KR20080018571A - High performamce al alloy for extrusion - Google Patents
High performamce al alloy for extrusion Download PDFInfo
- Publication number
- KR20080018571A KR20080018571A KR1020060080892A KR20060080892A KR20080018571A KR 20080018571 A KR20080018571 A KR 20080018571A KR 1020060080892 A KR1020060080892 A KR 1020060080892A KR 20060080892 A KR20060080892 A KR 20060080892A KR 20080018571 A KR20080018571 A KR 20080018571A
- Authority
- KR
- South Korea
- Prior art keywords
- alloy
- scandium
- extrusion
- hardness
- homogenization treatment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/09—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
Abstract
Description
도 1은 Al-Sc합금 주조재의 미세조직을 나타낸 사진.1 is a photograph showing the microstructure of the Al-Sc alloy casting material.
도 2는 Al-0.3wt.%Sc합금의 EPMA 관찰을 나타낸 사진.Figure 2 is a photograph showing the EPMA observation of Al-0.3wt.% Sc alloy.
도 3은 스칸듐(Sc)첨가에 따른 경도변화를 나타낸 도표.Figure 3 is a chart showing the hardness change according to the scandium (Sc) addition.
도 4는 Al5083+Xwt.%Sc에 따른 응력변형률 곡선을 나타낸 도표.Figure 4 is a chart showing the strain curve according to Al5083 + Xwt.% Sc.
도 5는 균질화 처리에 따른 경도변화를 나타낸 도표.5 is a chart showing the hardness change according to the homogenization treatment.
도 6은 균질화 처리에 따른 미세조직 변화를 나타낸 도표.Figure 6 is a chart showing the microstructure changes according to the homogenization treatment.
본 발명은 고성능 알루미늄합금 압출소재에 관한 것으로, 보다 상세하게는 Al5083 합금을 710℃에서 완전용해 후 Al-2wt.%Sc 모합금을 이용하여 240℃로 예열된 금형에 0.3wt.%Sc의 조성비를 가지도록 제조한 것이 특징인 고성능 알루미늄합금 압출소재에 관한 것이다.The present invention relates to a high-performance aluminum alloy extruded material, more specifically, a composition ratio of 0.3wt.% Sc in a mold preheated to 240 ° C using Al-2wt.% Sc mother alloy after completely dissolving Al5083 alloy at 710 ° C. It relates to a high-performance aluminum alloy extrusion material characterized in that it is manufactured to have.
일반적으로 알루미늄 압출사업은 신 압출기술, 금형기술에 대한 신기술이 개발을 필요로 하고 있으며, 특히 경량 고강도의 특성으로 성장성이 가장 큰 분야가 자동차, 항공기에 대한 적용이며 이산화탄소가스 발생 억제를 위한 자동차 연비 개 선노력으로 적용 가능성이 증가되고 있다.In general, the aluminum extrusion business requires the development of new extrusion technology and mold technology. In particular, the strongest growth potential is applied to automobiles and aircrafts due to its light weight and high strength. Improvements are increasing the applicability.
특히 스칸듐(Sc)의 첨가는 알루미늄합금의 특성향상에 많은 영향을 주며, AL-Mg-Sc합금의 경우 스칸듐(Sc)의 첨가를 통한 강도, 재결정온도 상승으로 인한 고온특성 등의 특성이 향상되는 것으로 알려져 있다.In particular, the addition of scandium (Sc) greatly affects the properties of aluminum alloys, and in the case of AL-Mg-Sc alloys, the properties such as strength and high temperature characteristics due to an increase in recrystallization temperature are improved through addition of scandium (Sc). It is known.
Al-Sc합금의 강도는 2XXX계 합금 수준 이상 가능하며 경량화, 접합부위 및 부품 수 절감으로 인한 경량화, 경제성 향상, 연비절감 등의 측면에서 기존 2XXX 및 7XXX계 소재를 대체 가능한 고성능 재료 국내 항공기 분야의 지속적인 발전으로 국산화의 범위가 점차 넓어지고 있으나 알루미늄 기체 및 동체용 구조재의 연구개발은 거의 전무한 상태로 실제 적용을 위한 합금의 특성 파악이 필요한 실정이다.High strength Al-Sc alloy can be more than 2XXX alloy level and can replace existing 2XXX and 7XXX materials in terms of light weight, weight reduction due to reduction of joints and parts, economical efficiency, and fuel efficiency. Although the scope of localization is gradually widening due to continuous development, there is almost no research and development of structural materials for aluminum gas and fuselage, and it is necessary to grasp the characteristics of the alloy for practical application.
알루미늄(Al)에 소량 스칸듐(Sc)첨가에 따른 주조 발렛의 특성, 입자미세화 효과, 용접부 편석억제 효과, 조직변화 및 제어, 압출소재 제조기술, 압출조건 및 시스템에 대한 체계적인 개발이 필요하다. 선진국에서도 이에 대한 기술적 내용의 공개를 제한하고 있어 스칸듐(Sc) 함유 고용접성, 고연성, 고내식성 알루미늄합금 압출소재 및 성형기술 개발이 필요하다.It is necessary to systematically develop the characteristics of cast valet, addition of fine particles, suppression of segregation of welds, structure change and control, extrusion material manufacturing technology, extrusion conditions and systems in addition to a small amount of scandium (Sc) in aluminum (Al). Developed countries also restrict the disclosure of technical details, and it is necessary to develop scandium (Sc) -containing solid-state, high-ductility and high corrosion-resistant aluminum alloy extrusion materials and molding technology.
따라서 상기와 같은 목적을 이루기 위해서는 알루미늄합금 자체의 경도, 미세조직과 같은 물성조건 뿐만아니라 경제성을 고려한 최적의 스칸듐(Sc) 함유량을 찾는데 그 목적이 있다.Therefore, the purpose is to find the optimum scandium (Sc) content in consideration of economics as well as physical conditions such as hardness, microstructure of the aluminum alloy itself.
본 발명은 고성능 알루미늄합금 압출소재에 관한 것으로, 보다 상세하게는 Al5083 합금을 710℃에서 완전용해 후 Al-2wt.%Sc 모합금을 이용하여 240℃로 예열된 금형에 0.3wt.%Sc의 조성비를 가지도록 제조한 것이 특징인 고성능 알루미늄합금 압출소재에 관한 것이다.The present invention relates to a high-performance aluminum alloy extruded material, more specifically, a composition ratio of 0.3wt.% Sc in a mold preheated to 240 ° C using Al-2wt.% Sc mother alloy after completely dissolving Al5083 alloy at 710 ° C. It relates to a high-performance aluminum alloy extrusion material characterized in that it is manufactured to have.
본 발명을 첨부한 도면에 의해 상세히 설명하면 다음과 같다.The present invention will be described in detail with reference to the accompanying drawings.
도 1은 Al-Sc합금 주조재의 미세조직을 나타낸 사진으로서, 도 1의 사진에서 처럼 가장 우수한 스칸듐(Sc)조성비의 합금제조를 위하여 Al5083합금을 710℃에서 완전용해 후 Al-2wt.Sc 모합금을 이용하여 0.1, 0.3, 0.5wt.%Sc로 합금을 제조하였으며, 금형을 240℃로 예열하여 합금을 제조하였다.Figure 1 is a photograph showing the microstructure of the Al-Sc alloy casting material, Al-283.Sc mother alloy after completely dissolving Al5083 alloy at 710 ℃ for the alloy of the highest scandium (Sc) composition ratio as shown in the photo of FIG. An alloy was prepared by using 0.1, 0.3, 0.5 wt.% Sc, and an alloy was prepared by preheating the mold to 240 ° C.
스칸듐(Sc)의 단독 첨가의 고융점으로 인한 편석과 주조결함이 발생하였으며, 주조재의 건전성을 확보하기 위하여 주조 온도에 따른 영향으로 스칸듐(Sc)의 함량이 증가할수록 차이가 발생하였다.Segregation and casting defects occurred due to the high melting point of the addition of scandium (Sc), and the difference occurred as the content of scandium (Sc) increased due to the influence of casting temperature in order to secure the integrity of the casting material.
도 2는 제조된 0.3wt.%Sc합금의 EPMA를 이용하여 관찰한 사진으로서, 도 2에서와 같이 응고시 스칸듐(Sc)함량이 증가할수록 주조재의 결정립 미세화 효과가 나타났으며, 고가의 스칸듐(Sc)첨가에 따른 제조비용 증가에 따라 경제성을 고려한 적정 스칸듐(Sc)함량을 도출한 결과 0.3wt.%의 함량이 적정할 것으로 판단된다.Figure 2 is a photograph observed using the prepared 0.3 wt.% Sc alloy EPMA, as shown in Figure 2 when the content of the scandium (Sc) during solidification increased the grain refining effect of the casting material, expensive scandium ( As the manufacturing cost increases due to the addition of Sc), 0.3 wt.% Of the appropriate scandium (Sc) content is deemed appropriate considering economic efficiency.
도 2에서 스칸듐(Sc)분포로 나타난 아래의 붉은점을 미루어 볼때 Al3Sc 석출상의 위치를 유추할 수 있으며, 이 부분에서 Al3Sc상의 분포가 합금에 균일하게 분포하고 있음을 알 수 있다.The position of the Al 3 Sc precipitated phase can be inferred from the red dot below, which is represented by the scandium (Sc) distribution in FIG. 2, and the distribution of the Al 3 Sc phase is uniformly distributed in the alloy.
또한, Al3Sc 석출상은 응고시 생성되며, 이는 Sc의 Al에 대한 낮은 고용도로 인한 결과로 볼 수 있다.In addition, Al 3 Sc precipitated phase is formed upon solidification, which may be a result of the low solubility of Al in Sc.
도 3은 스칸듐(Sc)첨가에 따른 경도변화를 나타낸 도표이며, 도 4는 Al5083+Xwt.%Sc에 따른 응력변형률 곡선을 나타낸 도표이다.3 is a diagram showing the change in hardness according to the addition of scandium (Sc), Figure 4 is a diagram showing the stress strain curve according to Al5083 + Xwt.% Sc.
따라서, 도 3과 도4는 Al5083합금에 스칸듐(Sc)을 첨가에 따른 기계적 성질을 나타내는 것으로 스칸듐(Sc)의 첨가에 따라 경도의 미세하게 증가하는 것으로 나타났으며, 0.5wt.%의 경우 스칸듐(Sc)의 편석발생으로 인한 국부적인 스칸듐(Sc) free 현상에 의한 경도감소가 발생한 것으로 생각된다. 특히 균질화 이전의 주방상태에서 측정된 결과로 경도값의 편차가 비교적 크게 나타나는 경향이 있어 적정 균진화 처리조건 설정 후의 제조된 합금의 건전성을 확보할 수 있을 것으로 본다.Therefore, FIGS. 3 and 4 show the mechanical properties of the addition of scandium (Sc) to the Al5083 alloy, and it was shown that the hardness increased slightly with the addition of scandium (Sc), and in the case of 0.5wt.% It is thought that the hardness decrease is caused by local scandium (Sc) free phenomenon due to segregation of (Sc). In particular, as a result of the measurement in the kitchen state before homogenization, the variation in hardness value tends to be relatively large, so that the integrity of the manufactured alloy after setting the proper homogenization treatment condition can be secured.
Al5083합금의 경우 그 경도는 94Hv로 나타났으며 최대 경도를 나타내는 0.3wt.%Sc합금의 경우 그 경도값은 105Hv로 나타났다.In case of Al5083 alloy, the hardness was 94Hv, and in the case of 0.3wt.% Sc alloy showing the maximum hardness, the hardness value was 105Hv.
도 4는 0.1wt.%Sc, 0.3wt.%Sc, 0.5wt.%Sc합금의 기계적 성질을 알아보기 위하여 최대하중 10ton으로 측정한 응력변형률 곡선을 나타내는 것으로 도 3의 경도 변화와 일치하는 결과를 얻었으며, 0.3wt.%Sc을 함유한 합금의 경우 최대인장강도 320MPa로 가장 높게 나타남을 알 수 있다.FIG. 4 shows stress strain curves measured at a maximum load of 10 to obtain mechanical properties of 0.1 wt.% Sc, 0.3 wt.% Sc, and 0.5 wt.% Sc alloys. In the case of the alloy containing 0.3wt.% Sc, it can be seen that the maximum tensile strength is 320MPa.
그러나 연신율의 경우 세 합금 중 가장 낮게 나타나고 있다. 이는 생성된 Al3Sc합금의 석출상에 의한 전위 고착에 따른 강도가 증가하나 석출상의 고착전위에 의한 응력집중으로 연신율은 감소하는 것으로 생각된다.However, the elongation is the lowest among the three alloys. It is believed that the strength of Al 3 Sc alloys increased due to dislocation fixation by the precipitated phase but the elongation was decreased due to the stress concentration due to the settling potential of the precipitated phase.
대부분의 알루미늄(Al)합금은 연신율이 우수한 것으로 평가되고 있으나, 고강도 특히 Al7075합금의 경우 연신율이 10%이하로 나타나는데, 일반적으로 7% 이상 의 연신율의 경우 압출성 및 소성가공에서 무난한 것으로 평가되고 있다.Most aluminum (Al) alloys have excellent elongation, but high strength, especially Al7075 alloy, shows less than 10% of elongation. Generally, elongation of more than 7% is considered good in extrudability and plastic processing. .
도 5는 균질화 처리에 따른 경도변화를 나타낸 도표로서, 합금의 제조 특히 빌렛의 제조에 있어 가장 먼저 행해지는 열처리가 균질화 처리로서 이는 재료 내부의 응고시 생성된 잔류응력의 제거 및 고용원소들의 편석제거를 목적으로 이루어 진다.5 is a diagram showing the hardness change according to the homogenization treatment, in which the first heat treatment is performed in the manufacture of alloys, particularly in the manufacture of billets, which is to remove residual stress and solidification of solid elements in the solidification of the material. It is made for the purpose.
특히 균질화 처리를 통하여 재료의 기초 물성의 기준으로 하게 됨으로서 균질화 처리에 따른 재료의 특성 변화를 알아보았다.In particular, the standard property of the material through the homogenization treatment was used to determine the change in the properties of the material according to the homogenization treatment.
도 5에서처럼 Al5083과 Al5083에 각각 0.3wt.%Sc와 0.5wt.%Sc를 첨가한 세 합금을 이용하여 350℃, 450℃, 550℃의 세 온도에서 균질화 처리 시 시간에 따른 경도 변화를 나타내었다.As shown in FIG. 5, the hardness change with time was homogenized at three temperatures of 350 ° C., 450 ° C. and 550 ° C. using three alloys of 0.3 wt.% Sc and 0.5 wt.% Sc added to Al5083 and Al5083, respectively. .
각 균질화 온도에서 24시간 처리 후인 세 합금의 경도는 90Hv정도로 나타났으며, 350℃의 경우 균질화 처리 초기인 4시간에서 스칸듐(Sc)을 첨가한 합금의 경우 경도 증가현상이 발생함을 알 수 있다.The hardness of the three alloys after treatment for 24 hours at each homogenization temperature was about 90 Hv, and the hardness increase phenomenon occurred in the alloy added with scandium (Sc) at 350 ° C at the initial 4 hours of homogenization treatment. .
이는 응고시 생성된 Al3Sc상 뿐만 아니라, 350℃의 온도에서 Al6Mg17, Al3Sc 석출상의 시효현상으로 인한 초기 경도증가로 생각되며, 이러한 초기 시효 강화 효과로 증가된 경도는 균질화 시간이 길어짐에 따라 석출상의 정합성 상실로 인한 경도 감소가 발생하여 16시간 이후에는 일정한 경도값을 가지는 것으로 생각된다.This is thought to be the initial hardness increase due to the aging phenomenon of Al 6 Mg 17 and Al 3 Sc precipitated phase at the temperature of 350 ° C as well as the Al 3 Sc phase formed during solidification. As this length increases, hardness decreases due to loss of consistency of the precipitated phase, which is considered to have a constant hardness value after 16 hours.
450℃의 경우 고온에서의 균진화 처리로 초기 경도 증가는 발생하지 않고 있으며, 이는 석출상의 빠른 성장으로 인한 부정합 석출상의 빠른 출현이 그 이유이다.In the case of 450 ° C., the initial hardness increase did not occur due to the homogenization treatment at a high temperature, which is because of the rapid appearance of mismatched precipitated phases due to rapid growth of precipitated phases.
그런 450℃의 경우 빠른 균질화 처리시간에서의 일정경도를 나타내는 현상으로 균질화 처리시간을 단출할 수 있을 것으로 본다.In the case of such 450 ℃, it is expected that the homogenization treatment time can be shortened to a phenomenon indicating a constant hardness in the rapid homogenization treatment time.
550℃의 경우 24시간까지 지속적인 경도 감소현상을 볼 수 있으며, 이는 500℃이상에서의 고온으로 인한 석출상의 빠른 조대화 및 결정립 성장에 따른 경도감소가 발생하는 것으로 생각된다.In case of 550 ℃, hardness decrease is observed up to 24 hours, which is thought to occur due to rapid coarsening of precipitated phase and grain growth due to high temperature above 500 ℃.
이러한 온도의 경우 재료내의 미세조직 변화로 인한 기계적 성질이 현전히 감소하는 것으로 나타나 압출공정전에 이루어지는 균질화 처리 조건으로는 부적합 할 것으로 생각된다.In this case, the mechanical properties due to the microstructure change in the material are significantly reduced, which is considered to be unsuitable for the homogenization treatment condition before the extrusion process.
도 6은 균질화 처리에 따른 미세조직 변화를 나타낸 사진으로서, 350℃에서의 균질화 처리에서 스칸듐(Sc)의 첨가하지 않은 합금에서의 경우 수지상정 관찰할 수 있는 반면, 스칸듐(Sc)의 첨가에 따라 수지상정은 없어져 있음을 알 수 있고, 특히 균질화 처리가 진행됨에 따라 결정입계의 성장 및 석출상의 조대화는 스칸듐(Sc)의 함량에 따라 크게 감소하였음을 알 수 있다.Figure 6 is a photograph showing the microstructure change according to the homogenization treatment, in the case of the alloy without the addition of scandium (Sc) in the homogenization treatment at 350 ℃ can be observed in the dendrite, while the addition of scandium (Sc) It can be seen that the dendrite is disappeared, and in particular, as the homogenization process proceeds, the grain growth and the coarsening of the precipitates are greatly reduced with the content of scandium (Sc).
결정립의 크기는 0.5Sc합금이 가장 미세하게 나타나 24시간의 균질화 처리 시간까지 그 성장이 억제되어 있음을 알 수 있다.The grain size of the 0.5Sc alloy is the finest, it can be seen that the growth is inhibited until the homogenization treatment time of 24 hours.
550℃의 경우 균질화 처리온도의 고온으로 인한 결정립의 성장이 일어난 것을 알 수 있으며, 0.5Sc합금의 경우 그 크기는 50㎛로 나타났으나 0.3Sc합금과 비교하여 그 크기의 변화는 현저하지 않음을 알 수 있다.In the case of 550 ℃, it can be seen that the grain growth occurred due to the high temperature of the homogenization treatment temperature. In the case of 0.5Sc alloy, the size was shown to be 50㎛, but the change of the size was not remarkable compared with the 0.3Sc alloy. Able to know.
따라서 0.3Sc합금의 경우 경제적 고려를 포함한 특성면에서 가장 우수할 것으로 나타났다.Therefore, 0.3Sc alloy was found to be the best in terms of characteristics including economic considerations.
상술한 바와 같이 0.3wt%Sc의 조성비를 가지는 알루미늄합금은 물성조건에서 다른 기타 조성비 0.1wt.%Sc 또는 0.5wt.%Sc에 비해 압출소재로서 전혀 뒤떨어지지 않을뿐더러 경제성을 고려할 때 가장 우수한 조성비의 합금이다.As described above, aluminum alloy having a composition ratio of 0.3wt% Sc is inferior to other composition ratios of 0.1wt.% Sc or 0.5wt.% Sc at other physical properties, and is not inferior at all as an extruded material. Alloy.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060080892A KR100828861B1 (en) | 2006-08-25 | 2006-08-25 | Al alloy for extrusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060080892A KR100828861B1 (en) | 2006-08-25 | 2006-08-25 | Al alloy for extrusion |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080018571A true KR20080018571A (en) | 2008-02-28 |
KR100828861B1 KR100828861B1 (en) | 2008-05-09 |
Family
ID=39385577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060080892A KR100828861B1 (en) | 2006-08-25 | 2006-08-25 | Al alloy for extrusion |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100828861B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010068009A2 (en) * | 2008-12-09 | 2010-06-17 | 경상대학교 산학협력단 | Method of suppressing grain growth in al-zn-mg-based aluminum alloy billet for thixoextrusion |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU750846B2 (en) * | 1999-05-04 | 2002-08-01 | Corus Aluminium Walzprodukte Gmbh | Exfoliation resistant aluminium-magnesium alloy |
-
2006
- 2006-08-25 KR KR1020060080892A patent/KR100828861B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010068009A2 (en) * | 2008-12-09 | 2010-06-17 | 경상대학교 산학협력단 | Method of suppressing grain growth in al-zn-mg-based aluminum alloy billet for thixoextrusion |
WO2010068009A3 (en) * | 2008-12-09 | 2010-09-23 | 경상대학교 산학협력단 | Method of suppressing grain growth in al-zn-mg-based aluminum alloy billet for thixoextrusion |
KR101102139B1 (en) * | 2008-12-09 | 2012-01-02 | 경상대학교산학협력단 | Method for Inhibiting Grain Growth of Al-Zn-Mg Based Aluminiun Alloyed Billet for Thixo-Extrusion |
Also Published As
Publication number | Publication date |
---|---|
KR100828861B1 (en) | 2008-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6955483B2 (en) | High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method | |
KR102003569B1 (en) | 2xxx series aluminum lithium alloys | |
JP6229130B2 (en) | Cast aluminum alloy and casting using the same | |
KR101614004B1 (en) | Magnesium alloy for precipition hardened extrusion and manufacturing method of the magnesium alloy | |
JP2006241531A (en) | Continuous casting aluminum alloy ingot and its production method | |
TWI434939B (en) | Aluminium alloy and process of preparation thereof | |
WO2009123084A1 (en) | Magnesium alloy and process for producing the same | |
JP3670706B2 (en) | Method for producing high-strength aluminum alloy extrusion mold with excellent bending workability | |
KR101993506B1 (en) | Precipitation hardening magnesium alloy for extruding and method for manufacturing the same | |
KR100828861B1 (en) | Al alloy for extrusion | |
CN109161767B (en) | Creep-resistant magnesium alloy containing W phase and preparation method thereof | |
JP5499610B2 (en) | Aluminum alloy member and manufacturing method thereof | |
JP2007239029A (en) | Malleable heat-resistant aluminum alloy | |
JPH10219413A (en) | Production of high strength aluminum alloy excellent in intergranular corrosion resistance | |
KR20140050172A (en) | High strength and high toughness magnesium alloy with suppressed discontinuous precipitation | |
JPH07150312A (en) | Manufacture of aluminum alloy forged base stock | |
KR20210121541A (en) | Wrought magnesium alloys with high mechanical properties and method for preparing the same | |
JP2006316341A (en) | Castable aluminum alloy and aluminum alloy cast made therefrom | |
KR100199408B1 (en) | Method of manufacturing non-heat treatment aluminum alloy and the same product | |
WO2023233713A1 (en) | Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance | |
KR102353612B1 (en) | Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate | |
KR102023802B1 (en) | High strength magnesium alloy | |
RU2699423C1 (en) | Brass for superplastic molding of parts with low residual porosity | |
CN115961192A (en) | Strontium-zirconium-titanium-erbium-cerium five-element composite microalloyed 800 MPa-strength-level high-performance aluminum alloy and preparation method thereof | |
JPH09209068A (en) | High strength aluminum alloy excellent in hardenability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120605 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130327 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150501 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160308 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170327 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190810 Year of fee payment: 12 |