KR20080018414A - Method of fabricating semiconductor devices - Google Patents

Method of fabricating semiconductor devices Download PDF

Info

Publication number
KR20080018414A
KR20080018414A KR1020060080481A KR20060080481A KR20080018414A KR 20080018414 A KR20080018414 A KR 20080018414A KR 1020060080481 A KR1020060080481 A KR 1020060080481A KR 20060080481 A KR20060080481 A KR 20060080481A KR 20080018414 A KR20080018414 A KR 20080018414A
Authority
KR
South Korea
Prior art keywords
forming
layer
substrate
patterning
tungsten
Prior art date
Application number
KR1020060080481A
Other languages
Korean (ko)
Other versions
KR100841855B1 (en
Inventor
이완기
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020060080481A priority Critical patent/KR100841855B1/en
Publication of KR20080018414A publication Critical patent/KR20080018414A/en
Application granted granted Critical
Publication of KR100841855B1 publication Critical patent/KR100841855B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method of fabricating a semiconductor device is provided to prevent formation of arcing defect on a substrate by suppressing arc discharge generated at a plasma etching process of forming a via hole. A first interlayer dielectric(10) is formed on a process substrate with a device, and then is patterned to form a contact hole. A metallic layer for plug is deposited to fill the contact hole. The substrate is subjected to an etch-back process to form a metal plug. A conductive layer is formed on the substrate with the tungsten plug, and then is patterned to form a wiring pattern. A second interlayer dielectric(140) is deposited and patterned to form a via hole(150). In the step of forming the wiring pattern, an edge of the substrate is exposed to a light.

Description

반도체 장치 제조 방법{Method of fabricating semiconductor devices}Method of fabricating semiconductor devices

도1 내지 도3은 종래의 반도체 장치 형성 과정에서 아크 방전이 발생하는 한 예를 나타내는 공정 단면도이다. 1 to 3 are process cross-sectional views illustrating an example in which arc discharge occurs in a conventional semiconductor device formation process.

도4 내지 도6은 본 발명의 일 실시예에 따른 중요 공정 단계를 나타내는 공정 단면도이다. 4 through 6 are process cross-sectional views illustrating important process steps according to an embodiment of the present invention.

본 발명은 반도체 장치 제조방법에 관한 것으로, 보다 상세하게는 반도체 장치The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a semiconductor device.

반도체 장치는 반도체 기판을 이용하여 전자, 전기 소자를 형성하고, 그 위쪽에 절연막, 반도체막, 도체막을 적층 및 패터닝하여 다른 전기 소자나 이미 형성된 소자들을 연결하여 회로를 구성할 배선을 형성함으로써 이루어진다. A semiconductor device is formed by forming electronic and electrical elements using a semiconductor substrate, and forming an interconnection to form a circuit by connecting and insulating other electrical elements or already formed elements by stacking and patterning an insulating film, a semiconductor film, and a conductor film thereon.

반도체 장치의 소자 고집적화를 위하여 소자나 배선의 크기는 점차 줄어들고 있으며, 그에 따라 반도체 장치 형성을 위한 각 공정의 디자인 룰(design rule)로 점차 엄격해지고 있다.In order to increase the integration of devices in semiconductor devices, the size of devices and wirings is gradually decreasing, and accordingly, design rules of respective processes for forming semiconductor devices are gradually becoming strict.

소자 고집적화를 위한 한 방법으로 다층 배선이 많이 사용되고, 다층 배선을 형성하기 위해 반도체 장치의 절연막 및 도체막 적층 및 패터닝 회수도 늘어나고 있다. 복수 층을 이루는 금속 배선의 상층과 하층 배선 패턴은 그 사이의 층간 절연막에 비아 콘택홀을 형성하고 콘택홀을 도체 플러그로 채우는 방식으로 통상 연결된다. As one method for high integration of devices, multilayer wiring is widely used, and the number of insulating and conductor film stacking and patterning of semiconductor devices is increasing to form multilayer wiring. Upper and lower wiring patterns of a plurality of metal wirings are usually connected in such a manner as to form a via contact hole in an interlayer insulating film therebetween and fill the contact hole with a conductor plug.

비아 콘택홀을 형성하기 위한 식각으로 식각 효율성을 높일 수 있는 플라즈마 식각이 흔히 사용된다. 그런데 하층 배선 패턴으로 고립된 배선 패턴(floating metal)이 있는 경우, 배선 패턴에 전하가 축적되어 아크 방전을 일으킬 염려가 커진다. 가령, 플라즈마가 인가되는 공정에서 플라즈마의 영향으로 고립된 패턴에 한 극성의 전하가 축적되거나, 플라즈마가 균일하지 못하여 부분적으로 전기적 불균형이 발생하는 경우 배선 패턴별로 다른 전하가 축적되고, 이들 고립 배선 사이에 전위차가 커져 아크 방전이 발생할 수 있다. Plasma etching, which can increase the etching efficiency, is commonly used as an etching to form a via contact hole. However, when there is a wiring pattern (floating metal) isolated by the lower wiring pattern, there is a high possibility that electric charges will accumulate in the wiring pattern and cause arc discharge. For example, in a process in which plasma is applied, charges of one polarity accumulate in the isolated pattern due to the influence of the plasma, or when the plasma is not uniform and partial electric imbalance occurs, different charges are accumulated for each wiring pattern. The potential difference may increase, resulting in arc discharge.

아크 방전이 발생하는 경우, 패턴이 파손되거나, 주변 소자가 파괴될 수 있다. 방전 과정에서 파티클이 발생하여 다른 부분에 위치하면서 패턴 사이의 단락 등의 문제를 일으킬 수 있다. 결국 반도체 장치 불량이 발생하거나, 반도체 장치에서 소자 신뢰성이 저하되는 문제가 있다.When arc discharge occurs, the pattern may be broken or the peripheral elements may be broken. Particles may be generated during the discharging process and may be located in different parts, causing problems such as short circuits between patterns. As a result, semiconductor device defects may occur or device reliability may be degraded in the semiconductor device.

도1 내지 도3은 종래의 반도체 장치 형성 과정에서 아크 방전이 발생하는 한 예를 나타내는 공정 단면도이다. 도1을 참조하면, 기판(1) 상의 제1 층간 절연막(10)에 콘택 홀을 형성한 후에 베리어 메탈(Barrier metal:21,23) 및 플러그 금속인 텅스텐층(25)을 증착한다. 도2와 같이 텅스텐 에치백(Etch-back) 공정을 수행하면 식각 장비의 클램프 링(Clamp ring)과 같은 파지 기구에 의해 웨이퍼 에 지(wafer edge) 일부 영역에 텅스텐층이 미약하나마 제거되지 않고 레지듀(253)로 남게 될 수 있다. 에치백이 균일하지 못한 경우에도 부분적으로 텅스텐 레지듀(253)가 존재할 수 있다. 도3과 같이 후속의 금속 배선 및 제2 층간 절연막 적층 후 비아홀 형성을 위한 플라즈마 에치가 이루어질 때 플라즈마의 영향으로 하부의 금속 배선 패턴(31,33,35) 가운데 고립된 금속 배선 패턴(35)에 전하가 축적되면 주변의 얇은 절연막(40)을 통해 외부와 방전을 일으키면서 주변이 손상되고, 파티클이 양산되는 아크 결함을 일으킨다. 1 to 3 are process cross-sectional views illustrating an example in which arc discharge occurs in a conventional semiconductor device formation process. Referring to FIG. 1, after forming contact holes in the first interlayer insulating film 10 on the substrate 1, barrier metals 21 and 23 and a tungsten layer 25, which is a plug metal, are deposited. As shown in FIG. 2, when the tungsten etch-back process is performed, the tungsten layer is not removed at a portion of the wafer edge by a gripping mechanism such as a clamp ring of an etching apparatus. May remain as a dew 253. Even when the etch back is not uniform, there may be partial tungsten residue 253. As shown in FIG. 3, when a plasma etch is formed to form a via hole after the subsequent metal wiring and the second interlayer insulating layer are stacked, the metal wiring pattern 35 is isolated from among the metal wiring patterns 31, 33, and 35 under the influence of plasma. When the charge is accumulated, the surroundings are damaged while causing a discharge with the outside through the surrounding thin insulating film 40, causing an arc defect in which particles are produced.

본 발명은 상술한 종래 반도체 장치 형성 방법에서의 아크 발생의 문제점을 완화시키기 위한 것으로, The present invention is to alleviate the problem of arc generation in the aforementioned method of forming a semiconductor device,

반도체 제조 시 아크 결함(Arcing defect)으로 인한 수율 저하를 막고, 아크로 인한 파티클 양산과 파티클에 의한 기판 오염을 방지하기 위한 것이다. This is to prevent yield decrease due to arcing defects in semiconductor manufacturing, and to prevent mass production of particles due to arc and substrate contamination by particles.

상기 목적을 달성하기 위한 본 발명 방법은, 소자가 형성된 공정기판 위로 제1 층간 절연막을 형성하고 패터닝하여 콘택홀을 형성하는 단계, 콘택홀을 채우는 텅스텐막을 적층하는 단계, 에치백을 실시하여 콘택홀을 채우는 텅스텐 플러그를 형성하는 단계, 텅스텐 플러그가 형성된 기판 위에 도체층을 형성하고 패터닝하여 배선 패턴을 형성하는 단계, 제2 층간 절연막을 적층하고 패터닝하여 비아 홀을 형성하는 단계를 구비하며, 도체층을 형성하고 패터닝하여 배선 패턴을 형성하는 단계에서 패터닝을 위한 노광 공정에서 웨이퍼 에지부에 대한 에지부 노광을 실시하 는 단계를 구비하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method of forming a contact hole by forming and patterning a first interlayer insulating film on a process substrate on which a device is formed, stacking a tungsten film filling a contact hole, and performing etch back to form a contact hole. Forming a tungsten plug which fills the gap, forming and patterning a conductor layer on the substrate on which the tungsten plug is formed, and forming a via hole by laminating and patterning a second interlayer insulating film; And forming an interconnection pattern to form an interconnection pattern, and performing edge portion exposure to the wafer edge portion in an exposure process for patterning.

본 발명의 에치백 단계에서 웨이퍼 에지에는 텅스텐 레지듀가 형성되기 쉬우나, 에치부 노광을 통해 에지부 전체에는 배선 패터닝 식각 단계에서 도체층 식각을 위한 에천트가 계속 작용하여 고립된 배선 패턴 형성이 없어지고, 텅스텐 레지듀를 제거하는 역할을 할 수 있다. In the etching back step of the present invention, tungsten residue is easily formed on the wafer edge, but the etchant for etching the conductor layer is continuously formed on the entire edge part through the etching part exposure so that there is no isolated wiring pattern formation. And remove tungsten residues.

본 발명에서 텅스텐막을 적층하는 단계에는 텅스텐막 적층 전에 티타늄이나티타늄 질화막과 같은 베리어 메탈층이 먼적 기판에 콘포말하게 형성되는 부속 단계가 구비될 수 있으며, 이들 베리어 메탈층 가운데 제1 층간 절연막 위에 형성된 부분은 텅스텐 에치백이 이루어지는 플러그 형성 단계에서 제거되거나, 도체층 배선 패턴 형성을 위한 식각 단계에서 대부분 제거될 수 있다. In the present invention, the step of stacking the tungsten film may include an additional step in which a barrier metal layer such as titanium or titanium nitride film is conformally formed on a remote substrate before the tungsten film is laminated, and formed on the first interlayer insulating film among the barrier metal layers. The portion may be removed in the plug forming step in which the tungsten etch back is made or mostly removed in the etching step for forming the conductor layer wiring pattern.

이하 도면을 참조하면서 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명은 초기 단계에서 도1 및 도2에 나타난 종래의 기술과 같이 이루어진다. 즉, 제1 층간 절연막에 콘택 홀을 형성한 후에 베리어 메탈(Barrier metal) 및 플러그 금속인 텅스텐을 증착한다. 그리고, 텅스텐 에치백(Etch-back) 공정을 수행한다. 이때 웨이퍼 에지(wafer edge) 일부 영역에 텅스텐층이 미약하나마 제거되지 않고 레지듀로 남을 수 있다. 에치백이 균일하지 못한 경우에도 부분적으로 텅스텐 레지듀가 존재할 수 있다. The present invention is accomplished in the early stages as in the prior art shown in FIGS. 1 and 2. That is, after forming contact holes in the first interlayer insulating film, a barrier metal and tungsten, which is a plug metal, are deposited. Then, a tungsten etch-back process is performed. At this time, although the tungsten layer is weakly removed in a portion of the wafer edge, it may remain as a residue. Tungsten residues may also be present, even in some cases where the etch back is uneven.

이어서 종래와 달리 4도와 같이 배선 메탈층을 적층한 뒤 웨이퍼 에지 노광 (WEE)및 현상을 실시하여 포토레지스트층(160) 가운데 에지부를 제거한다. 에지부 제거는 2 내지 3mm 정도의 폭으로 이루어질 수 있다. Subsequently, unlike the prior art, the wiring metal layer is stacked as shown in FIG. 4, and then the edge portion of the photoresist layer 160 is removed by performing wafer edge exposure (WEE) and development. Edge removal can be made to a width of about 2-3 mm.

이어서 메탈 배선층(130) 패턴닝을 위한 노광 및 현상을 실시하여 도5와 같은 포토레지스트 패턴(165)을 형성하고, 식각을 실시한다. 이 단계에서 종래에는 존재하던 에지부의 메탈 배선 고립 패턴은 형성되지 않으며, 메탈 배선층(130) 오버 에치를 통해 베리어 메탈층((21,23)을 제1 층간 절연막(10) 상부에서 제거하는 과정에서 기판 에지부의 텅스텐 레지듀(253)에 대한 식각도 이루어져 대부분이 제거된다. 즉, 종래에 아크 방전을 일으키는 원인이 되었던 고립된 메탈 배선 패턴과 텅스텐 레지듀가 공정 기판에 존재하지 않게 된다.Subsequently, exposure and development for patterning the metallization layer 130 are performed to form the photoresist pattern 165 as shown in FIG. 5, and etching is performed. In this step, the metal wiring isolation pattern existing in the edge portion is not formed. In the process of removing the barrier metal layers 21 and 23 from the upper portion of the first interlayer insulating layer 10 through the over wiring of the metal wiring layer 130. Etching of the tungsten residue 253 at the edge of the substrate is also performed, which eliminates most of the tungsten residue, ie, the isolated metal wiring pattern and the tungsten residue, which have conventionally caused an arc discharge, do not exist in the process substrate.

배선 메탈층을 식각하기 위한 에천트로는 배선 메탈층이 주로 알미늄이 되므로 염소(Cl2)나 삼염화 보론(BCl3)이 사용될 수 있다. 이들 에천트는 텅스텐 레지듀에 대한 식각 선택비는 높지 않으나, 텅스텐 하부의 베리어 메탈까지 오버 에치하는 시간이 길어지므로 텅스텐 레지듀를 제거할 정도의 식각력을 가질 수 있다. As an etchant for etching the wiring metal layer, since the wiring metal layer is mainly aluminum, chlorine (Cl 2 ) or boron trichloride (BCl 3 ) may be used. These etchant may not have a high etching selectivity to the tungsten residue, but may have an etching force enough to remove the tungsten residue due to a long time for overetching the barrier metal under the tungsten.

이어서 이루어지는 공정은 종래의 공정과 유사하게 이루어질 수 있다. 즉, 메탈 배선 패턴(131,133)이 형성된 기판 위로 전체적인 제2 층간 절연막(140) 적층이 이루어진다. 그리고, 제2 층간 절연막(140)에 대한 패터닝 작업을 통해 메탈 배선 패턴의 일부를 드러내는 비아 홀(150)이 형성된다. Subsequent processes may be similar to conventional processes. That is, the entire second interlayer insulating layer 140 is stacked on the substrate on which the metallization patterns 131 and 133 are formed. The via hole 150 exposing a part of the metal wiring pattern is formed through the patterning operation on the second interlayer insulating layer 140.

이러한 패터닝 작업이 이루어지는 과정에서 종래에는 제2 층간 절연막에 대한 플라즈마 인가 식각이 있을 때 고립 패턴 및 텅스텐 레지듀에 전하가 축적되고, 전위가 높아져 아크 방전이 발생되었으나, 본 실시예에서는 고립 패턴 및 텅스텐 레지듀가 없어 전하의 축적 및 방전이 이루어지지 않게 된다.In the process of performing the patterning operation, conventionally, when the plasma is applied to the second interlayer insulating film, charges are accumulated in the isolation pattern and the tungsten residue, and the electric potential is increased to generate the arc discharge. There is no residue, which prevents charge accumulation and discharge.

이상의 실시예에서는 제2 층간 절연막 형성 및 패터닝 시의 플라즈마 식각에서 아크 방전이 방지되는 것을 주로 설명하였으나, 이보다 상층의 단계에서 층간 절연막에 비아홀을 형성하는 단계들에서도 동일한 방식으로 본 발명을 적용하여 고립된 메탈 배선 및 텅스텐 레지듀로 인한 전하 축적과 아크 방전을 방지할 수 있게 된다.In the above embodiment, the arc discharge is mainly prevented from the plasma etching during the formation and patterning of the second interlayer insulating film. However, in the step of forming the via hole in the interlayer insulating film in the upper layer, the present invention is applied in the same manner. Metal wiring and tungsten residues prevent charge accumulation and arc discharge.

이상에서 제시된 실시예에서 반도체 장치의 층간 절연막이나 금속층, 베리어 메탈층은 예시적으로 제시된 것이므로 다른 재질로 이들 층이 이루어지는 것을 배재하는 것은 아니다.In the above-described embodiment, since the interlayer insulating film, the metal layer, and the barrier metal layer of the semiconductor device are provided by way of example, they do not exclude the formation of these layers from other materials.

본 발명에 따르면, 종래의 반도체 장치 제조 공정에서 비아홀 형성을 위한 플라즈마 에칭 과정에서 발생하던 아크 방전을 억제시켜 기판의 아크 결함이 생기는 것을 방지할 수 있다. According to the present invention, the arc discharge generated during the plasma etching process for forming the via hole in the conventional semiconductor device manufacturing process can be suppressed to prevent the occurrence of arc defects on the substrate.

따라서, 아크 결함 발생으로 인한 반도체 장치 생산 수율 저하를 막아 공정 능률을 높여주고, 제품 신뢰성, 안정성을 높이는 효과가 있다. Therefore, it is possible to prevent a decrease in the yield of semiconductor device production due to the occurrence of arc defects, thereby improving process efficiency and improving product reliability and stability.

Claims (4)

소자가 형성된 공정기판 위로 제1 층간 절연막을 형성하고 패터닝하여 콘택홀을 형성하는 단계, Forming a contact hole by forming and patterning a first interlayer insulating film on the process substrate on which the device is formed; 상기 콘택홀을 채우는 플러그용 금속층을 적층하는 단계, Stacking a metal layer for plug filling the contact hole; 에치백을 실시하여 상기 콘택홀을 채우는 금속 플러그를 형성하는 단계,Etching back to form a metal plug filling the contact hole; 상기 텅스텐 플러그가 형성된 기판 위에 도체층을 형성하고 패터닝하여 배선 패턴을 형성하는 단계, Forming a wiring pattern by forming and patterning a conductor layer on the substrate on which the tungsten plug is formed; 제2 층간 절연막을 적층하고 패터닝하여 비아 홀을 형성하는 단계를 구비하며, Stacking and patterning a second interlayer insulating film to form a via hole, 상기 도체층을 형성하고 패터닝하여 배선 패턴을 형성하는 단계에서는 패터닝을 위한 노광 공정에서 기판 에지부에 대한 에지부 노광을 실시하는 단계를 구비하는 것을 특징으로 하는 반도체 장치 제조 방법. Forming the wiring layer by forming and patterning the conductor layer, and performing edge portion exposure to a substrate edge portion in an exposure process for patterning. 제 1 항에 있어서,The method of claim 1, 상기 플러그용 금속층은 텅스텐층인 것을 특징으로 하는 반도체 장치 제조 방법. And the metal layer for plugs is a tungsten layer. 제 2 항에 있어서,The method of claim 2, 상기 플러그용 금속층을 적층하는 단계는 상기 텅스텐층 적층 전에 티타늄/ 티타늄 질화막의 베리어 메탈층을 기판에 콘포말(conformal)하게 적층하는 부속 단계를 가지는 것을 특징으로 하는 반도체 장치 제조 방법.The stacking of the metal layer for plugs includes a sub step of conformally stacking a barrier metal layer of a titanium / titanium nitride film on a substrate before the tungsten layer is laminated. 제 3 항에 있어서,The method of claim 3, wherein 상기 도체층은 알미늄층이며,The conductor layer is an aluminum layer, 상기 도체층을 패터닝하여 배선 패턴을 형성하는 단계에서는 식각 에천트로 염소나 3염화 보론을 사용하여 상기 배선 패턴으로 보호되지 않는 상기 제1 층간절연막 위쪽의 상기 베리어 메탈층을 제거하는 오버 에치가 이루어지는 것을 특징으로 하는 반도체 장치 제조 방법.In the forming of the wiring pattern by patterning the conductor layer, an over-etch is performed to remove the barrier metal layer on the first interlayer insulating layer that is not protected by the wiring pattern by using chlorine or boron trichloride as an etching etchant. A semiconductor device manufacturing method characterized by the above-mentioned.
KR1020060080481A 2006-08-24 2006-08-24 Method of fabricating semiconductor devices KR100841855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060080481A KR100841855B1 (en) 2006-08-24 2006-08-24 Method of fabricating semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060080481A KR100841855B1 (en) 2006-08-24 2006-08-24 Method of fabricating semiconductor devices

Publications (2)

Publication Number Publication Date
KR20080018414A true KR20080018414A (en) 2008-02-28
KR100841855B1 KR100841855B1 (en) 2008-06-27

Family

ID=39385445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060080481A KR100841855B1 (en) 2006-08-24 2006-08-24 Method of fabricating semiconductor devices

Country Status (1)

Country Link
KR (1) KR100841855B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108122894A (en) * 2016-11-29 2018-06-05 中芯国际集成电路制造(上海)有限公司 Improve the method for MIM capacitor electric arc discharge defect

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146634B1 (en) * 1994-12-29 1998-11-02 김주용 Method for forming multi-layer metal wiring of semiconductor device
KR100342869B1 (en) * 1999-12-29 2002-07-02 박종섭 Method for etching multilayered metal line in semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108122894A (en) * 2016-11-29 2018-06-05 中芯国际集成电路制造(上海)有限公司 Improve the method for MIM capacitor electric arc discharge defect
CN108122894B (en) * 2016-11-29 2019-12-27 中芯国际集成电路制造(上海)有限公司 Method for improving arc discharge defect of MIM capacitor

Also Published As

Publication number Publication date
KR100841855B1 (en) 2008-06-27

Similar Documents

Publication Publication Date Title
TWI685938B (en) Skip via structures
JP2009038061A (en) Semiconductor wafer and manufacturing method of semiconductor device
JP4425707B2 (en) Semiconductor device and manufacturing method thereof
KR100841855B1 (en) Method of fabricating semiconductor devices
US11380615B2 (en) Tight pitch wirings and capacitor(s)
US7018935B2 (en) Method of forming metal line of semiconductor device
WO2011044833A1 (en) Semiconductor device structure and method for manufacturing the same
KR101070289B1 (en) Method for forming semiconductor device
JP5044930B2 (en) MIS type capacitor manufacturing method
US9922876B1 (en) Interconnect structure and fabricating method thereof
KR100613393B1 (en) Method of manufacturing semiconductor device
KR20030074870A (en) Method for fabricating metal power line of semiconductor device
KR100857989B1 (en) Metal line formation method of semiconductor device
KR100561285B1 (en) Structure of multilayer interconnection line for semiconductor device and method thereof
KR100521453B1 (en) Method of forming multilayer interconnection line for semiconductor device
KR100527583B1 (en) Manufacturing method for semiconductor device
KR100669663B1 (en) Method for forming contact hole of semiconductor device
KR100979245B1 (en) Method of manufacturing semiconductor device
KR100613385B1 (en) Method of forming interconnection line for semiconductor device
TWI436451B (en) Semiconductor device structure and manufacturing method thereof
KR100664388B1 (en) Fabricating method of semiconductor device
KR100576414B1 (en) Method for manufacturing landing via of semiconductor
KR20050035603A (en) Method of forming interconnection line for semiconductor device
KR20020054711A (en) Method for Forming Multi-layered electrode lines of a semiconductor device
KR20080058548A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee