흡착된 Pd-Sn 콜로이드 등의 활성도와 무전해 도금용액의 석출거동을 향상시키기 위함이다. 이러한 가속화 공정을 통해 콜로이드입자를 둘러싸고 있는 Sn층을 제거하고 흡착된 Pd 촉매만이 남게 되어 무전해 금속피막의 석출이 더욱 용이하게 된다. 구체적 실시에서, 상기 가속화 공정을 위한 용액으로 비이온수 1리터당 50 내지 150 ㎖의 불산염이 포함된 용액을 사용할 수 있으며, 상온에서 1 내지 3분을 침적하여 처리한다.The acceleration process is to improve the activity of the adsorbed Pd-Sn colloid and the like after the catalyst treatment process and the precipitation behavior of the electroless plating solution. Through this acceleration process, the Sn layer surrounding the colloidal particles is removed and only the adsorbed Pd catalyst remains, thereby making it easier to deposit the electroless metal film. In a specific implementation, a solution containing 50 to 150 ml of fluorate per liter of non-ionized water may be used as a solution for the acceleration process, and treated by depositing 1 to 3 minutes at room temperature.

상기 무전해 도금 공정은 동, 니켈, 팔라디윰, 금 또는 그들의 합금 등을 사용하여 밀착력이 우수한 금속피막 층을 형성시킨다. 무전해 도금용액은 내부응력이 낮고 석출특성이 우수한 상용 제품을 사용 할 수 있다.The electroless plating process uses copper, nickel, palladium, gold or alloys thereof to form a metal film layer having excellent adhesion. The electroless plating solution can use commercial products with low internal stress and excellent precipitation characteristics.

무전해 도금피막 층을 형성시킨 후 상기 수세공정과 동일하게 무전해 도금피막층의 표면 세정 후, 필요에 따라 추가적으로 건조공정을 할 수 있다. 상기 건조 공정은 열풍, 자외선(UV) 조사 또는 적외선(IR) 조사 등에 의해 이루어질 수 있다.After the electroless plated coating layer is formed, the surface of the electroless plated coating layer may be cleaned in the same manner as the above washing step, and further drying may be performed if necessary. The drying process may be performed by hot air, ultraviolet (UV) radiation or infrared (IR) radiation.

무전해 도금공정 이후 최종 금속피막 층을 형성하기 위해 전기동도금 공정을 추가로 수행할 수 있다. 전기동도금 공정에서 접착력 향상을 위해 낮은 내부응력을 가진 구리 전해질을 사용할 수 있다. 초기 전기동도금은 1A/dm2 이하, 바람직하게는 0.1 내지 0.6A/dm2 에서 수행한다.After the electroless plating process, an electroplating process may be further performed to form the final metallization layer. Copper electroplating with low internal stress can be used to improve adhesion in the electroplating process. Initial electroplating is carried out at 1 A / dm 2 or less, preferably 0.1 to 0.6 A / dm 2 .

전기동도금 공정 이후 상기와 동일한 수세 및 건조공정을 수행할 수 있다. 또한 동 도금 표면의 부식방치처리가 요구되는 경우 전기동도금 공정 후 방청처리를 수행하고 수세 및 건조공정을 수행할 수 있다. After the electroplating process, the same washing and drying process as described above may be performed. In addition, when the anti-corrosion treatment of the copper plating surface is required, the anti-rust treatment after the electroplating process may be performed, and washing and drying may be performed.

상기 방법에 의하여 본 발명자는 일관된 하나의 공정으로 폴리머 소재 표면에 금속피막층을 형성할 수 있었고, 종래 문제시 되었던 균일한 금속 접합층 형성의 문제점을 해결할 수 있었다.By the above method, the present inventors were able to form a metal coating layer on the surface of the polymer material in one consistent process, and solved the problem of forming a uniform metal bonding layer, which had been a problem in the past.

다른 하나의 양태로서, 본 발명은 상기 방법에 의하여 제조된 폴리머 필름에 관한 것이다. In another aspect, the present invention relates to a polymer film produced by the above method.

본 발명의 비전도성 폴리머 소재 표면의 상기 금속화 방법에 의하여 제조된 폴리머 필름은 균일한 금속 접합층이 폴리머 소재 표면에 형성되어 있어 연성인쇄회로기판(Flexible Printed Circuit Board; FPCB)에 사용되는 중간소재인 연성동적층기판(Flexible copper clad Laminate; FCCL) 및 전자회로패턴(electronic circuit pattern) 제작을 위한 필름 또는 전자파간섭(Electromagnetic Interference; EMI) 차폐용 필름으로 사용할 수 잇다.The polymer film produced by the metallization method of the surface of the non-conductive polymer material of the present invention is an intermediate material that is used in a flexible printed circuit board (FPCB) because a uniform metal bonding layer is formed on the polymer material surface. It can be used as a film for manufacturing a flexible copper clad laminate (FCCL) and an electronic circuit pattern or a film for shielding electromagnetic interference (EMI).

이하, 실시예를 들어 본 발명을 보다 상세히 설명한다. 하기 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로서 본 발명을 이에 제한하고자 함이 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are only intended to illustrate the present invention in more detail and are not intended to limit the present invention thereto.

실시예Example 1 : 폴리이미드 필름 표면에  1: on the surface of polyimide film 무전해Electroless 니켈 도금  Nickel plating 피막층Film layer 형성 formation

본 발명의 제조 방법에 따라 폴리이미드(Polyimide) 필름 표면에 무전해 니켈도금 피막을 형성하였다. 활성화처리 촉매용액은 비이온수(D.I. Water) 1리터 당 염산 100 내지 250㎖, 염화나트륨 혹은 염화칼륨 150 내지 300g, 염화주석(SnCl2) 5 내지 60g, 염화팔라듐(PdCl2) 0.1 내지 2g이 포함된 용액을 사용하였으며, 황산니켈 20 내지 30 g/ℓ, 차인산나트륨 20 내지 25 g/ℓ, 아디픽산, 락틱산 및 아세트산이 혼합된 착화제 20 내지 30g/ℓ, 안정제 1 내지 5mg/ℓ가 혼합된 무 전해니켈도금용액을 사용하였다. 이에 따라 제조된 폴리이미드 필름 표면의 무전해 니켈 도금피막층을 전자현미경으로 관찰하고, 이를 도 2에 나타내었다.According to the production method of the present invention, an electroless nickel plated film was formed on the surface of the polyimide film. The activated catalyst solution is a solution containing 100 to 250 ml of hydrochloric acid, 150 to 300 g of sodium chloride or potassium chloride, 5 to 60 g of tin chloride (SnCl 2 ), and 0.1 to 2 g of palladium chloride (PdCl 2 ) per liter of DI water. Nickel sulfate 20-30 g / l, sodium hypophosphite 20-25 g / l, adipic acid, lactic acid and acetic acid mixed complexing agent 20-30 g / l, stabilizer 1-5 mg / l An electroless nickel plating solution was used. The electroless nickel plated coating layer on the surface of the polyimide film thus prepared was observed with an electron microscope, which is shown in FIG. 2.

실시예Example 2 : 폴리이미드 필름 표면에  2: on the surface of polyimide film 무전해Electroless 동도금Copper plating 피막층Film layer 형성 formation

본 발명의 제조 방법에 따라 폴리이미드(Polyimide) 필름 표면에 무전해 동도금 피막을 형성하였다. 사용된 표면개질처리용액 및 활성화 처리 촉매 용액은 상기와 같으며, 사용된 무전해 동도금은 황산구리 10 내지 15 g/ℓ, 롯셀염 50 내지 60 g/ℓ, 수산화나트륨 10 내지 15 g/ℓ, 환원제로서 포르말린 용액 20 내지 30 ㎖/ℓ, 첨가제 5 내지 10mg/ℓ로 구성된 용액을 사용하였다. 이에 따라 제조된 폴리이미드 필름 표면의 무전해 동도금층을 전자현미경으로 관찰하고, 이를 도 3에 나타내었다According to the production method of the present invention, an electroless copper plating film was formed on the surface of the polyimide film. The surface modification solution and the activated catalyst solution used were as described above, and the electroless copper plating used was copper sulfate 10-15 g / l, lotel salt 50-60 g / l, sodium hydroxide 10-15 g / l, reducing agent As a solution, a solution consisting of 20 to 30 ml / l of formalin solution and 5 to 10 mg / l of additive was used. The electroless copper plating layer on the surface of the polyimide film thus prepared was observed with an electron microscope, which is shown in FIG. 3.

실시예Example 3 :  3: PETPET 필름 표면에  On the film surface 무전해Electroless 니켈  nickel 도금층Plating layer 형성 formation

실시예 1과 동일한 방법으로 PET 필름 표면에 무전해 니켈 도금층을 형성하였다. 이에 따라 제조된 PET 필름 표면의 무전해 니켈 도금피막층을 전자현미경으로 관찰하고, 이를 도 4에 나타내었다.An electroless nickel plating layer was formed on the PET film surface in the same manner as in Example 1. The electroless nickel plated coating layer on the surface of the PET film thus prepared was observed with an electron microscope, which is shown in FIG. 4.

실시예Example 4 :  4 : PETPET 필름 표면에  On the film surface 무전해Electroless  copper 도금층Plating layer 형성 formation

실시예 2와 동일한 방법으로 PET 필름 표면에 무전해 동 도금층을 형성하였다. 이에 따라 제조된 PET 필름 표면의 무전해 동 도금피막 층을 전자현미경으로 관찰하고, 이를 도 5에 나타내었다.An electroless copper plating layer was formed on the PET film surface in the same manner as in Example 2. The electroless copper plating layer on the surface of the PET film thus prepared was observed with an electron microscope, which is shown in FIG. 5.

실시예5Example 5 : 폴리이미드 필름 표면에  : On polyimide film surface 동드금Copper 형성 formation

실시예 1과 동일한 방법으로 폴리이미드 필름 표면에 접합층으로 약 150nm 두께의 무전해 니켈도금층을 형성시킨 후, 전기 동도금으로 약 18㎛의 동층을 형성하였다. 이때 사용된 전기 동도금의 조성은 황산니켈 80 내지 120 g/ℓ, 황산 200 내지 250g/ℓ, 염산 40 내지 60㎖/ℓ, 첨가제 5 내지 10ppm 이었다. 전기 동도금공정시 초기 전류밀도는 약 0.1 내지 0.6A/dm2로 조정하여야 하고, 표면에 얇은 동층이 형성되어 표면 저항이 낮아지게 되면 최대 8 내지 9A/dm2에서 작업을 수행하였다. 그 이상의 전류밀도에서 작업을 하면 저항 열 발생에 의해 필름이 타는 현상이 발생하게 된다. 이에 따라 제조된 폴리이미드 필름 표면의 전기 동도금 피막을 전자현미경으로 관찰하고, 이를 도 6에 나타내었다.In the same manner as in Example 1, an electroless nickel plated layer having a thickness of about 150 nm was formed on the surface of the polyimide film as a bonding layer, and then a copper layer having a thickness of about 18 μm was formed by electroplating. The composition of the electroplating used was nickel sulfate 80 to 120 g / l, sulfuric acid 200 to 250 g / l, hydrochloric acid 40 to 60 ml / l, additives 5 to 10 ppm. The initial current density during the electrocopper plating process should be adjusted to about 0.1 to 0.6 A / dm 2 , and when a thin copper layer was formed on the surface to lower the surface resistance, work was performed at a maximum of 8 to 9 A / dm 2 . When working at a current density higher than that, the film burns due to resistance heat generation. The electroplated film on the surface of the polyimide film thus prepared was observed with an electron microscope, which is shown in FIG. 6.

상기한 바와 같이, 본 발명의 비전도성 폴리머 필름의 표면에 금속피막 형성 방법은 연성인쇄회로기판의 중간 소재 및 금속회로패턴 또는 전자파간섭 차폐용 기초 소재로 사용하는 양면 또는 단면의 각종 금속화된 폴리머필름을 하나의 공정으로 일관되게 효율적으로 제조할 수 있으며, 높은 생산성과 저렴한 설비비로 폴리머 필름 소재의 금속화가 요구되는 다양한 제품을 생산할 수 있다.As described above, the method of forming a metal film on the surface of the non-conductive polymer film of the present invention is a metal material of various surfaces of both sides or cross-section, which is used as an intermediate material of a flexible printed circuit board and a base material for shielding electromagnetic interference or metal circuit patterns. Films can be produced consistently and efficiently in one process and can produce a variety of products requiring metallization of polymer film materials with high productivity and low equipment cost.

Claims (6)

오염물질을 제거하기 위해 탈지 및 세정공정을 진행하는 제1 단계; 관능기 및 상기 폴리머 표면에 거칠기를 부여하는 표면개질공정을 진행하는 제2 단계; 상기 폴리머 표면에 귀금속 입자를 흡착하고 금속입자로 환원하는 촉매처리 및 활성화 공정을 진행하는 제3 단계; 및 최종 금속피막층을 형성하기 위한 무전해 도금 공정을 진행하는 제4 단계를 포함하는 비전도성 폴리머 소재 표면의 금속화 방법.A first step of degreasing and washing to remove contaminants; A second step of performing a surface modification process for imparting roughness to the functional group and the surface of the polymer; A third step of performing a catalytic treatment and an activation process of adsorbing noble metal particles on the surface of the polymer and reducing them to metal particles; And a fourth step of performing an electroless plating process to form a final metallization layer. 제1항에 있어서, 제4 단계 이후에 전기 도금 공정을 진행하는 제5 단계를 추가로 포함하는 방법.The method of claim 1, further comprising a fifth step of undergoing the electroplating process after the fourth step. 제1항 또는 제2항에 있어서, 제2 단계의 표면개질처리용액이 알칼리금속 수산화물 3 내지 10mol, 질소화합물 50 내지 200㎖ 및 계면활성제 1 내지 5g 포함된 것인 방법. The method according to claim 1 or 2, wherein the surface modification treatment solution of the second step comprises 3 to 10 mol of alkali metal hydroxide, 50 to 200 ml of nitrogen compound and 1 to 5 g of surfactant. 제1항 또는 제2항에 있어서, 제3 단계의 활성화처리용액이 Pd-Sn 콜로이드 용액, Ag 착염 또는 Pd 착염을 포함하고 있는 용액인 방법.The method according to claim 1 or 2, wherein the activation treatment solution of the third step is a solution containing a Pd-Sn colloidal solution, Ag complex salt or Pd complex salt. 제2항에 있어서, 전기 도금 공정의 초기 전기도금공정시 전류밀도가 0.1 내지 0.6A/dm2인 방법.The method of claim 2, wherein the current density in the initial electroplating process of the electroplating process is 0.1 to 0.6 A / dm 2 . 제1항 또는 제2항의 방법에 의하여 제조된 폴리머 기판.A polymer substrate produced by the method of claim 1.
KR1020060096242A 2006-09-29 2006-09-29 Metallization process of non-conductive polymer substrates using wet surface treatment technology KR101298746B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060096242A KR101298746B1 (en) 2006-09-29 2006-09-29 Metallization process of non-conductive polymer substrates using wet surface treatment technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060096242A KR101298746B1 (en) 2006-09-29 2006-09-29 Metallization process of non-conductive polymer substrates using wet surface treatment technology

Publications (2)

Publication Number Publication Date
KR20080030314A true KR20080030314A (en) 2008-04-04
KR101298746B1 KR101298746B1 (en) 2013-08-21

Family

ID=39532480

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060096242A KR101298746B1 (en) 2006-09-29 2006-09-29 Metallization process of non-conductive polymer substrates using wet surface treatment technology

Country Status (1)

Country Link
KR (1) KR101298746B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396919B1 (en) * 2012-12-13 2014-05-19 한국생산기술연구원 Method of improving adhesion between polymer film and metal layer
EP3276420A1 (en) * 2016-07-29 2018-01-31 Rohm and Haas Electronic Materials LLC Method for plating on the surface of non-conductive substrate
KR20180053217A (en) * 2017-07-10 2018-05-21 김기형 Method for manufacturing minute pipe and minute pipe manufactured by this method
KR20200099722A (en) * 2019-02-15 2020-08-25 켄스코 주식회사 Palladium plating method on polymer film
WO2020256220A1 (en) * 2019-06-19 2020-12-24 대영엔지니어링 주식회사 Method for wet surface treating non-conductive plastic
WO2020256219A1 (en) * 2019-06-19 2020-12-24 대영엔지니어링 주식회사 Plating method for improving surface characteristics of non-conductive plastic

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317153A (en) * 1997-05-14 1998-12-02 Taiyo Ink Mfg Ltd Photosetting primer composition for electroless plating and electroless plating method using the same
JP2001323383A (en) 2000-05-12 2001-11-22 Okuno Chem Ind Co Ltd Method for imparting catalyst for electroless plating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396919B1 (en) * 2012-12-13 2014-05-19 한국생산기술연구원 Method of improving adhesion between polymer film and metal layer
WO2014092335A1 (en) * 2012-12-13 2014-06-19 한국생산기술연구원 Method for improving adhesion between polymer film and metal layer
EP3276420A1 (en) * 2016-07-29 2018-01-31 Rohm and Haas Electronic Materials LLC Method for plating on the surface of non-conductive substrate
KR20180053217A (en) * 2017-07-10 2018-05-21 김기형 Method for manufacturing minute pipe and minute pipe manufactured by this method
KR20200099722A (en) * 2019-02-15 2020-08-25 켄스코 주식회사 Palladium plating method on polymer film
WO2020256220A1 (en) * 2019-06-19 2020-12-24 대영엔지니어링 주식회사 Method for wet surface treating non-conductive plastic
WO2020256219A1 (en) * 2019-06-19 2020-12-24 대영엔지니어링 주식회사 Plating method for improving surface characteristics of non-conductive plastic
KR20200144716A (en) * 2019-06-19 2020-12-30 대영엔지니어링 주식회사 Wet surface treatment method of nonconductive plastic
KR20200144715A (en) * 2019-06-19 2020-12-30 대영엔지니어링 주식회사 Plating method for improving surface properties of nonconductive plastic

Also Published As

Publication number Publication date
KR101298746B1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
TWI526573B (en) Stable catalysts for electroless metallization
JP6234429B2 (en) Method for promoting adhesion between a dielectric substrate and a metal layer
KR101298746B1 (en) Metallization process of non-conductive polymer substrates using wet surface treatment technology
TWI629374B (en) Method of electroless plating
JP6195857B2 (en) Method for metallizing non-conductive plastic surface
KR20140010262A (en) Insulating base material plated with metal layer, plating method thereof, and transparent electrode using the same
JP5269306B2 (en) Dielectric metallization
KR20190039853A (en) Stable electroless copper plating compositions and methods for electroless plating copper on substrates
JP2009530502A (en) Polyimide substrate and method for producing printed circuit board using the same
JP2003064480A (en) Method for forming copper-resin composite material
JP6150822B2 (en) Method for metallizing non-conductive plastic surface
TWI617700B (en) Method of electroless plating
JP6814845B2 (en) Electroless Copper Plating Compositions and Methods for Electrolessly Plating Copper on Substrates
JP6268379B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JPS636628B2 (en)
TWI614372B (en) Method of electroless plating
KR20190039852A (en) Stable electroless copper plating compositions and methods for electroless plating copper on substrates
JP4646376B2 (en) Accelerator bath solution for direct plating and direct plating method
KR100831760B1 (en) RFID circuit substrates using wet surface treatment and electroless plating treatment
JP6081200B2 (en) Plating catalyst and method
WO2012157135A1 (en) Method for manufacturing molded circuit board
KR102232079B1 (en) Plating method for improving surface properties of nonconductive plastic
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JPS59500870A (en) Non-conductive substrate activated catalyst solution and electroless plating method
TWI780602B (en) Solution and process for the activation of nonconductive area for electroless process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 6