KR20080026338A - Optical source of optical coherence tomography - Google Patents

Optical source of optical coherence tomography Download PDF

Info

Publication number
KR20080026338A
KR20080026338A KR1020060091241A KR20060091241A KR20080026338A KR 20080026338 A KR20080026338 A KR 20080026338A KR 1020060091241 A KR1020060091241 A KR 1020060091241A KR 20060091241 A KR20060091241 A KR 20060091241A KR 20080026338 A KR20080026338 A KR 20080026338A
Authority
KR
South Korea
Prior art keywords
light
optical fiber
diffraction grating
optical
collimator
Prior art date
Application number
KR1020060091241A
Other languages
Korean (ko)
Inventor
김법민
이상원
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020060091241A priority Critical patent/KR20080026338A/en
Publication of KR20080026338A publication Critical patent/KR20080026338A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An optical source of an optical coherence tomography is provided to improve depth direction resolution in the optical coherence tomography by widening a wavelength variable region and a full width half maximum and have a rapid image obtaining speed through a rapid wavelength conversion speed by using a galvanometer. A semiconductor optical amplifier(300) generates broadband light. A polarizing controller(310) controls polarization of the light by receiving the broadband light from the semiconductor optical amplifier. A single mode optical fiber distributor(320) distributes a ratio of light amount in a diffraction grating direction and an output stage direction by receiving the polarization-controlled light from the polarizing controller. A first optical fiber-collimator(330) impinges the light distributed by the single mode optical fiber distributor as uniform parallel light to a diffraction grating. The diffraction grating(340) diffracts the light impinged from the first optical fiber-collimator. A galvanometer coupled mirror(350) reflects first diffraction light, impinged by being diffracted from the diffraction grating, to the diffraction grating. A second optical fiber-collimator(360) impinges the light distributed by the single mode optical fiber distributor to the output stage as uniform-size parallel light. Optical fibers(370) are passages to transmit the light by being positioned between broadband wavelength conversion light source devices.

Description

광간섭 단층촬용기용 광대역 파장 변환 광원{Optical Source Of Optical Coherence Tomography}Optical wavelength of optical coherence tomography

도 1은 종래의 광간섭 단층촬영기의 대략적인 구성을 나타낸 블록도이다.1 is a block diagram showing a schematic configuration of a conventional optical coherence tomography apparatus.

도 2는 도 1에서의 광원부(110)와 광반사부(130)에서의 동작에 대해 좀 더 상세히 설명하기 위한 설명도이다FIG. 2 is an explanatory diagram for explaining the operation of the light source unit 110 and the light reflection unit 130 in FIG. 1 in more detail.

도 3은 본 발명의 바람직한 일실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 간략한 구성을 나타내는 설명도이다.3 is an explanatory diagram showing a brief configuration of a broadband wavelength conversion light source for an optical coherence tomography apparatus according to a preferred embodiment of the present invention.

도 4는 본 발명의 바람직한 일실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 파장과 디비엠(dBm) 과의 관계를 나타내는 그래프이다4 is a graph showing the relationship between the wavelength of the broadband wavelength conversion light source for optical coherence tomography according to an embodiment of the present invention and the dBm (dBm)

도 5는 본 발명의 바람직한 일실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 시간과 빛의 세기와의 관계를 나타내는 그래프이다.5 is a graph showing a relationship between time and light intensity of a broadband wavelength conversion light source for an optical coherence tomography apparatus according to an exemplary embodiment of the present invention.

<도면의 주요 부호에 대한 설명><Description of Major Symbols in Drawing>

110: 광원부 120: 측정부110: light source unit 120: measuring unit

130: 광반사부 140: 검출부130: light reflection unit 140: detection unit

150: 전처리 증폭부 160: 필터부150: preprocessing amplifier 160: filter

170: 복조기 180: A/D변환부170: demodulator 180: A / D converter

190: 영상표시부 200: 다이오드 레이저 190: image display unit 200: diode laser

210: 콜리메이터 230,340: 회절격자210: collimator 230,340: diffraction grating

240: PZT결합거울 300: 반도체 광증폭기240: PZT coupling mirror 300: semiconductor optical amplifier

310: 편광조절기 320: 단일모드 광섬유분배기310: polarization controller 320: single mode fiber splitter

330: 제 1광섬유-콜리메이터 350: 갈바노미터결합거울330: first optical fiber-collimator 350: galvanometer combined mirror

360: 제 2광섬유-콜리메이터 370: 광섬유360: second optical fiber-collimator 370: optical fiber

본 발명은 광간섭 단층촬영기에 사용되는 광대역 파장 변환 광원으로서, 상세히는 빠른 속도의 광대역 파장 변환을 갖는 파장 가변 광원에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wideband wavelength converting light source for use in an optical coherence tomography, and more particularly, to a tunable light source having a fast broadband wavelength converting.

광간섭 단층촬영기(OPT:Optical Coherence Tomography)는 실시간으로 살아 있는 조직 또는 세포를 고해상도로 촬영하는 장치로서, 광원을 사용하여 생체의 내부를 비접촉, 비침습적으로 관찰할 수 있을 뿐만 아니라 부드러운 조직간의 차이를 구분 해낼 수 있어 보다 정밀한 영상을 얻을 수 있다.Optical Coherence Tomography (OPT) is a device that captures live tissues or cells in high resolution in real time, and allows the non-contact and non-invasive observation of the inside of a living body using a light source, as well as the difference between soft tissues. Can be classified to obtain a more precise image.

도 1은 종래의 광간섭 단층촬영기의 대략적인 구성을 나타낸 블록도로서, 광원부(110), 측정부(120), 광반사부(130), 검출부(140), 전처리 증폭부(150), 필터부(160), 복조기(1700, A/D변환부(180), 영상표시부(190)로 구성된다. 1 is a block diagram showing a general configuration of a conventional optical coherence tomography apparatus, which includes a light source unit 110, a measurement unit 120, a light reflection unit 130, a detection unit 140, a preprocessing amplifier 150, and a filter. The unit 160 includes a demodulator 1700, an A / D converter 180, and an image display unit 190.

광원부(110)는 측정부(120)와 광반사부(130)로 광을 입사시키고, 광반사부(130)에서 보내진 특정파장의 광을 받아 증폭 시킨 후 출력단이 측정부(120)로 입사시킨다.The light source unit 110 enters light into the measuring unit 120 and the light reflecting unit 130, receives and amplifies light of a specific wavelength sent from the light reflecting unit 130, and then outputs the light to the measuring unit 120. .

측정부(120)는 원하는 영상을 얻을 측정부분으로서 일반적으로 집속렌즈를 통하여 모니터링할 부분에 광을 제공한다. 제공된 광이 측정부분에 반사되어 돌아 오면 이를 검출부(140)로 입사시킨다.The measuring unit 120 provides light to a portion to be monitored through a focusing lens as a measuring portion to obtain a desired image. When the provided light is reflected back to the measurement part, the light is incident to the detector 140.

광반사부(130)는 주기적으로 움직이는 거울에 의해 수신받은 광을 반사하여 광원부(110)로 반사된 특정파장의 광을 입사시킨다. 이때 거울의 움직임에 의해 특정 파장의 광만이 광원부(110)로 입사되고 나머지 빛은 검출부(140)로 보내진다.The light reflection unit 130 reflects the light received by the periodically moving mirror to incident light of a specific wavelength reflected by the light source unit 110. At this time, only light having a specific wavelength is incident to the light source unit 110 by the movement of the mirror, and the remaining light is sent to the detector 140.

검출부(140)는 측정부(120)로 부터 받고 광반사부(130)로부터 받은 시간에 따라 변하는 간섭신호를 검출하여 전처리증폭부(150)로 송신한다. The detector 140 detects the interference signal received from the measurement unit 120 and changes according to the time received from the light reflection unit 130 and transmits the interference signal to the preprocessing amplifier 150.

전처리증폭부(150)는 검출부(140)에서 수신받은 간섭신호를 증폭하여 필터부(160)로 송신한다.The preprocessing amplifier 150 amplifies the interference signal received from the detector 140 and transmits the amplified signal to the filter unit 160.

필터부(160)는 전처리증폭부(150)에서 증폭된 신호를 수신받아 필요한 영역의 신호만을 복조기(170)로 송신한다.The filter unit 160 receives the signal amplified by the preprocessing amplifier 150 and transmits only the signal of the required region to the demodulator 170.

복조기(170)는 필터부(160)로 부터 수신받은 신호를 복조화하여 A/D변환부(180)으로 송신한다.The demodulator 170 demodulates the signal received from the filter unit 160 and transmits the demodulated signal to the A / D converter 180.

A/D변환부(180)는 복조기(170)로 부터 수신받은 아날로그 신호를 디지털 신호로 변환하여 영상표시부(190)로 송신한다.The A / D converter 180 converts the analog signal received from the demodulator 170 into a digital signal and transmits the analog signal to the image display unit 190.

영상표시부(190)는 측정하고자 하는 부위의 영상을 표시해주는 곳으로, 광간섭 단층촬영기는 실시간으로 살아 있는 조직 또는 세포를 나타낼 수 있다.The image display unit 190 displays an image of a portion to be measured, and the optical coherence tomography apparatus may display living tissue or cells in real time.

도 2는 도 1에서의 광원부(110)와 광반사부(130)에서의 동작에 대해 좀 더 상세히 설명하기 위한 설명도로서, 다이오드 레이저(200), 콜리메이터(210), 회절 격자(230), PZT결합거울(240)로 구성된다.FIG. 2 is an explanatory diagram for describing the operation of the light source unit 110 and the light reflection unit 130 in FIG. 1 in more detail. The diode laser 200, the collimator 210, the diffraction grating 230, It consists of a PZT coupling mirror 240.

다이오드 레이저(200)는 순방향 반도체 접합을 이용하여 레이저를 발생하게 하는 다이오드로서, 광원부(110)의 역할을 한다. 다이오드 레이저(200)에서 나온 광은 콜리메이터(210)으로 입사된다. 또한 PZT결합거울(240)에서 반사되어 회절격자(200)에 입사되어 회절격자(200)에 의해 반사된 특정파장의 빛을 받아 증폭시킨 후 출력단인 측정부(120)로 입사시킨다. The diode laser 200 is a diode that generates a laser by using a forward semiconductor junction, and serves as the light source unit 110. Light from the diode laser 200 is incident on the collimator 210. In addition, the light is reflected by the PZT coupling mirror 240 and incident on the diffraction grating 200 to receive and amplify the light of the specific wavelength reflected by the diffraction grating 200 and then enter the measuring unit 120.

콜리메이터(210)는 다이오드 레이저(200) 다이오드 레이저(200)에서 나온 퍼지는 광을 평행하게 회절격자(230)으로 입사시킨다. The collimator 210 injects the diffused light emitted from the diode laser 200 and the diode laser 200 into the diffraction grating 230 in parallel.

회절격자(230)는 회절과 간섭을 이용하여 빛의 스펙트럼을 얻기 위한 것으로, 가는 슬릿을 몇 가닥 늘어놓은 것과 같으며, 이것에 평행광선을 비추면 선이 그어져 있지 않은 회절발 부위에서 일제히 여러 각도로 회절된 빛이 나온다. 이에 회절격자(230)는 콜리메이터(210)에 의해 입사된 평행한 빛을 회절시킨다. The diffraction grating 230 is for obtaining a spectrum of light by using diffraction and interference, which is like arranging a few thin slits. The diffracted light comes out. The diffraction grating 230 diffracts the parallel light incident by the collimator 210.

PZT(Piezo electric)결합거울(240)은 회절격자(230)에서 회절된 빛 중 1차 회절 빛을 받아 다시 반사시킨다. 회절격자(230)에서 회절된 1차회절 빛, 즉 PZT결합거울(240) 면에 수직으로 입사되는 특정 파장의 빛이 회절격자(200)에 의해 반사되고 다시 회절격자(200)가 그 특정 파장의 빛을 반사하여 다이오드 레이저(200)로 입사시킨다.Piezo electric (PZT) coupling mirror 240 receives the first diffracted light of the light diffracted in the diffraction grating 230 and reflects again. The first diffracted light diffracted in the diffraction grating 230, that is, light of a specific wavelength incident perpendicularly to the plane of the PZT coupling mirror 240 is reflected by the diffraction grating 200, and the diffraction grating 200 is then returned to the specific wavelength. Reflect light and enter the diode laser 200.

상기 과정이 여러번 반복되면 특정 파장의 빛은 다이오드 레이저(200)에 의해 증폭하게 되고, 증폭된 특정파장의 빛은 출려단인 측정부(120)로 입사된다. 측정부(120)에 특정파장의 빛을 입사시킨 후 반사된 광과 광반사부(130)에서 반사되 어 다이오드 레이저(200)로 입사된 광을 제외한 광은 검출부(140)로 보내져 측정하고자 하는 부분에 대한 영상 정보를 검출하게 된다. 특정파장에 의해 측정부(120)에 출력되는 파장은 PZT(Piezo electric)의 각도에 의해서 가변되며, 파장의 선택은 수학식1에 의해 결정된다.When the above process is repeated several times, light of a specific wavelength is amplified by the diode laser 200, and the light of the amplified specific wavelength is incident to the measurement unit 120, which is the source end. After the light having a specific wavelength is incident on the measuring unit 120, the light excluding the reflected light and the light reflected by the light reflecting unit 130 and incident on the diode laser 200 is sent to the detector 140 to be measured. Image information on the part is detected. The wavelength output to the measurement unit 120 by the specific wavelength is varied by the angle of the piezo electric (PZT), the selection of the wavelength is determined by the equation (1).

Figure 112006067953606-PAT00001
Figure 112006067953606-PAT00001

이와 같이 종래의 광간섭 단층촬영기는 다이오드 레이저(200)와 회절격자(230) 사이의 각도가 조금이라도 변하게 되면 광간섭 단층촬용기의 모든 광학부품들을 다시 정렬시켜야 하는 단점이 있다. 또한 다이오드 레이저(200)와 PZT를 사용하기 때문에 파장 변환 광원의 파장가변 영역이 40nm 이하이고, 반칙폭(FWHM: Full Width Half Maximum) 또한 20nm 이하로 좁으며 변환 속도가 느리다.As described above, in the conventional optical coherence tomography camera, when the angle between the diode laser 200 and the diffraction grating 230 changes even a little, there is a disadvantage in that all optical components of the optical coherence tomography container must be rearranged. In addition, since the diode laser 200 and the PZT are used, the wavelength variable region of the wavelength conversion light source is 40 nm or less, and the FWHM (FWHM: Full Width Half Maximum) is also narrow to 20 nm or less, and the conversion speed is slow.

이에 회절격자로 입사되는 빛의 입사각도와 상관없이 일정한 빛의 출력을 얻을 수 있고, 파장가변 영역이 넓고 변환속도가 빠른 광간섭 단층촬용기용 광대역 파장 변환 광원이 요망된다.Accordingly, there is a need for a broadband wavelength conversion light source for an optical coherence tomography container having a constant output of light regardless of an incident angle of light incident on a diffraction grating and having a wide wavelength variable region and a high conversion speed.

따라서, 본 발명은 회절격자로 입사되는 빛의 입사각도와 상관없이 일정한 빛의 출력을 얻을 수 있고, 파장가변 영역이 넓고 변환속도가 빠른 광간섭 단층촬영기용 광대역 파장 변환 광원을 제공한다.Accordingly, the present invention provides a wideband wavelength conversion light source for an optical coherence tomography apparatus which can obtain a constant light output regardless of the incident angle of light incident on the diffraction grating, and has a wide wavelength variable region and a high conversion speed.

본 발명이 이루고자 하는 기술적 과제는, 회절격자로 입사되는 빛의 입사각도와 상관없이 일정한 빛의 출력을 얻을 수 있는 광간섭 단층촬영기용 광대역 파장 변환 광원을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a broadband wavelength conversion light source for an optical coherence tomography apparatus, which can obtain a constant light output regardless of an incident angle of light incident on a diffraction grating.

본 발명이 이루고자 하는 또 다른 기술적 과제는, 파장가변 영역이 넓고 변환속도가 빠른 광간섭 단층촬영기용 광대역 파장 변환 광원을 제공하는 것이다.Another object of the present invention is to provide a broadband wavelength conversion light source for an optical coherence tomography camera having a wide wavelength variable region and a high conversion speed.

이하 본 발명의 일 실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 구성 및 동작을 첨부한 도면을 참조하여 상세히 설명한다. Hereinafter, the configuration and operation of a broadband wavelength conversion light source for an optical coherence tomography apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 바람직한 일실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 간략한 구성을 나타내는 설명도로서, 반도체 광증폭기(300), 편광조절기(310), 단일모드 광섬유분배기(320), 제 1광섬유-콜리메이터(330), 회절격자(340), 갈바노미터결합거울(350), 제 2 광섬유-콜리메이터(360), 광섬유(370)로 구성된다.3 is an explanatory diagram showing a brief configuration of a broadband wavelength conversion light source for an optical coherence tomography apparatus according to an exemplary embodiment of the present invention, wherein a semiconductor optical amplifier 300, a polarization controller 310, and a single mode optical fiber splitter 320 are shown. , The first optical fiber collimator 330, the diffraction grating 340, the galvanometer coupling mirror 350, the second optical fiber collimator 360, and the optical fiber 370.

반도체 광증폭기(Semiconductor Optical Amplifier: SOA)(300)는 반도체 레이저와 같이 반도체 활성층에서의 이득 기구를 이용하는 광증폭기로서, 반도체 광증폭기(300)에서 나온 광대역의 빛은 편광조절기(310)로 광섬유(370)를 통해 보내진다.또한 갈바노미터결합거울(350)에 의해 반사되고 회절격자(340)에 의해 반사된 특정 파장의 광을 받아 이를 증폭하여 출력단인 측정부로 보내진다. 반도체 광증폭기(300)는 다른 한쪽 방향으로만 빛이 진행되도록 한쪽이 AR/HR코팅이 되어 있는 것을 사용한다. The semiconductor optical amplifier (SOA) 300 is an optical amplifier using a gain mechanism in the semiconductor active layer, such as a semiconductor laser, and the broadband light emitted from the semiconductor optical amplifier 300 is optically transmitted to the polarization controller 310. 370. The light of a specific wavelength reflected by the galvanometer coupling mirror 350 and reflected by the diffraction grating 340 is received and amplified and sent to the measuring unit which is an output terminal. The semiconductor optical amplifier 300 uses one having an AR / HR coating so that light travels only in the other direction.

편광조절기(310)은 반도체 광증폭기(300)로 부터 광대역의 빛을 광섬유(370)를 통해 받고, 그 빛의 편광을 조절하여 단일모드 광섬유분배기(320)로 광섬유(370)를 통해 보내진다.The polarization controller 310 receives the broadband light from the semiconductor optical amplifier 300 through the optical fiber 370, and adjusts the polarization of the light to be transmitted to the single mode optical fiber distributor 320 through the optical fiber 370.

단일모드 광섬유분배기(320)는 편광조절기(310)에서 보내진 편광 조절된 빛의 증폭을 최대효율로 증폭될 수 있도록 회절격자 방향과 출력단 방향으로 분배되는 빛 양의 비율을 조절하는데, 측정 부위가 있는 출력단 방향으로 5%, 회절격자(340) 방향으로 95%로 분배하여 보낸다. 이는 회절격자(340) 방향으로 진행하는 빛의 세기와 출력단으로 진행하는 빛의 세기의 비율을 적절하게 조절하기 위함이다. 그리고 단일모드 광섬유분배기를 사용함으로써 회절격자로 들어가는 빛의 입사각도와 상관없이 일정한 빛의 출력을 얻을 수 있다.The single mode optical fiber splitter 320 adjusts the ratio of the amount of light distributed in the direction of the diffraction grating and the output stage to amplify the polarized light emitted from the polarization controller 310 with maximum efficiency. 5% in the direction of the output terminal, 95% in the direction of the diffraction grating 340 is sent to send. This is to properly adjust the ratio of the light intensity traveling toward the diffraction grating 340 and the light intensity traveling toward the output terminal. By using a single-mode fiber splitter, a constant light output can be obtained regardless of the incident angle of light entering the diffraction grating.

제 1광섬유-콜리메이터(330)는 단일모드 광섬유 분배기(320)로 부터 분배된 빛을 회절격자(340)로 일정한 크기의 평행한 빛이 광섬유 밖으로 나와 입사시킨다. 또한 갈바노미터결합거울(350)에서 반사되고 회절격자(340)에서 다시 반사된 특정 파장의 빛을 받아 반도체 광증폭기(300) 쪽으로 보낸다.The first optical fiber collimator 330 enters the light distributed from the single mode optical fiber splitter 320 into the diffraction grating 340 and enters parallel light of a predetermined size out of the optical fiber. In addition, the light of the specific wavelength reflected by the galvanometer coupling mirror 350 and reflected back from the diffraction grating 340 is sent to the semiconductor optical amplifier 300.

회절격자(340)는 제 1광섬유-콜리메이터(330)에서 입사된 일정한 크기의 평행한 빛을 받아 그 빛을 회절시킨다. 이 중 1차 회절 빛은 갈바노미터결합거울(350)에 의해 반사되고 회절격자(340)에 의해 다시 한번 반사되어 제 1광섬유-콜리메이터(330)으로 입사되어 반도체 광증폭기(300) 쪽으로 이동한다.이 때 반사되는 빛은 특정 파장대의 빛이다. 효율을 높이기 위해 회절격자(340)는 금이 도금된 것을 사용한다.The diffraction grating 340 receives parallel light of a predetermined magnitude incident from the first optical fiber collimator 330 and diffracts the light. Among them, the first diffracted light is reflected by the galvanometer coupling mirror 350 and is reflected by the diffraction grating 340 once again to be incident to the first optical fiber-collimator 330 to move toward the semiconductor optical amplifier 300. The reflected light at this time is light of a certain wavelength range. In order to increase efficiency, the diffraction grating 340 uses a plated with gold.

갈바노미터결합거울(350)은 갈바노미터와 결합된 거울로서, 회절격자(340)에서 회절된 1차 회절빛은 갈바노미터결합거울(350) 면에 수직으로 입사한 후 회절격자(340)으로 반사되고 회절격자(340)에서 반사된 빛은 제 1광섬유-콜리메이터(330)으로 들어간다. The galvanometer coupling mirror 350 is a mirror coupled with the galvanometer, and the first diffracted light diffracted by the diffraction grating 340 is incident on the plane of the galvanometer coupling mirror 350 and then the diffraction grating 340. ) And the light reflected from the diffraction grating 340 enters the first fiber-collimator 330.

제 2광섬유-콜리메이터(360)는 단일모드 광섬유분배기(320)에서 분배된 빛을측정부 즉, 출력단에 특정파장을 일정한 크기로 평행하게 입사시켜 주는 역할을 한다.The second optical fiber collimator 360 serves to inject light distributed from the single mode optical fiber splitter 320 into a specific wavelength in parallel to the measurement unit, that is, the output terminal.

광섬유(370)은 상기 광대역 파장 변환 광원 장치들 사이에 위치하여 빛을 전달하는 통로의 역할을 한다.The optical fiber 370 is positioned between the broadband wavelength converting light source devices to serve as a path for transmitting light.

이와같이, 본 발명의 광간섭 단층촬영기용 광대역 파장 변환 광원의 동작을 간단히 설명해 보면, 반도체 광증폭기(300)에서 나온 광대역의 빛을 단일모드 광섬유분배기(320)에 의해 회절격자(340) 방향과 출력단으로 진행하게 되며, 제 1광섬유-콜리메이터(330)에 의해 일정한 크기의 평행한 빛이 광섬유 밖으로 나와 회절격자(340)로 입사시킨다. 회절격자(340)에 입사된 빛은 회절되며 이 중 1차 회절빛은 갈바노미터결합거울(350)에 수직으로 입사되어 갈바노미터결합거울(350)에 의해 회절격자(340)로 입사되고 회절격자(340)에 입사된 빛은 다시 반사되어 특정파장의 빛은 제 1광섬유-콜리메이터(330)로 입사되어 반도체 광증폭기(300)에 전달된다. 반도체 광증폭기(300)에 전달된 특정파장의 빛은 증폭되어 편광조절기(320)에 의해 편광이 조절된 후 단일모드 광섬유분배기(320)를 통하여 제 2광섬유-콜리메이 터(360)로 보내져 측정부분에 입사된다. 출력단에 출력되는 파장은 갈바노미터의 각도에 의해 결정되어지며 파장 변환 광원이 되기 위해서는 갈바노미터를 정해진 각도와 일정한 속도로 변화시켜주면 된다.As described above, the operation of the broadband wavelength conversion light source for the optical coherence tomography apparatus of the present invention will be described briefly. The single-mode optical fiber splitter 320 receives the broadband light from the semiconductor optical amplifier 300 in the direction and output stage of the diffraction grating. It proceeds to, the parallel light of a certain size by the first optical fiber-collimator 330 exits the optical fiber and is incident to the diffraction grating 340. The light incident on the diffraction grating 340 is diffracted, of which the first diffracted light is incident perpendicularly to the galvanometer coupling mirror 350 and is incident on the diffraction grating 340 by the galvanometer coupling mirror 350. Light incident on the diffraction grating 340 is reflected again, and light having a specific wavelength is incident on the first optical fiber collimator 330 and transmitted to the semiconductor optical amplifier 300. The light of a specific wavelength transmitted to the semiconductor optical amplifier 300 is amplified and polarized light is controlled by the polarization controller 320 and then sent to the second optical fiber collimator 360 through the single mode optical fiber distributor 320 to be measured. Incident on the part. The wavelength output to the output terminal is determined by the angle of the galvanometer, and to become a wavelength conversion light source, the galvanometer is changed at a predetermined angle and a constant speed.

도 4는 본 발명의 바람직한 일실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 파장과 디비엠(dBm) 과의 관계를 나타내는 그래프로서, 도 4의 (a)그래프는 갈바노미터가 임의의 각도에서 멈췄을 때 특정파장만이 증폭되고 있음을 보여준다. 즉, (a)에서는 약 840nm의 파장만이 증폭되었음을 확인할 수 있다. 이에 갈바노미터의 각도를 제어하여 원하는 파장의 빛을 증폭할 수 있음을 알 수 있다.도 4의 (b)그래프는 갈바노미터를 구동하였을 때 갈바노미터의 움직임에 의해서 특정파장대이 옮겨가면서 증폭되고 있음을 보여주고, 파장 가변 영역이 약 70nm, 반칙폭이 약 40nm 임을 보여준다.Figure 4 is a graph showing the relationship between the wavelength of the broadband wavelength conversion light source for the optical coherence tomography light source according to an embodiment of the present invention and the dB (dBm), Figure 4 (a) is a galvanometer arbitrary When stopped at an angle, only a certain wavelength is amplified. That is, in (a) it can be seen that only a wavelength of about 840nm amplified. It can be seen that the light of the desired wavelength can be amplified by controlling the angle of the galvanometer. FIG. 4 (b) shows that a specific wavelength band is amplified by the movement of the galvanometer when the galvanometer is driven. It shows that the wavelength variable region is about 70 nm and the fouling width is about 40 nm.

도 5는 본 발명의 바람직한 일실시예에 의한 광간섭 단층촬영기용 광대역 파장 변환 광원의 시간과 빛의 세기와의 관계를 나타내는 그래프로서, 갈바노미터가 움직이는 시간에 따라 특정파장에서의 빛의 세기를 나타내며 파장 가변이 빠르게 변하고 있음을 보여준다. 이에 본 발명의 광간섭 단층촬영기용 광대역 파장 변환 광원은 넓은 파장 가변 영역을 가지며 가변 속도가 빠름을 알 수 있다.5 is a graph showing the relationship between the time and the light intensity of the broadband wavelength conversion light source for optical coherence tomography according to an embodiment of the present invention, the light intensity at a specific wavelength according to the time the galvanometer moves It shows that the wavelength variable is changing rapidly. Therefore, it can be seen that the broadband wavelength converting light source for the optical coherence tomography apparatus of the present invention has a wide wavelength variable region and a fast variable speed.

본 발명은 이상에서 설명되고 도면에 예시된 것에 의해 한정되는 것은 아니며, 당업자라면 다음에 기재되는 청구범위 내에서 더 많은 변형 및 변용예가 가능한 것임은 물론이다. The present invention is not limited to the above described and illustrated in the drawings, and of course, more modifications and variations are possible to those skilled in the art within the scope of the following claims.

이상에서 설명한 것과 같이, 본 발명의 광간섭 단층촬영기용 광대역 파장 변환 광원은 반도체 광증폭기와 단일모드 광섬유 분배기를 사용함으로써, 회절격자 방향으로 나온 빛과 회절격자로 입사되는 빛의 입사각도와 상관없이 일정한 빛의 출력을 얻을 수 있다. 또한 PZT 대신 갈바노미터를 사용으로 인해 파장 가변 영역과 반칙폭이 넓어서 광간섭 단층촬영기에서 깊이 방향 해상도를 높여 줄 수 있으며, 파장 변환 속도가 빠르기 때문에 빠른 영상 획득 속도를 가질 수 있다.As described above, the broadband wavelength converting light source for the optical coherence tomography apparatus of the present invention uses a semiconductor optical amplifier and a single mode optical fiber splitter so that the light emitted in the direction of the diffraction grating and the incident angle of the light incident on the diffraction grating are constant You can get the light output. In addition, the use of a galvanometer instead of PZT increases the depth resolution in the optical coherence tomography because of the wide wavelength range and fouling width, and has a fast image acquisition speed due to the fast wavelength conversion speed.

Claims (8)

광대역 빛을 발생시키는 반도체 광증폭기; 상기 반도체 광증폭기로 부터의 광대역의 빛을 받아 빛의 편광을 조절하는 편광조절기; 상기 편광조절기로 부터 편광 조절된 빛을 받아 회절격자 방향과 출력단 방향으로 빛 양의 비율을 분배하는 단일모드 광섬유분배기; 상기 단일모드 광섬유분배기로부터 분배받은 빛을 회절격자로 일정한 크기의 평행한 빛을 입사시켜주는 제 1광섬유-콜리메이터; 상기 제 1광섬유-콜리메이터로부터 입사 받은 빛을 회절시키는 회절격자; 상기 회절격자로 부터 회절된 제 1차 회절빛이 입사되어 이 빛이 회절격자로 반사되도록 하는 갈바노미터결합거울; 상기 단일모드 광섬유분배기에서 분배된 빛을 출력단으로 일정한 크기의 평행하게 입사시켜 주는 제 2광섬유-콜리메이터; 상기 광대역 파장 변환 광원 장치들 사이에 위치하여 빛을 전달하는 통로인 광섬유;를 포함하는 것을 특징으로 하는 광간섭 단층촬영기용 광대역 파장 변환 광원.A semiconductor optical amplifier for generating broadband light; A polarization controller for controlling the polarization of light by receiving broadband light from the semiconductor optical amplifier; A single mode optical fiber splitter which receives the polarized light from the polarization controller and distributes the ratio of light in the direction of the diffraction grating and the output end; A first optical fiber collimator for injecting light distributed from the single mode optical fiber splitter into a parallel light having a predetermined size with a diffraction grating; A diffraction grating diffracting light incident from the first optical fiber collimator; A galvanometer coupling mirror in which the first diffracted light diffracted from the diffraction grating is incident to reflect the light into the diffraction grating; A second optical fiber collimator for injecting the light distributed by the single mode optical fiber splitter into a predetermined size in parallel; Broadband wavelength conversion light source for optical coherence tomography comprising a; optical fiber which is a passage for transmitting light located between the broadband wavelength conversion light source devices. 제 1항에 있어서,The method of claim 1, 상기 갈바노미터거울에서 반사되어 회절격자에서 다시 반사된 빛을 받아 증폭하는 것을 특징으로 하는 반도체 광증폭기를 포함하는 광간섭 단층촬영기용 광대역 파장 변환 광원. Broadband wavelength conversion light source for optical coherence tomography comprising a semiconductor optical amplifier, characterized in that the amplified by the light reflected from the galvanometer mirror and reflected back from the diffraction grating. 제 1,2항에 있어서,The method of claim 1, wherein 한쪽이 AR/HR코팅이 되어 있는 것을 특징으로 하는 반도체 광증폭기를 포함하는 광간섭 단층촬영기용 광대역 파장 변환 광원.A broadband wavelength converting light source for an optical coherence tomography camera comprising a semiconductor optical amplifier, wherein one side is AR / HR coated. 제 1항에 있어서,The method of claim 1, 상기 제 1광섬유-콜리메이터 쪽으로 5%, 제 2광섬유-콜리메이터 쪽으로 90%의 빛을 분배하는 것을 특징으로 하는 단일모드 광섬유분배기를 포함하는 광간섭 단층촬영기용 광대역 파장 변환 광원.A broadband wavelength conversion light source for an optical coherence tomography apparatus comprising a single mode optical fiber splitter for distributing 5% light toward the first optical fiber-collimator and 90% toward the second optical fiber-collimator. 제 1항에 있어서,The method of claim 1, 상기 갈바노미터결합거울에서 반사되고 회절격자에서 다시 반사된 특정 파장의 빛을 받아 반도체 광증폭기 쪽으로 보내는 것을 특징으로 하는 제 1광섬유-콜리메이터를 포함하는 광간섭 단층촬영기용 광대역 파장 변환 광원.And a first optical fiber-collimator for receiving light of a specific wavelength reflected from the galvanometer coupling mirror and reflected back from the diffraction grating toward the semiconductor optical amplifier. 제 1항에 있어서,The method of claim 1, 상기 갈바노미터결합거울에서 반사된 빛을 제 1광섬유-콜리메이터로 반사하는 것을 특징으로 하는 회절격자를 포함하는 광간섭 단층촬영기용 광대역 파장 변환 광원.Broadband wavelength conversion light source for optical interference tomography comprising a diffraction grating, characterized in that for reflecting the light reflected from the galvanometer coupling mirror to the first optical fiber-collimator. 제 1,6항에 있어서,The method of claim 1, wherein 금으로 도금된 것을 특징으로 하는 회절격자를 포함하는 광간섭 단층촬영기 용 광대역 파장 변환 광원.A broadband wavelength conversion light source for an optical coherence tomography device, comprising a diffraction grating, plated with gold. 파장가변 영역이 약 70nm, 반칙폭(FWHM:Full Width Half Maximum) 약 40nm 인 것을 특징으로 하는 광간섭 단층촬영기용 광대역 파장 변환 광원.A broadband wavelength conversion light source for an optical coherence tomography, wherein the wavelength variable region is about 70 nm and a full width half maximum (FWHM) is about 40 nm.
KR1020060091241A 2006-09-20 2006-09-20 Optical source of optical coherence tomography KR20080026338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060091241A KR20080026338A (en) 2006-09-20 2006-09-20 Optical source of optical coherence tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060091241A KR20080026338A (en) 2006-09-20 2006-09-20 Optical source of optical coherence tomography

Publications (1)

Publication Number Publication Date
KR20080026338A true KR20080026338A (en) 2008-03-25

Family

ID=39413783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060091241A KR20080026338A (en) 2006-09-20 2006-09-20 Optical source of optical coherence tomography

Country Status (1)

Country Link
KR (1) KR20080026338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134506B1 (en) * 2009-09-28 2012-04-13 주식회사 제씨콤 Oct system using high molecular winc
US8263957B2 (en) 2009-04-01 2012-09-11 3D Imaging & Simulations Corp. Apparatus for acquiring digital X-ray image
KR20160125041A (en) * 2015-04-21 2016-10-31 충남대학교산학협력단 wavelength-swept source based on super-continuum source
CN113710379A (en) * 2020-03-23 2021-11-26 深圳市汇顶科技股份有限公司 Ultrasonic transducer, ultrasonic scanning system and processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263957B2 (en) 2009-04-01 2012-09-11 3D Imaging & Simulations Corp. Apparatus for acquiring digital X-ray image
KR101134506B1 (en) * 2009-09-28 2012-04-13 주식회사 제씨콤 Oct system using high molecular winc
KR20160125041A (en) * 2015-04-21 2016-10-31 충남대학교산학협력단 wavelength-swept source based on super-continuum source
CN113710379A (en) * 2020-03-23 2021-11-26 深圳市汇顶科技股份有限公司 Ultrasonic transducer, ultrasonic scanning system and processing method

Similar Documents

Publication Publication Date Title
US6570659B2 (en) Broadband light source system and method and light source combiner
US6252666B1 (en) Method and apparatus for performing optical coherence-domain reflectometry and imaging through a scattering medium employing a power-efficient interferometer
CA2421113C (en) Optical amplification in coherence reflectometry
AU2002212105B2 (en) Optical amplification in coherent optical frequency modulated continuous wave reflectometry
US7633623B2 (en) Optical tomography system
US8976433B2 (en) Apparatus and method for irradiating a scattering medium
US9835840B2 (en) Methods for optical amplified imaging using a two-dimensional spectral brush
EP2136443A1 (en) Wavelength scanning light source and optical coherence tomography device
US7538884B2 (en) Optical tomographic imaging apparatus
US9204800B2 (en) Low cost high efficiency signal interrogation for multi-channel optical coherence tomography
JP2008145189A (en) Light control unit, optical tomographic imaging method and optical tomographic imaging system
US20060187457A1 (en) Method and system for reducing parasitic spectral noise in tunable semiconductor source spectroscopy system
KR20080026338A (en) Optical source of optical coherence tomography
CN101777728A (en) Sweep frequency laser light source based on hyperfine tuned filter
JP2009031238A (en) Optical coherence tomography device
JP6342445B2 (en) Optical measuring device and method
JP2008191369A (en) Filter system the high-speed wavelength-swept light source
CN106052566A (en) Novel pulse laser line width measurement device
KR20080110569A (en) Optical widely tunable wavelength source
JP2013152223A (en) Optical interference tomographic imaging apparatus, and optical interference tomographic imaging method
KR100882514B1 (en) Optical widely tunable wavelength source
CN113432527A (en) High-speed spectral domain optical coherence tomography system based on Mach-Zehnder interferometer
JP2009244082A (en) Light source and optical tomographic imaging apparatus
CN114486201B (en) Large-caliber optical element reflectivity measuring system
US20230341222A1 (en) Systems, methods, and media for multiple beam optical coherence tomography

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination