KR20080026040A - Negative active material for non-aqueous secondary battery, and non-aqueous secondary battery including same - Google Patents

Negative active material for non-aqueous secondary battery, and non-aqueous secondary battery including same Download PDF

Info

Publication number
KR20080026040A
KR20080026040A KR1020070094178A KR20070094178A KR20080026040A KR 20080026040 A KR20080026040 A KR 20080026040A KR 1020070094178 A KR1020070094178 A KR 1020070094178A KR 20070094178 A KR20070094178 A KR 20070094178A KR 20080026040 A KR20080026040 A KR 20080026040A
Authority
KR
South Korea
Prior art keywords
active material
negative electrode
secondary battery
electrode active
lithium
Prior art date
Application number
KR1020070094178A
Other languages
Korean (ko)
Other versions
KR100965240B1 (en
Inventor
김성수
토오루 이나가키
마사키 코이케
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US11/902,206 priority Critical patent/US8187750B2/en
Priority to CN2007101541796A priority patent/CN101154725B/en
Publication of KR20080026040A publication Critical patent/KR20080026040A/en
Application granted granted Critical
Publication of KR100965240B1 publication Critical patent/KR100965240B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

An anode active material for a non-aqueous electrolyte secondary battery is provided to impart improved discharge capacity to a battery so that an electronic device using the battery maintains the driving time from the full charged state. An anode active material for a non-aqueous electrolyte secondary battery essentially comprises lithium vanadium oxide and further comprises a material selected from the group consisting of Li3VO4, vanadium carbide and a mixture thereof, wherein Li3VO4 and vanadium carbide are used in an amount of 0.01-5 wt% and up to 0.5 wt% based on the total weight of the anode active material. The anode active material has an average particle diameter of 5-50 micrometers.

Description

비수이차전지용 음극 활물질, 및 이를 포함하는 비수이차전지{NEGATIVE ACTIVE MATERIAL FOR NON-AQUEOUS SECONDARY BATTERY, AND NON-AQUEOUS SECONDARY BATTERY INCLUDING SAME}A negative active material for a non-aqueous secondary battery, and a non-aqueous secondary battery including the same {NEGATIVE ACTIVE MATERIAL FOR NON-AQUEOUS SECONDARY BATTERY, AND NON-AQUEOUS SECONDARY BATTERY INCLUDING SAME}

본 발명은 비수이차전지용 음극 활물질, 및 이를 포함하는 비수이차전지에 관한 것으로서, 보다 상세하게는 방전 용량을 향상시킬 수 있는 비수이차전지용 음극 활물질, 및 이를 포함하는 비수이차전지에 관한 것이다.The present invention relates to a negative active material for a nonaqueous secondary battery, and a nonaqueous secondary battery including the same, and more particularly, to a negative active material for a nonaqueous secondary battery capable of improving a discharge capacity, and a nonaqueous secondary battery including the same.

종래 비수이차전지는 비수계의 전해질 내에 리튬 이온을 흡장 및 이탈할 수 있는 양극 및 음극이 침지된 것이다(일본 특허공개 제2003-68305호 공보, 제3 페이지-제11페이지, 도 10). 상기 음극의 활물질로는 리튬 바나듐 산화물이 사용되는데, 상기 리튬 바나듐 산화물은 수산화 리튬 등의 리튬 공급원과, 3산화 바나듐 등의 바나듐 공급원을 고상법에 의해 혼합하고, 650℃ 이상으로 소성하여 제조된다. In the conventional non-aqueous secondary battery, a positive electrode and a negative electrode capable of occluding and releasing lithium ions are immersed in a non-aqueous electrolyte (Japanese Patent Laid-Open No. 2003-68305, page 3-11, FIG. 10). Lithium vanadium oxide is used as an active material of the negative electrode. The lithium vanadium oxide is produced by mixing a lithium source such as lithium hydroxide and a vanadium source such as vanadium trioxide by the solid phase method and firing at 650 ° C. or higher.

비수이차전지의 충전시에는 음극이 음으로 대전되고, 양극에 흡장된 리튬 이온이 이탈하여 음극에 흡장된다. 또한 비수이차전지의 방전시에는 음극에 흡장 된 리튬 이온이 이탈하여 양극에 흡장된다. 이에 따라, 음극에서의 금속 리튬의 석출을 방지함으로써 수명이 긴 비수이차전지를 얻을 수 있다. At the time of charging the non-aqueous secondary battery, the negative electrode is negatively charged, and lithium ions occluded at the positive electrode are separated and occluded at the negative electrode. In addition, during discharge of the non-aqueous secondary battery, lithium ions occluded in the negative electrode are separated and occluded in the positive electrode. As a result, a non-aqueous secondary battery having a long life can be obtained by preventing the deposition of metallic lithium on the negative electrode.

비수이차전지는 노트형 퍼스널컴퓨터나 휴대폰 등의 이동용 전자 기기에 널리 사용되고 있다. 상기 전자 기기는 소비 전력이 크더라도 만충전으로부터의 가동 시간을 길게 유지할 수 있는 것이 요구된다. 이 때문에, 보다 큰 방전 용량을 나타낼 수 있는 비수이차전지가 요구되고 있다.Non- rechargeable batteries are widely used in mobile electronic devices such as notebook personal computers and mobile phones. The electronic device is required to be able to maintain a long operating time from full charge even if the power consumption is large. For this reason, there is a demand for a non-aqueous secondary battery that can exhibit a larger discharge capacity.

본 발명은, 비수이차전지의 방전 용량을 향상시킬 수 있는 비수이차전지용 음극 활물질을 제공하는 것을 목적으로 한다.An object of this invention is to provide the negative electrode active material for nonaqueous secondary batteries which can improve the discharge capacity of a nonaqueous secondary battery.

본 발명은 또한 상기 음극 활물질을 포함하여 우수한 방전 용량 특성을 나타내는 비수이차전지를 제공하는 것을 목적으로 한다. Another object of the present invention is to provide a non-aqueous secondary battery having excellent discharge capacity characteristics including the negative electrode active material.

상기 목적을 달성하기 위하여, 본 발명의 일 구현예에 따르면 리튬 바나듐 산화물을 주성분으로 하고, Li3VO4, 바나듐 탄화물 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 포함하는 비수이차전지용 음극 활물질을 제공한다. 이때 상기 Li3VO4은 음극 활물질 총 중량에 대하여 0.01 내지 5중량%로 포함되고, 상기 바나듐 탄화물은 음극 활물질 총 중량에 대하여 0.5중량% 이하로 포함된다.In order to achieve the above object, according to one embodiment of the present invention provides a negative electrode active material for a non-aqueous battery comprising a lithium vanadium oxide as a main component, and selected from the group consisting of Li 3 VO 4 , vanadium carbide and mixtures thereof do. At this time, the Li 3 VO 4 is included in 0.01 to 5% by weight based on the total weight of the negative electrode active material, the vanadium carbide is contained in 0.5% by weight or less based on the total weight of the negative electrode active material.

상기 음극 활물질은 리튬 원료물질 및 바나듐 원료 물질의 혼합물에 Li3VO4, 바나듐 탄화물 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 첨가한 후, 질소, 아르곤 등과 같은 불활성 분위기하에서 소성하여 제조할 수 있다.The negative electrode active material may be prepared by adding a material selected from the group consisting of Li 3 VO 4 , vanadium carbide and mixtures thereof to a mixture of a lithium raw material and a vanadium raw material, and then firing in an inert atmosphere such as nitrogen and argon. .

또 상기 음극 활물질은 0.5중량%이하의 바나듐 탄화물이 포함되는 것을 특징으로 한다. In addition, the negative electrode active material is characterized in that it contains less than 0.5% by weight of vanadium carbide.

또 본 발명은, 상기 구성의 비수이차전지용 음극 활물질의 평균 입자 직경이 5 내지 50㎛인 것을 특징으로 한다. In addition, the present invention is characterized in that the average particle diameter of the negative active material for a non-aqueous secondary battery having the above constitution is 5 to 50 µm.

또 본 발명은, 리튬 바나듐 산화물을 주성분으로 한 음극 활물질로서 이용할 수 있는 비수이차전지용 음극재료에 있어서, 상기 음극 활물질은 0.5중량%이하의 바나듐 탄화물이 포함되는 것을 특징으로 한다. The present invention is also characterized in that the negative electrode active material can be used as a negative electrode active material containing lithium vanadium oxide as a main component, wherein the negative electrode active material contains vanadium carbide of 0.5% by weight or less.

또 본 발명의 비수이차전지는, 상기 각 구성의 비수이차전지용 음극 활물질을 포함하는 음극; 양극; 및 전해질로 이루어지는 것을 특징으로 한다. In addition, the nonaqueous secondary battery of the present invention, the negative electrode comprising a negative active material for a nonaqueous secondary battery of each configuration; anode; And an electrolyte.

본 발명에 따른 음극활물질은 리튬 이온 이차 전지 등의 비수이차전지에 적용시 전지의 방전 용량을 향상시킬 수 있다. The negative electrode active material according to the present invention can improve the discharge capacity of the battery when applied to a non-aqueous secondary battery such as a lithium ion secondary battery.

이하 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

도 1은 본 발명의 일 구현예에 따른 비수이차전지를 나타내는 종단면도이다. 1 is a longitudinal sectional view showing a non-aqueous secondary battery according to one embodiment of the present invention.

도 1을 참조하여 설명하면, 본 발명의 일 구현예에 따른 비수이차전지(1)는 나선식 원통형의 리튬 이차전지로 이루어진다. 상기 비수이차전지(1)에는 센터핀(6)이 설치되고, 양극(3)과 음극(4)과의 사이에 세퍼레이터(5)이 끼워져 이루어지는 적층체(10)가 센터핀(6)에 다중으로 감겨 있다. 이에 따라, 상기 적층체(10)는 원통상 구조를 이루고 있다. Referring to Figure 1, the non-aqueous secondary battery 1 according to an embodiment of the present invention is made of a spiral cylindrical lithium secondary battery. The non-aqueous secondary battery 1 is provided with a center pin 6, and a laminate 10 having a separator 5 interposed between the positive electrode 3 and the negative electrode 4 is multiplied with the center pin 6. It is wound up. Thus, the laminate 10 has a cylindrical structure.

상기 양극(3)은 양극 활물질을 포함하는 양극합재(3a)에 의해 양극집전체(3b)의 표면과 이면의 2층을 사이에 두고 형성된다. 음극(4)은 음극 활물질을 포함하는 음극합재(4a)에 의해 음극집전체(4b)의 표면과 이면의 2층을 사이에 두고 형성된다. 원통상의 적층체(10)는 중공 원주형의 케이스(2)내에 수납되고, 전해질 (도시하지 않음)에 침지되어 있다. 케이스(2)에 의해 양극(3)이 접속되는 동시에 하단이 돌출된 양극단자(7)이 형성되어 있다. The positive electrode 3 is formed by the positive electrode composite material 3a including the positive electrode active material, having two layers between the front surface and the rear surface of the positive electrode current collector 3b. The negative electrode 4 is formed by the negative electrode mixture 4a including the negative electrode active material, having two layers between the front and rear surfaces of the negative electrode current collector 4b. The cylindrical laminate 10 is housed in a hollow cylindrical case 2 and immersed in an electrolyte (not shown). The case 2 is connected to the positive electrode 3 and a positive terminal 7 having a lower end protruding therefrom.

적층체(10)의 상하에는 절연판(9b, 9a)이 설치된다. 양극집전체(3b)는 절연판(9a)을 관통하여 양극 리드(11)에 의해 양극단자(7)에 접속되어 있다. 케이스(2)의 개구측의 절연판(9b)위에는, 절연판(9b) 방향으로 볼록한 형상을 갖는 안전판(13)이 설치된다. 안전판(13)의 위쪽에는 안전판(13)과는 반대 방향으로 볼록한 형상을 갖는 캡형의 음극단자(8)가 형성되어 있다. 음극집전체(4b)는 절연판(9b)을 관통해서 음극 리드(12)에 의해 음극단자(8)에 접속되어 있다. 또, 안전판(13) 및 음극단자(8)의 에지면은 개스킷(14)에 의해 실링되어, 양극단자(7)로부터 떨어져 위치하고 있다. Insulation plates 9b and 9a are provided above and below the laminate 10. The positive electrode current collector 3b penetrates through the insulating plate 9a and is connected to the positive electrode terminal 7 by the positive electrode lead 11. On the insulating plate 9b on the opening side of the case 2, a safety plate 13 having a convex shape in the insulating plate 9b direction is provided. On the upper side of the safety plate 13, a cap-shaped negative electrode terminal 8 having a convex shape in the opposite direction to the safety plate 13 is formed. The negative electrode current collector 4b penetrates through the insulating plate 9b and is connected to the negative electrode terminal 8 by the negative electrode lead 12. In addition, the edge surfaces of the safety plate 13 and the negative electrode terminal 8 are sealed by the gasket 14, and are located away from the positive electrode terminal 7.

양극활물질 및 전해질로는 비수이차전지의 양극 및 전해질로서 공지된 재료를 이용할 수 있다. 예를 들면, 양극활물질로는 코발트 산 리튬 등의 리튬 전이금속산화물을 이용할 수 있다. 또, 전해질로는 에틸렌카보네이트나 디에틸카보네이트 등의 용매에, LiPF6, Li2SiF6, Li2TiF6, LiBF4 등의 리튬 염으로 이루어지는 용질을 포함하는 것을 이용할 수 있다. As the positive electrode active material and the electrolyte, a known material can be used as the positive electrode and the electrolyte of the non-aqueous secondary battery. For example, lithium transition metal oxides, such as lithium cobalt acid, can be used as a positive electrode active material. The electrolyte can be used comprises a solute comprising a lithium salt, such as in a solvent such as ethylene carbonate or diethyl carbonate, LiPF 6, Li 2 SiF 6 , Li 2 TiF 6, LiBF 4.

음극(4)은 리튬 바나듐 산화물을 주성분으로 하는 음극 활물질을 포함하고 있다. 그리고, 음극 활물질 80중량%, 아세틸렌 블랙 10중량%, 바인더 10중량%을 혼합하여 구리 집전체 위에 도포하고, 음극 합재의 밀도가 1.8g/cm3이 되도록 프레스 가공하여 형성될 수 있다. The negative electrode 4 contains a negative electrode active material mainly composed of lithium vanadium oxide. Then, 80% by weight of the negative electrode active material, 10% by weight of acetylene black, 10% by weight of the binder may be mixed and applied on the copper current collector, and may be formed by press working so that the density of the negative electrode mixture is 1.8 g / cm 3 .

본 발명의 일 구현예에 따르면 상기 음극 활물질은 통상적으로 불순물로 고려되는 Li3VO4, 바나듐 탄화물(VC) 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 포함한다. According to one embodiment of the present invention, the negative electrode active material includes Li 3 VO 4 , vanadium carbide (VC), and mixtures thereof, which are generally considered as impurities.

상기 Li3VO4는 주성분인 리튬 바나듐 산화물(LiVO2)과 비교하여, 융점이 낮다(600℃정도). 이 때문에, 음극 활물질을 소성하여 제조하는 경우, 주성분인 LiVO2의 입자끼리의 결합을 촉진할 수 있다. 또한 상기 Li3VO4의 혼합량이 증가함에 따라 평균 입자 직경도 증가하게 된다. The Li 3 VO 4 has a low melting point (about 600 ° C.) compared with lithium vanadium oxide (LiVO 2 ) as a main component. Therefore, in the case of manufacturing by sintering a negative electrode active material, it is possible to facilitate the bonding of the main component of LiVO 2 particles. In addition, as the mixing amount of the Li 3 VO 4 increases, the average particle diameter also increases.

상기 Li3VO4은, 음극 활물질 총 중량에 대하여 0.01 내지 5중량%로 포함되는 것이 바람직하고, 0.5 내지 3.0중량%가 보다 바람직하고, 1 내지 2중량%로 포함되는 것이 보다 더 바람직하다. 상기 함량 범위를 벗어날 경우 방전 용량이 저하될 우려가 있어 바람직하지 않다. The Li 3 VO 4 is preferably contained in an amount of 0.01 to 5% by weight, more preferably 0.5 to 3.0% by weight, and still more preferably 1 to 2% by weight based on the total weight of the negative electrode active material. If it is out of the content range there is a risk that the discharge capacity is lowered is not preferred.

또한 상기 Li3VO4를 포함하는 음극 활물질은 5㎛ 내지 50㎛의 평균 입자 직경을 갖는 것이 바람직하고, 10㎛ 내지 50㎛이 보다 바람직하고, 10㎛ 내지 40㎛의 평균 입자 직경을 갖는 것이 보다 바람직하다. In addition, the negative electrode active material containing Li 3 VO 4 preferably has an average particle diameter of 5 μm to 50 μm, more preferably 10 μm to 50 μm, and more preferably 10 μm to 40 μm. desirable.

음극 활물질의 평균 입자 직경이 상기 범위를 벗어나 지나치게 작을 경우 음극 활물질과 도전제를 혼합시켰을 때에 음극 활물질이 도전제와 접촉할 확률이 저하되기 때문에 바람직하지 않다. 또한 Li3VO4의 양이 증가하면 음극 활물질의 평균 입자 직경은 커지지만 상기 Li3VO4의 양이 상기 함량 범위를 벗어나 지나치게 다량 으로 포함되는 경우 음극 활물질로서는 불순물인 Li3VO4의 양이 증가하게 되어 방전 용량이 줄어들기 때문에 바람직하지 않다. If the average particle diameter of the negative electrode active material is too small out of the above range, it is not preferable because the probability of contacting the negative electrode active material with the conductive agent decreases when the negative electrode active material and the conductive agent are mixed. In addition, when the amount of Li 3 VO 4 increases, the average particle diameter of the negative electrode active material increases, but when the amount of Li 3 VO 4 is included in an excessively large amount out of the content range, the amount of Li 3 VO 4 , which is an impurity, is an impurity It is not preferable because it increases and the discharge capacity decreases.

한편, VC를 음극 활물질내에 함유시켰을 경우에는, VC가 체적저항율 150×10-6Ω·cm의 양호한 도체이기 때문에 활물질 입자내의 도전성이 향상되고, 예를 들면 3mA/cm2의 고효율 방전에도 대응가능한 음극 활물질을 얻을 수 있다. 그러나, VC는 리튬의 흡장을 담당하는 리튬 바나듐 산화물중의 바나듐을 과잉으로 빼앗아버려 방전 용량을 저하시킬 수 있다. 이 때문에, VC는 음극 활물질 총 중량에 대하여 0.5중량% 이하로 포함되는 것이 바람직하고, 0.01 내지 0.4중량% 로 포함되는 것이 보다 바람직하다. 음극 활물질내 VC의 함량이 상기 범위를 벗어날 경우 방전용량이 저하되어 바람직하지 않다. On the other hand, when VC is contained in the negative electrode active material, since VC is a good conductor having a volume resistivity of 150 x 10 -6 Ω · cm, the conductivity in the active material particles is improved, and for example, it is possible to cope with a high efficiency discharge of 3 mA / cm 2 , for example. A negative electrode active material can be obtained. However, VC can take away vanadium in lithium vanadium oxide which is responsible for occlusion of lithium excessively, and can reduce a discharge capacity. For this reason, it is preferable that VC is contained in 0.5 weight% or less with respect to the total weight of a negative electrode active material, and it is more preferable that it is contained in 0.01 to 0.4 weight%. When the content of VC in the negative electrode active material is out of the above range, the discharge capacity is lowered, which is not preferable.

상기와 같은 조성을 갖는 음극 활물질은 리튬 원료물질 및 바나듐 원료 물질의 혼합물에 Li3VO4, 바나듐 탄화물 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 첨가한 후, 질소, 아르곤 등과 같은 불활성 분위기하에서 소성하여 제조할 수 있다.The negative electrode active material having the composition as described above is added to a mixture of lithium raw material and vanadium raw material and added to the mixture selected from the group consisting of Li 3 VO 4 , vanadium carbide and mixtures thereof, and then fired in an inert atmosphere such as nitrogen, argon, etc. It can manufacture.

상기 Li3VO4의 경우 리튬 바나듐 산화물 생성시 바나듐에 대한 리튬의 양이 일정 수준 이상이 되면 불순물로서 생성될 수 있다. 이에 따라 Li3VO4를 별도로 첨가하지 않고, 리튬 원료물질과 바나듐 원료물질의 혼합시 리튬:바나듐의 몰비가 1.13:0.9 이상이 되도록 하는 양으로 혼합함으로써 상기 Li3VO4를 포함하는 음극 활 물질을 제조할 수 있다. 다만 본 발명의 일 구현예에 따르면 최종 제조되는 음극 활물질내 Li3VO4의 함량을 고려하여 리튬:바나듐의 몰비를 1.13:0.9 내지 1.21:0.90의 몰비로 조절하여 혼합할 수 있다.In the case of Li 3 VO 4 may be generated as an impurity when the amount of lithium to vanadium is more than a predetermined level when generating lithium vanadium oxide. Accordingly, without adding Li 3 VO 4 separately, by mixing the lithium raw material and the vanadium raw material in an amount such that the molar ratio of lithium: vanadium is 1.13: 0.9 or more, the negative electrode active material containing the Li 3 VO 4 Can be prepared. However, according to one embodiment of the present invention, in consideration of the content of Li 3 VO 4 in the final prepared negative active material, the molar ratio of lithium: vanadium may be adjusted to a molar ratio of 1.13: 0.9 to 1.21: 0.90 and mixed.

상기 VC 역시 리튬 바나듐 산화물 생성시 리튬에 대한 바나듐의 양이 일정 수준 이상이 되면 불순물로서 생성될 수 있다. 이에 따라 VC를 별도로 첨가하지 않고, 최종 제조되는 음극 활물질내 VC의 함량을 고려하여 리튬 원료물질과 바나듐 원료물질의 혼합시 리튬:바나듐의 몰비가 1.08:0.9 이상 1.13:0.9 미만이 되도록 하는 양으로 혼합함으로써 상기 VC를 포함하는 음극 활물질을 제조할 수 있다. The VC can also be produced as an impurity when the amount of vanadium to lithium is higher than a predetermined level when generating lithium vanadium oxide. Accordingly, the amount of lithium to vanadium is 1.08: 0.9 or more and less than 1.13: 0.9 when the lithium raw material and the vanadium raw material are mixed in consideration of the content of VC in the final negative electrode active material without separately adding VC. The negative electrode active material containing the said VC can be manufactured by mixing.

상기 리튬 원료 물질로는 수산화 리튬 등을 사용할 수 있고, 바나듐 원료 물질로는 V2O3와 같은 바나듐 산화물을 사용할 수 있다.Lithium hydroxide or the like may be used as the lithium raw material, and vanadium oxide such as V 2 O 3 may be used as the vanadium raw material.

상기와 리튬 원료 물질 및 바나듐 원료 물질은 최종 제조하고자 하는 음극 활물질에서의 리튬 및 바나듐의 함량에 따라 혼합비를 조절하여 혼합한다. The lithium raw material and the vanadium raw material are mixed by adjusting the mixing ratio according to the content of lithium and vanadium in the negative electrode active material to be finally manufactured.

이후 상기 혼합물에 Li3VO4, 바나듐 탄화물 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 앞서 설명한 바와 동일한 함량비가 되도록 첨가하고, 불활성 분위기하에서 소성한다.Thereafter, the mixture selected from the group consisting of Li 3 VO 4 , vanadium carbide, and mixtures thereof is added in the same content ratio as described above, and calcined under an inert atmosphere.

소성시 온도는 1100 내지 1200℃인 것이 바람직하다.It is preferable that the temperature at the time of baking is 1100-1200 degreeC.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.

실시예Example 1 One

음극 활물질내의 Li3VO4의 함유량과 방전 용량 및 음극 활물질의 평균 입자 직경과의 관계를 평가하기 위하여, 하기와 같은 방법으로 음극 활물질을 제조한 후 Li3VO4의 함량에 따른 방전 용량 및 활물질의 평균 입자 직경을 측정하였다. 그 결과를 도 2a 및 도 2b에 나타내었다.In order to evaluate the relationship between the content of Li 3 VO 4 in the negative electrode active material, the discharge capacity and the average particle diameter of the negative electrode active material, a negative electrode active material was prepared by the following method and then the discharge capacity and the active material according to the content of Li 3 VO 4 The average particle diameter of was measured. The results are shown in Figures 2a and 2b.

1-1) 음극 활물질의 제조1-1) Preparation of Anode Active Material

LiOH(수산화 리튬)과 V2O3(3산화 바나듐)을 리튬과 바나듐과의 몰비가 1.22:1이 되도록 혼합한 후, 음극 활물질내 포함되는 Li3VO4의 함량이 0중량%, 1중량%, 2중량%, 3중량% 및 5.5중량%가 되도록 하는 양으로 Li3VO4를 각각 첨가하고 질소 분위기하에서, 1100℃로 10시간 소성하여 LiVO2를 주성분으로 포함하고, Li3VO4를 또한 포함하는 음극 활물질을 제조하였다. LiOH (lithium hydroxide) and V 2 O 3 (vanadium trioxide) were mixed so that the molar ratio between lithium and vanadium was 1.22: 1, and the content of Li 3 VO 4 contained in the negative electrode active material was 0% by weight and 1% by weight. Li 3 VO 4 was added in an amount of%, 2% by weight, 3% by weight and 5.5% by weight, and calcined at 1100 ° C. for 10 hours in a nitrogen atmosphere to include LiVO 2 as a main component, and Li 3 VO 4 as a main component. In addition, a negative electrode active material was prepared.

1-2) 평가 1-2) evaluation

상기 실시예에서 제조된 음극 활물질에 대하여 평균 입자 직경을 측정하였다. 음극 활물질내 Li3VO4의 함유량은 X선 회절법에 의해 측정할 수 있으며, 평균 입자 직경은 레이저 회절법에 의해 측정할 수 있다. 그 결과를 도 2a에 나타내었다.The average particle diameter was measured for the negative electrode active material prepared in Example. The content of Li 3 VO 4 in the negative electrode active material can be measured by the X-ray diffraction method, and the average particle diameter can be measured by the laser diffraction method. The results are shown in Figure 2a.

상기 X선 회절 분석은 CuKα의 X선(1.5418Å, 40kV/30mA)을 사용하여 10 내지 80°의 2θ범위에서 0.02°/초의 스캐닝 속도의 조건으로 실시하였다. 결과로 얻어진 X선 회절 분석 결과를 Rietveld법을 이용해 핏팅(fitting)하여 Li3VO4의 함량을 계산하였고, 이때 사용한 측정 프로그램은 Cerius 2이다.The X-ray diffraction analysis was performed under conditions of a scanning speed of 0.02 ° / sec in a 2θ range of 10 to 80 ° using X-ray (1.5418 Hz, 40 kV / 30 mA) of CuKα. The resulting X-ray diffraction analysis was fitted to the Rietveld method to calculate the content of Li 3 VO 4 , and the measurement program used was Cerius 2.

도 2a는 음극 활물질내의 Li3VO4의 함유량과 평균 입자 직경과의 관계를 나타낸 그래프이다. 도 2a에 있어서 세로축은 평균 입자 직경(단위:㎛)을 나타내고, 가로축은 Li3VO4의 함유량(단위:중량%)을 나타낸다.2A is a graph showing the relationship between the content of Li 3 VO 4 and the average particle diameter in the negative electrode active material. In Figure 2a and the vertical axis is a mean particle size represents the (in ㎛), the axis of abscissa the content (unit:% by weight) of Li 3 VO 4 shows.

도 2a에 나타난 바와 같이, 음극 활물질내 Li3VO4의 함유량이 증가함에 따라 음극 활물질의 평균 입자 직경이 증가하는 것을 알 수 있다.As shown in Figure 2a, it can be seen that the average particle diameter of the negative electrode active material increases as the content of Li 3 VO 4 in the negative electrode active material increases.

상기 실시예 1에 따라 제조된 음극 활물질에 대하여 방전 용량 향상 효과를 평가하였다. The discharge capacity improving effect of the negative electrode active material prepared according to Example 1 was evaluated.

방전 용량의 시편은 음극(4)과 동일하게 형성하였다. 즉, 리튬 바나듐 산화물로 이루어지는 상기 실시예 1에 따른 음극활물질 각 80중량%, 아세틸렌 블랙 10중량%, 바인더 10중량%을 혼합하여 구리집전체 위에 도포하고, 합재 밀도가 1.8g/cm3이 되게 프레스 가공하여 음극을 형성하였다. The specimen of the discharge capacity was formed in the same manner as the negative electrode (4). That is, 80% by weight of each of the negative electrode active materials, 10% by weight of acetylene black, and 10% by weight of the binder according to Example 1 made of lithium vanadium oxide were mixed and applied on a copper current collector, so that the mixture density was 1.8 g / cm 3. Press working to form a cathode.

금속 리튬을 음극에 배치하고 시편을 양극에 배치한 리튬 기준개방 전위의 테스트 셀에서 0.5mA/cm2의 전류 밀도로 방전 용량을 측정하였다. 그 결과를 도 2b에 나타내었다.The discharge capacity was measured at a current density of 0.5 mA / cm 2 in a test cell at a lithium reference open potential in which metal lithium was placed on the negative electrode and the specimen was placed on the positive electrode. The results are shown in Figure 2b.

도 2b에 있어서 세로축은 방전 용량(단위 없음)을 나타내고, 가로축은 Li3VO4의 함유량(단위:중량%)을 나타낸다.In FIG. 2B, the vertical axis represents discharge capacity (unitless), and the horizontal axis represents content (unit: wt%) of Li 3 VO 4 .

방전 용량은 Li3VO4의 함유량이 0일 때(이하, 이 경우를 비교예라고 함)의 방전 용량을 100로 했을 때의 비로서 나타내었다. 또한 도 2에서 A1이 방전 용량, B1이 평균 입자 직경이다. The discharge capacity was expressed as a ratio when the discharge capacity when the content of Li 3 VO 4 was 0 (hereinafter, referred to as a comparative example) was 100. In addition, in FIG. 2, A1 is a discharge capacity and B1 is an average particle diameter.

도 2b에 나타난 바와 같이, Li3VO4의 함유량이 증가함에 따라 방전 용량이 증가하나, 3.0중량%을 초과하면 오히려 방전 용량이 감소하는 것을 알 수 있다. 이것은, 상기와 같은 메커니즘에 의한 것으로 생각된다.As shown in FIG. 2B, the discharge capacity increases as the content of Li 3 VO 4 increases, but when the content exceeds 3.0% by weight, the discharge capacity decreases. This is considered to be due to the above mechanism.

상기 도 2a 및 도 2b로부터 리튬 바나듐 산화물을 주성분으로 하는 음극 활물질중에 Li3VO4을 함유시키고, 그 함유량을 0.01 내지 5중량%로 함으로써 적절한 평균 입자 직경을 갖는 음극 활물질을 얻을 수 있다. 특히 Li3VO4 함유량이 0.5 내지 3중량%인 음극 활물질을 음극에 이용할 경우 Li3VO4을 음극 활물질에 함유하지 않는 비수이차전지와 비교하여 방전 용량을 30 내지 40% 향상시킬 수 있다. 이때의 음극 활물질의 평균 입자 직경은 10 내지 50㎛이다. 2A and 2B, the negative electrode active material having an appropriate average particle diameter can be obtained by containing Li 3 VO 4 in a negative electrode active material having a lithium vanadium oxide as a main component and making the content 0.01 to 5% by weight. In particular, when the negative electrode active material having a Li 3 VO 4 content of 0.5 to 3% by weight is used for the negative electrode, the discharge capacity may be improved by 30 to 40% compared to a nonaqueous secondary battery which does not contain Li 3 VO 4 in the negative electrode active material. The average particle diameter of the negative electrode active material at this time is 10-50 micrometers.

실시예Example 2 2

음극 활물질내의 VC의 함유량과 방전 용량, 및 고율방전유지율의 관계를 평가하기 위하여, 하기와 같은 방법으로 음극 활물질을 제조한 후 VC의 함량에 따른 방전 용량, 및 고율방전유지율을 측정하였다. 그 결과를 도 3에 나타내었다.In order to evaluate the relationship between the content of VC in the negative electrode active material, the discharge capacity, and the high rate discharge retention rate, after preparing the negative electrode active material in the following manner, the discharge capacity and the high rate discharge retention rate according to the content of VC were measured. The results are shown in FIG.

2-1) 음극 활물질의 제조2-1) Preparation of Anode Active Material

Li3VO4을 함유시키지 않고 VC의 양을 변화시키며, 음극활물질을 제조하였다.The negative active material was prepared by changing the amount of VC without containing Li 3 VO 4 .

LiOH(수산화 리튬)과 V2O3(3산화 바나듐)을 리튬과 바나듐과의 몰비가 1.22:1이 되도록 혼합한 후, 도 3에 나타난 바와 같은 함량으로 VC를 각각 첨가하고 질소 분위기하에서, 1100℃로 10시간 소성하였다. LiOH (lithium hydroxide) and V 2 O 3 (vanadium trioxide) were mixed so that the molar ratio between lithium and vanadium was 1.22: 1, and then VC was added to each of the contents as shown in FIG. 3 and under nitrogen atmosphere, 1100 It baked at 10 degreeC for 10 hours.

또한, 평균 입자 직경의 영향을 제외하기 위하여 평균 입자 직경이 약 7㎛이 되도록 제트 밀에 의해 분쇄하였다. Further, in order to exclude the influence of the average particle diameter, it was ground by a jet mill so that the average particle diameter was about 7 mu m.

2-2) 평가 2-2) Evaluation

상기 실시예 1의 음극 활물질에 대한 함유량 측정방법과 동일한 방법으로 실시하여 상기 실시예 2에서 제조된 음극 활물질에 대하여 VC 함유량 및 평균입자직경을 측정하였다.The VC content and the average particle diameter of the negative electrode active material prepared in Example 2 were measured by the same method as the content measuring method for the negative electrode active material of Example 1.

또한, 상기 실시예 2에 따라 제조된 음극 활물질에 대하여 VC 함유량 에 따른 방전 용량 및 고율방전 유지율과의 관계를 평가하였다. 그 결과를 도 3에 나타내었다.In addition, the relationship between the discharge capacity and the high rate discharge retention according to the VC content of the negative electrode active material prepared according to Example 2 was evaluated. The results are shown in FIG.

방전 용량 및 고율방전 유지율 측정을 위한 시편 및 테스트 셀은 앞서 실시예 1에 따른 음극 활물질에서와 동일한 방법으로 형성하였다. Specimens and test cells for measuring discharge capacity and high rate discharge retention were formed in the same manner as in the negative electrode active material according to Example 1 above.

방전 용량은 상기 테스트 셀에서 0.5mA/cm2의 전류 밀도로 측정한 후, VC의 함유량이 0일 때(이하 이 경우를 비교예 2라고 한다)의 방전 용량을 100으로 했을 때의 비로서 나타내었다. The discharge capacity is measured as a current density of 0.5 mA / cm 2 in the test cell, and then expressed as a ratio when the discharge capacity when the content of VC is 0 (hereinafter referred to as Comparative Example 2) is 100. It was.

또한 상기 고율방전 유지율은 상기 테스트 셀에서 0.5mA/cm2의 전류 밀도에서 측정한 방전 용량(이하, 「저율방전 용량」이라고 한다)을 100으로 했을 때, 3mA/cm2의 전류 밀도에서 측정한 방전 용량(이하, 「고율방전 용량」이라 한다)의 비로 나타내었다.In addition, the high-rate discharge retention (hereinafter referred to as the "Baseline discharge capacity"), a discharge capacity measured at a current density of 0.5mA / cm 2 in the test cells at the measurement when a 100 and a current density of 3mA / cm 2 It represents with the ratio of discharge capacity (henceforth "high rate discharge capacity").

도 3은 음극 활물질내의 VC(바나듐 탄화물)의 함유량과 방전 용량 및 고율방전 유지율과의 관계를 나타낸 그래프이다. 3 is a graph showing the relationship between the content of VC (vanadium carbide) in the negative electrode active material, the discharge capacity, and the high rate discharge retention.

도 3에 있어서 가로축은 VC의 함유량(단위: 중량%)을 나타내고, 세로축은 각각 방전 용량(단위 없음), 고율방전 유지율(단위 없음)을 나타낸다. 또한 A2는 방전 용량이고, B2는 음극 활물질의 평균입경(단위:㎛)이며, C2이 고율방전 유지율이다.In Fig. 3, the horizontal axis represents the content (unit: wt%) of VC, and the vertical axis represents the discharge capacity (unitless) and the high rate discharge retention (unitless), respectively. In addition, A2 is a discharge capacity, B2 is the average particle diameter (unit: micrometer) of a negative electrode active material, and C2 is a high rate discharge retention.

도 3에 나타난 바와 같이, VC의 함유량이 0.5중량% 이하에서는 높은 방전 용량이 얻어지지만, 0.5중량%을 초과하면 방전 용량이 급격하게 저하된다. 또, 고율방전 유지율은 VC의 함유량의 증가에 수반하여 향상된다. 이것은, 상기한 바와 같이 VC의 체적 저항율이 낮아, VC의 함유량이 증가하면 입자내의 도전성이 향상되기 때문이다. As shown in Fig. 3, when the content of VC is 0.5 wt% or less, high discharge capacity is obtained. Moreover, high rate discharge retention improves with increase of content of VC. This is because the volume resistivity of VC is low as mentioned above, and when content of VC increases, the electroconductivity in particle | grains improves.

이와 같이, 리튬 바나듐 산화물을 주성분으로 하는 음극 활물질중에 VC을 함유시키고, 그 함유량을 0.5중량%로 하는 것으로, 방전 용량을 향상시킬 수 있을 뿐 아니라, 고율방전 유지율을 향상시킬 수 있다. Thus, by containing VC in the negative electrode active material which has a lithium vanadium oxide as a main component, and making the content into 0.5 weight%, not only can a discharge capacity be improved but a high rate discharge retention can be improved.

실시예Example 3 3

LiOH(수산화 리튬)과 V2O3(3산화 바나듐)을 리튬과 바나듐과의 몰비가 1.21:0.9가 되도록 혼합한 후, 질소 분위기하에서, 1100℃로 10시간 소성하여, LiVO2를 주성분으로 포함하고, 5중량%의 Li3VO4를 포함하는 음극 활물질을 제조하였다.LiOH (lithium hydroxide) and V 2 O 3 (vanadium trioxide) are mixed so that the molar ratio between lithium and vanadium is 1.21: 0.9, and then calcined at 1100 ° C. under nitrogen atmosphere for 10 hours to include LiVO 2 as a main component. And a negative electrode active material containing 5% by weight of Li 3 VO 4 was prepared.

실시예Example 4 4

LiOH(수산화 리튬)과 V2O3(3산화 바나듐)을 리튬과 바나듐과의 몰비가 1.22:1이 되도록 혼합한 후, 음극 활물질내 포함되는 Li3VO4 및 VC의 함량이 각각 1중량% 및 0.05중량%가 되도록 하는 양으로 Li3VO4 및 VC를 각각 첨가하고 질소 분위기하에서, 1100℃로 10시간 소성하여, LiVO2를 주성분으로 포함하고, 1중량%의 Li3VO4 및 0.05중량%의 VC를 포함하는 음극 활물질을 제조하였다.LiOH (lithium hydroxide) and V 2 O 3 (vanadium trioxide) were mixed so that the molar ratio between lithium and vanadium was 1.22: 1, and the contents of Li 3 VO 4 and VC included in the negative electrode active material were 1% by weight, respectively. And Li 3 VO 4 and VC in an amount of 0.05% by weight, respectively, and calcined at 1100 ° C. for 10 hours under a nitrogen atmosphere, containing LiVO 2 as a main component, 1% by weight of Li 3 VO 4 and 0.05% by weight. A negative active material including% VC was prepared.

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

도 1은 본 발명의 일 구현예에 따른 비수이차전지를 나타내는 종단면도.1 is a longitudinal sectional view showing a non-aqueous secondary battery according to an embodiment of the present invention.

도 2a는 본 발명의 실시예 1의 비수이차전지용 음극합재를 구성하는 음극 활물질내의 Li3VO4의 함유량과 음극 활물질의 평균 입자 직경과의 관계를 도시한 그래프.FIG. 2A is a graph showing the relationship between the content of Li 3 VO 4 in the negative electrode active material constituting the negative electrode material for a non-aqueous secondary battery of Example 1 of the present invention and the average particle diameter of the negative electrode active material. FIG.

도 2b는 본 발명의 실시예 1의 비수이차전지용 음극합재를 구성하는 음극 활물질내의 Li3VO4의 함유량과 방전 용량과의 관계를 도시한 그래프. FIG. 2B is a graph showing the relationship between the content of Li 3 VO 4 and the discharge capacity in the negative electrode active material constituting the negative electrode mixture for nonaqueous secondary battery of Example 1 of the present invention. FIG.

도 3은 본 발명의 실시예 2의 비수이차전지용 음극합재를 구성하는 음극 활물질내의 VC 함유량과 방전 용량 및 고율방전 유지율과의 관계를 도시한 그래프.3 is a graph showing the relationship between the VC content, the discharge capacity, and the high rate discharge retention in the negative electrode active material constituting the negative electrode mixture for the nonaqueous secondary battery of Example 2 of the present invention.

[도면 주요 부분에 대한 설명][Description of main parts of drawing]

1 비수이차전지 2 케이스 1 non-rechargeable battery 2 case

3 양극 4 음극 3 anode 4 cathode

5 세퍼레이터 6 센터핀 5 Separator 6 Center Pin

7 양극단자 8 음극단자 7 Positive terminal 8 Negative terminal

10 적층체 10 laminate

Claims (5)

리튬 바나듐 산화물을 주성분으로 포함하고,Contains lithium vanadium oxide as a main component, Li3VO4, 바나듐 탄화물, 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 포함하며,Li 3 VO 4 , vanadium carbide, and mixtures thereof; 상기 Li3VO4 및 바나듐 탄화물은 음극 활물질 총 중량에 대하여 각각 0.01 내지 5중량%, 및 0.5중량% 이하로 포함되는 것인 비수이차전지용 음극활물질. Wherein the Li 3 VO 4 and vanadium carbide is contained in an amount of 0.01 to 5% by weight, and 0.5% by weight or less based on the total weight of the negative electrode active material. 제1항에 있어서,The method of claim 1, 상기 Li3VO4는 음극 활물질 총 중량에 대하여 0.5 내지 3.0중량%로 포함되는 것인 비수이차전지용 음극활물질.The Li 3 VO 4 is a negative active material for a non-aqueous battery that is contained in 0.5 to 3.0% by weight based on the total weight of the negative electrode active material. 제1항에 있어서,The method of claim 1, 상기 바나듐 탄화물은 음극 활물질 총 중량에 대하여 0.01 내지 0.4중량%로 포함되는 것인 비수이차전지용 음극활물질.The vanadium carbide is a negative active material for a non-aqueous battery that is contained in 0.01 to 0.4% by weight based on the total weight of the negative electrode active material. 제1항에 있어서,The method of claim 1, 상기 음극 활물질은 평균 입자 직경이 5 내지 50㎛인 것인 비수이차전지용 음극활물질.The negative active material is a negative active material for a non-aqueous secondary battery having an average particle diameter of 5 to 50㎛. 제1항 내지 제4항중 어느 한 항에 따른 비수이차전지용 음극 활물질을 포함하는 음극;A negative electrode comprising the negative active material for a non-aqueous secondary battery according to any one of claims 1 to 4; 양극; 및anode; And 전해질Electrolyte 을 포함하는 비수이차전지.Non-aqueous secondary battery comprising a.
KR1020070094178A 2006-09-19 2007-09-17 Negative active material for non-aqueous secondary battery, and non-aqueous secondary battery including same KR100965240B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/902,206 US8187750B2 (en) 2006-09-19 2007-09-19 Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
CN2007101541796A CN101154725B (en) 2006-09-19 2007-09-19 Negative active material for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006252225A JP5101068B2 (en) 2006-09-19 2006-09-19 Negative electrode material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JPJP-P-2006-00252225 2006-09-19

Publications (2)

Publication Number Publication Date
KR20080026040A true KR20080026040A (en) 2008-03-24
KR100965240B1 KR100965240B1 (en) 2010-06-22

Family

ID=39256247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070094178A KR100965240B1 (en) 2006-09-19 2007-09-17 Negative active material for non-aqueous secondary battery, and non-aqueous secondary battery including same

Country Status (3)

Country Link
JP (1) JP5101068B2 (en)
KR (1) KR100965240B1 (en)
CN (1) CN101154725B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104821A1 (en) * 2012-12-27 2014-07-03 경북대학교 산학협력단 Negative electrode material for lithium secondary battery, comprising lithium-vanadium oxide, and method for preparing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233828B2 (en) * 2012-09-21 2017-11-22 国立研究開発法人産業技術総合研究所 Negative electrode for lithium ion battery, lithium ion battery comprising the negative electrode
CN104241626B (en) * 2013-06-17 2016-10-05 华南理工大学 The process for preparing sol-gel of lithium ion battery lithium vanadate negative material
CN103474641A (en) * 2013-09-25 2013-12-25 三峡大学 Lithium ion battery anode material Li3VO4 and preparation method thereof
CN103500821B (en) * 2013-10-18 2016-04-13 苏州德尔石墨烯产业投资基金管理有限公司 A kind of lithium ion battery electronegative potential lithium vanadium based compound and preparation method thereof
CN111933902B (en) * 2020-07-07 2021-10-08 梅州市量能新能源科技有限公司 Lithium ion battery cathode material, lithium ion battery and preparation method of lithium ion battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029132A (en) 1976-05-24 1977-06-14 Westinghouse Electric Corporation Method of preparing high capacity nickel electrode powder
JP3169102B2 (en) * 1993-04-14 2001-05-21 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
JPH0729604A (en) * 1993-07-14 1995-01-31 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP4352475B2 (en) * 1998-08-20 2009-10-28 ソニー株式会社 Solid electrolyte secondary battery
JP2003068305A (en) * 2001-03-01 2003-03-07 Sumitomo Metal Ind Ltd Negative material for secondary lithium battery and its manufacturing method
JP3835180B2 (en) * 2001-03-05 2006-10-18 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3876673B2 (en) * 2001-10-05 2007-02-07 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery
JP3950958B2 (en) * 2002-06-07 2007-08-01 独立行政法人物質・材料研究機構 Method for producing Li-V oxide
US20040048157A1 (en) 2002-09-11 2004-03-11 Neudecker Bernd J. Lithium vanadium oxide thin-film battery
JP4781659B2 (en) * 2003-11-06 2011-09-28 昭和電工株式会社 Graphite particles for negative electrode material, method for producing the same, and battery using the same
JP4400190B2 (en) * 2003-11-27 2010-01-20 株式会社豊田中央研究所 Method for producing negative electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104821A1 (en) * 2012-12-27 2014-07-03 경북대학교 산학협력단 Negative electrode material for lithium secondary battery, comprising lithium-vanadium oxide, and method for preparing same

Also Published As

Publication number Publication date
KR100965240B1 (en) 2010-06-22
CN101154725B (en) 2010-06-02
JP2008077847A (en) 2008-04-03
JP5101068B2 (en) 2012-12-19
CN101154725A (en) 2008-04-02

Similar Documents

Publication Publication Date Title
KR101234965B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
KR102240980B1 (en) Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
EP1291941B1 (en) Active material for battery and method of preparing the same
KR100599602B1 (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising the same
US6203947B1 (en) Long cycle-life alkali metal battery
JP5259078B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US10205165B2 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
EP3183764A1 (en) Electroactive materials for metal-ion batteries
KR20130033425A (en) Lithium secondary battery
JP2008226605A (en) Nonaqueous electrolyte secondary battery
CN103972450A (en) Battery
KR101325165B1 (en) Positive electrode active material for lithium-ion battery and lithium-ion battery
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
KR100965240B1 (en) Negative active material for non-aqueous secondary battery, and non-aqueous secondary battery including same
CN111244533A (en) Solid electrolyte and electricity storage device provided with same
KR20070066861A (en) Method of preparing negative active material for lithium ion secondary battery, negative active material for lithium ion secondary battery prepared thereby, and lithium ion secondary battery comprising same
CN101232088B (en) Battery
CN111668484A (en) Negative electrode active material and electricity storage device
JP5420132B2 (en) Electrochemical element having ceramic particles in electrolyte layer
KR20150133167A (en) Anode active material for lithium secondary battery and Lithium secondary battery comprising the same
JP2003531466A5 (en)
US8187750B2 (en) Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
CN113711382A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR100433592B1 (en) Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160613

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 9