KR20080001308A - Defrosting method of heat-pump air conditioner - Google Patents

Defrosting method of heat-pump air conditioner Download PDF

Info

Publication number
KR20080001308A
KR20080001308A KR1020060059653A KR20060059653A KR20080001308A KR 20080001308 A KR20080001308 A KR 20080001308A KR 1020060059653 A KR1020060059653 A KR 1020060059653A KR 20060059653 A KR20060059653 A KR 20060059653A KR 20080001308 A KR20080001308 A KR 20080001308A
Authority
KR
South Korea
Prior art keywords
compressor
defrosting
heat exchanger
driving
time
Prior art date
Application number
KR1020060059653A
Other languages
Korean (ko)
Inventor
이윤수
Original Assignee
주식회사 대우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1020060059653A priority Critical patent/KR20080001308A/en
Publication of KR20080001308A publication Critical patent/KR20080001308A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A method of operating a defrosting mode in a heat pump air conditioner is provided to preclude the need for delaying the operation of a compressor by reducing the pressure difference between an outtake port and an intake port of a compressor during a reverse cycle defrosting mode, thereby shortening the operation time of the defrost drive mode. A method of defrosting a heat pump air conditioner includes opening a solenoid valve until the pressure difference between an outtake port and an intake port of a compressor falls below a predetermined range during the refrigerant bypass defrost step(S300). After completion of a reverse cycle defrosting step, the following steps are performed: the step of determining whether the defrosting of a heat exchanger of an outdoor unit is completed or not(S500); the step of delaying the operation of the compressor for a predetermined period of time if the defrosting of the outdoor unit heat exchanger is determined to be completed(S600); and the step of switching a four-way valve to engage a heating mode, and resuming the operation of the compressor after the preset time for delaying the operation of the compressor has elapsed(S700).

Description

히트펌프 공기조화기의 제상운전 방법{Defrosting method of heat-pump air conditioner}Defrosting method of heat-pump air conditioner

도 1은 역사이클 제상방식의 히트펌프 공기조화기의 구성도.1 is a block diagram of a heat pump air conditioner of the reverse cycle defrosting method.

도 2는 냉매 바이패스 제상방식의 히트펌프 공기조화기의 구성도.2 is a block diagram of a heat pump air conditioner of the refrigerant bypass defrost method.

도 3은 본 발명에 따른 히트펌프 공기조화기의 제상운전 방법을 나타내는 플로우차트.3 is a flowchart illustrating a defrosting operation method of a heat pump air conditioner according to the present invention.

- 도면의 주요부분에 대한 부호의 설명 --Explanation of symbols for the main parts of the drawings-

10: 압축기 10a: 토출구10: compressor 10a: discharge port

10b: 흡입구 20: 사방밸브10b: inlet 20: four-way valve

30: 실내측 열교환기 40: 송풍기30: indoor side heat exchanger 40: blower

50: 팽창기구 60: 실외측 열교환기50: expansion mechanism 60: outdoor side heat exchanger

70: 송풍기 80: 어큐믈레이터70: blower 80: accumulator

90: 바이패스관 100: 솔레노이드 밸브90: bypass pipe 100: solenoid valve

본 발명은 히트펌프 공기조화기의 제상운전 방법에 관한 것으로서, 보다 상세하게는 냉매 바이패스 제상방식과 역사이클 제상방식을 병행하여 압축기의 역사이클 구동시에 토출구측과 흡입구측의 냉매 압력차이를 줄여줌으로써, 제상운전을 수행하게 되는 경우 압축기의 구동지연시간을 갖을 필요가 없어, 제상운전 시간을 단축할 수 있는 히트펌프 공기조화기의 제상운전 방법에 관한 것이다.The present invention relates to a defrosting operation method of a heat pump air conditioner, and more particularly, by using a refrigerant bypass defrosting method and a reverse cycle defrosting method in order to reduce the pressure difference between the discharge side and the inlet side during the reverse cycle driving of the compressor. When the defrosting operation is performed, it is not necessary to have a driving delay time of the compressor, and the defrosting operation method of the heat pump air conditioner which can shorten the defrosting operation time.

일반적으로, 열은 고온측에서 저온측으로는 자연히 이동하지만 저온측에서 고온측으로 열을 이동시키려면 외부에서 어떤 작용을 가하여야 한다. 이것이 히트펌프의 작용이다.Generally, heat naturally moves from the high temperature side to the low temperature side, but in order to move the heat from the low temperature side to the high temperature side, some action must be applied from the outside. This is the action of the heat pump.

히트펌프 공기조화기는 냉매의 압축-응축-감압-증발로 이루어지는 냉동사이클로 이행되는 열에 대한 운반 메커니즘(mechanism)을 가역적으로 사용하여 냉방과 냉동을 겸하는 것이다.Heat pump air conditioners combine cooling and refrigeration by reversibly using heat transfer mechanisms to the refrigeration cycle consisting of compression, condensation, depressurization and evaporation of refrigerant.

종래의 냉난방 겸용 히트펌프 공기조화기 구성은 도 1과 같이 압축기(10), 사방밸브(20), 실내측 열교환기(30) 및 그의 송풍기(40), 팽창기구(50), 실외측 열교환기(60) 및 그의 송풍기(70), 어큐뮬레이터(accumulator: 80)로 구성된다.Conventional air-conditioning combined heat pump air conditioner is composed of a compressor 10, a four-way valve 20, an indoor side heat exchanger 30 and its blower 40, an expansion mechanism 50, an outdoor side heat exchanger as shown in FIG. And a blower 70 and an accumulator 80 thereof.

압축기(10)는 흡입구(10b)와 토출구(10a)를 가지며 흡입구(10b)로부터 흡입되는 저온저압(低溫低壓) 기체상태의 냉매(冷媒)를 압축하여 고온고압(高溫高壓) 기체상태로 토출구(10a)를 통해 토출해 낸다.The compressor 10 has a suction port 10b and a discharge port 10a, and compresses a refrigerant in a low temperature low pressure gas state sucked from the suction port 10b, thereby discharging the discharge port in a high temperature high pressure gas state. Discharge through 10a).

사방밸브(20)는 압축기(10)의 토출구(10a)와 흡입구(10b)를 실내측 열교환기(30)와 실외측 열교환기(60)로 각각 연결시키는 두 개의 독립된 통로를 가지며 사 용자의 선택에 따른 냉방운전과 난방운전의 모드(mode)에 따라 냉매의 흐름을 바꾸도록 절환 조작된다.The four-way valve 20 has two independent passages connecting the outlet 10a and the inlet 10b of the compressor 10 to the indoor heat exchanger 30 and the outdoor heat exchanger 60, respectively. The switching operation is to change the flow of the refrigerant in accordance with the mode of the cooling operation and heating operation according to.

실내측 열교환기(30; heat exchanger)는 실내에 위치되며, 냉방운전 모드에서는 저온저압 액체상태의 냉매를 기체상태로 증발시키는 증발기(evaporator)역할을 하고, 난방운전 모드에서는 고온고압 기체상태의 냉매를 상온(常溫)고압 액체상태로 응축시키는 응축기(condenser)의 역할을 하여, 냉매의 엔탈피(enthalpy) 변화에 대응하여 주변 공기와 열교환하는 작용을 한다.The indoor heat exchanger (30) is located indoors, and serves as an evaporator for evaporating a refrigerant of low temperature and low pressure liquid state into a gas state in a cooling operation mode, and a refrigerant of high temperature and high pressure gas state in a heating operation mode. It acts as a condenser (condenser) to condense to a high-temperature liquid state at room temperature, and acts as a heat exchange with the ambient air in response to the enthalpy change of the refrigerant.

실내측 송풍기(40)는 실내측 열교환기(30)의 증발기 또는 응축기로서의 열교환 작용을 촉진시키는 동시에 실내에 필요한 냉풍 또는 온풍을 발생시키도록 작동된다.The indoor blower 40 is operated to promote a heat exchange action as an evaporator or a condenser of the indoor heat exchanger 30 and to generate cold or warm air necessary for the room.

팽창기구(50)는 실내측 열교환기(30)와 실외측 열교환기(60) 사이에 연결되어 어느 일측에서 이송되어 오는 상온고압 액체상태 냉매를 저온저압의 액체상태로 감압하는 작용을 한다.The expansion mechanism 50 is connected between the indoor side heat exchanger 30 and the outdoor side heat exchanger 60 to reduce the normal temperature high pressure liquid state refrigerant, which is transferred from one side, to the low temperature low pressure liquid state.

실외측 열교환기(60)는 상기 실내측 열교환기(30)와는 반대로 실외측에 위치되며, 냉방운전시는 응축기로서, 난방운전시는 증발기로서 주변공기와의 열교환 작용을 한다.The outdoor side heat exchanger 60 is positioned on the outdoor side as opposed to the indoor side heat exchanger 30 and performs heat exchange with the surrounding air as a condenser during the cooling operation and as an evaporator during the heating operation.

다음으로 실외측 송풍기(70)는 실외측 열교환기(60)의 열교환(응축기 또는 증발기로서의) 작용을 촉진시키도록 작동된다.The outdoor blower 70 is then operated to promote the heat exchange (as condenser or evaporator) action of the outdoor heat exchanger 60.

어큐뮬레이터(80)는 사방밸브(20)로부터 유입되는 냉매 중에서 액체상태로 남아있는 냉매를 걸러줌과 동시에 오일을 압축기(10) 측으로 공급하는 역할을 한 다.The accumulator 80 filters the refrigerant remaining in the liquid state from the refrigerant flowing from the four-way valve 20 and at the same time serves to supply oil to the compressor 10.

도 1에 있어서, 화살표는 냉매의 흐름을 표시하는데, 실선은 냉방운전시를 표현하고, 점선은 난방운전시의 각 냉매 흐름을 나타낸다.In Fig. 1, arrows indicate the flow of the coolant, the solid line represents the cooling operation, and the dotted line represents the respective refrigerant flow during the heating operation.

냉방운전과 난방운전 모드는 사용자의 선택에 따른 사방밸브(20)의 절환으로 바뀌며 그때 냉매의 흐름도 바뀌게 된다.Cooling operation and heating operation mode is changed to the switching of the four-way valve 20 according to the user's selection and then the flow chart of the refrigerant is changed.

이와 같은 히트펌프 공기조화기는 겨울철 냉방운전을 수행 중에 외기온도가 물이 어는 0℃ 이하로 내려가면 실외측 열교환기(60)에 성에가 부착되면서 난방운전이 거의 불가한 상태로 되는 문제로 인해, 난방모드에서 다시 냉방모드로 일정시간 동안 냉방사이클로 전환하여 역가동시키게 되는 제상모드를 가지도록 설계되거나, 도 2에 도시된 것처럼, 압축기(10)의 토출구(10a) 측 배관 및 팽창기구(50)와 실외측 열교환기(60)를 연결하는 배관을 바이패스시킨 바이패스 배관(90) 및 상기 바이패스 배관(90)을 선택적으로 개폐하는 솔레노이드 밸브(100)를 이용하여 난방사이클을 냉방사이클로 변환하지 않고 바이패스 배관(90)을 통해 고온의 냉매를 실외측 열교환기(60)로 유입되도록 설계하였다.Due to the problem that the heat pump air conditioner such that the frost is attached to the outdoor heat exchanger 60 when the outside air temperature falls below 0 ° C. during the cooling operation in winter, the heating operation becomes almost impossible. It is designed to have a defrost mode that is switched back to the cooling cycle for a predetermined time from the heating mode to the cooling mode to reverse operation, or as shown in Figure 2, the piping 10 and the expansion mechanism 50 of the discharge port (10a) side of the compressor (10) Do not convert the heating cycle into a cooling cycle by using the bypass pipe 90 bypassing the pipe connecting the outdoor heat exchanger 60 and the solenoid valve 100 to selectively open and close the bypass pipe 90. Instead, the high temperature refrigerant is introduced into the outdoor heat exchanger 60 through the bypass pipe 90.

그러나, 상기와 같은 역사이클 제상방식은 압축기로부터 토출되는 고온 고압의 냉매를 직접 실외측 열교환기에 유입시켜 제상시간을 최소화 할 수 있는 반면, 난반운전 → 제상운전 → 난방운전 복귀 과정시에 압축기의 정지 및 구동이 빈번히 발생하게 되고, 압축기 보호차원에서 정지된 압축기를 재구동하게 되는 경우 일정 시간(지연시간)이 경과된 후에 재구동함에 따라 총 제상운전 시간이 증가되는 단점이 있다.However, the reverse cycle defrosting method can minimize the defrosting time by directly introducing the high temperature and high pressure refrigerant discharged from the compressor to the outdoor heat exchanger, while the compressor is stopped during the operation of returning to the operation of defrosting → defrosting → heating operation. And the driving occurs frequently, when the compressor is stopped in order to protect the compressor has a disadvantage in that the total defrosting operation time is increased as the re-drive after a certain time (delay time) has elapsed.

또한, 상기 냉매 바이패스 제상방식은 냉매사이클을 전환하지 않고 제상운전을 수행하기 때문에 압축기의 정지 및 구동 과정이 없는 반면, 압축기에서 토출되어 바이패스 배관을 통해 실외측 열교환기로 유입되는 냉매가 솔레노이드 밸브를 통과하면서 압력이 강하되어 온도가 저하된 상태로 변하기 때문에 제상효율이 낮아 결국 제상시간이 증가하는 단점이 있다.In addition, since the refrigerant bypass defrosting method performs a defrosting operation without switching the refrigerant cycle, there is no stopping and driving process of the compressor, whereas the refrigerant discharged from the compressor and introduced into the outdoor heat exchanger through the bypass pipe is a solenoid valve. As the pressure is lowered while passing through, the temperature is lowered, so the defrosting efficiency is low, and thus the defrosting time is increased.

본 발명은 상기한 단점을 해결하기 위하여 안출된 것으로서, 상기 역사이클 제상방식 및 냉매 바이패스 제상방식을 동시에 적용하여 제상운전을 실시함으로써, 제상운전 시간을 단축할 수 있는 히트펌프 공기조화기의 제상운전 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above disadvantages, by applying the reverse cycle defrost method and the refrigerant bypass defrost method at the same time to perform the defrost operation, defrost of the heat pump air conditioner that can shorten the defrost operation time The purpose is to provide a driving method.

상기한 목적을 달성하기 위한 본 발명의 형태에 따르면, 압축기를 구동시켜 난방운전을 수행하는 단계; 상기 압축기의 구동 적산 시간 및 외기온도를 검출하여 상기 압축기의 구동 적산 시간이 설정시간에 도달하고, 상기 외기온도가 제상운전을 필요로 하는 설정온도 이하인지를 판단하여 제상운전 조건을 판단하는 단계; 상기 판단결과, 상기 압축기의 구동적산 시간이 설정시간에 도달하고, 상기 외기온도가 설정온도 이하인 경우, 상기 압축기의 토출구측 배관과 실외측 열교환기의 입구측 배관을 바이패스시킨 바이패스관이 개폐되도록 작동하는 솔레노이드 밸브를 개 방하는 냉매 바이패스 제상 단계; 및 상기 솔레노이드 밸브를 폐쇄하고, 사방밸브를 절환하여 상기 압축기로부터 토출되는 냉매가 상기 실외측 열교환기로 직접 유입되도록 하는 역사이클 제상 단계를 포함한다.According to an aspect of the present invention for achieving the above object, a step of driving a compressor to perform a heating operation; Determining a defrosting operation condition by detecting a driving integration time and an outside temperature of the compressor and determining whether the driving integration time of the compressor reaches a set time and whether the outside temperature is below a set temperature requiring defrosting operation; As a result of the determination, when the driving integration time of the compressor reaches the set time and the outside temperature is lower than the set temperature, the bypass pipe which bypasses the discharge port side pipe of the compressor and the inlet side pipe of the outdoor heat exchanger is opened and closed. A refrigerant bypass defrosting step of opening a solenoid valve actuated so as to operate; And a reverse cycle defrosting step of closing the solenoid valve and switching a four-way valve so that refrigerant discharged from the compressor flows directly into the outdoor heat exchanger.

또한, 상기 냉매 바이패스 제상 단계는 상기 압축기의 토출구 및 흡입구의 압력차가 일정범위 이하로 하강될 때까지 상기 솔레노이드 밸브를 개방하는 것을 특징으로 한다.The refrigerant bypass defrosting step may include opening the solenoid valve until the pressure difference between the discharge port and the suction port of the compressor drops below a predetermined range.

또한, 상기 역사이클 제상 단계 이후에, 상기 실외측 열교환기의 제상이 완료되었는지의 여부를 판단하는 단계; 상기 판단결과, 실외측 열교환기의 제상이 완료된 경우, 일정시간동안 압축기를 정지하는 압축기 구동 지연 단계; 및 상기 압축기 구동 지연 시간이 설정시간을 경과하면, 난방운전이 수행되도록 상기 사방밸브를 절환하고, 압축기를 재구동하는 단계를 더 포함하는 것을 특징으로 한다.Further, after the reverse cycle defrosting step, determining whether or not defrosting of the outdoor heat exchanger is completed; A compressor driving delay step of stopping the compressor for a predetermined time when the defrost of the outdoor heat exchanger is completed; And switching the four-way valve and re-driving the compressor so that the heating operation is performed when the compressor driving delay time has elapsed.

따라서, 냉매 바이패스 제상방식과 역사이클 제상방식을 병행하여 압축기의 역사이클 구동시에 토출구측과 흡입구측의 냉매 압력차이를 줄여줌으로써, 제상운전을 수행하게 되는 경우 압축기의 구동지연시간을 갖을 필요가 없어, 제상운전 시간을 단축할 수 있는 효과가 있다.Therefore, the refrigerant bypass defrost method and the reverse cycle defrost method are reduced in parallel to reduce the refrigerant pressure difference between the discharge port side and the suction port side during the reverse cycle driving of the compressor. There is no effect that the defrosting operation time can be shortened.

이하, 도면을 참조하여 본 발명에 따른 히트펌프 공기조화기의 제상운전 방법의 바람직한 실시예를 상세히 설명한다.Hereinafter, with reference to the drawings will be described in detail a preferred embodiment of the defrosting operation method of the heat pump air conditioner according to the present invention.

먼저, 히트펌프 공기조화기는 종래기술(도 1 및 도 2 참조)에서도 이미 설명한 바와 같이 압축기(10), 사방밸브(20), 실내측 열교환기(30) 및 그의 송풍기 (40), 팽창기구(50), 실외측 열교환기(60) 및 그의 송풍기(70), 어큐뮬레이터(accumulator:80), 바이패스 배관(90) 및 솔레노이드 밸브(100) 등으로 이루어지며, 이들의 구성은 이미 종래기술에서 설명된 것이므로 여기서는 그 상세한 설명은 생략한다.First, the heat pump air conditioner has a compressor 10, a four-way valve 20, an indoor side heat exchanger 30, a blower 40 thereof, and an expansion mechanism as already described in the prior art (see FIGS. 1 and 2). 50), an outdoor side heat exchanger 60 and its blower 70, an accumulator 80, a bypass pipe 90, a solenoid valve 100, and the like, and the configuration thereof has already been described in the related art. The detailed description thereof is omitted here.

도 3은 본 발명에 따른 히트펌프 공기조화기의 제상운전 방법을 나타내는 플로우차트로서, 도시된 바와 같이, 본 발명은 역사이클 제상방식 및 냉매 바이패스 제상방식을 병행하여 실외측 열교환기를 제상하는 히트펌프 공기조화기의 제상운전 방법으로서, 먼저 압축기(10)를 구동하여 일반적인 난방운전을 수행하고(S100), 상기 압축기(10)의 구동 적산시간을 계산하고, 제상센서(미도시)를 통해 외기온도를 감지하여 제상운전 조건에 도달하였는지를 판단한다(S200).3 is a flowchart illustrating a defrosting operation method of a heat pump air conditioner according to the present invention. As shown in the drawing, the present invention is a heat defrosting of an outdoor heat exchanger in combination with a reverse cycle defrosting method and a refrigerant bypass defrosting method. As a defrosting operation method of a pump air conditioner, first, the compressor 10 is driven to perform general heating operation (S100), the driving integration time of the compressor 10 is calculated, and the outside air temperature is obtained through a defrost sensor (not shown). It is determined whether the defrosting operation condition is reached by detecting the degree (S200).

이때, 압축기(10)의 구동 적산시간이 설정시간(통상적으로 8시간)을 경과하였는지를 판단하게 되고, 상기 제상센서를 통해 감지된 외기온도가 실외측 열교환기(60)에 성에가 착상될 수 있는 정도의 설정온도(통상적으로 0℃ 이하)에 도달하였는지를 판단하는 것이다.At this time, it is determined whether the driving integration time of the compressor 10 has passed a set time (typically 8 hours), and frost may be implanted in the outdoor heat exchanger 60 when the outside air temperature detected by the defrost sensor is detected. It is to judge whether the set temperature (usually 0 ° C. or less) of the degree has been reached.

상기 판단결과, 압축기(10)의 구동적산 시간이 설정시간에 도달하고, 상기 제상센서를 통해 감지된 온도가 설정온도에 도달하였다고 판단되면, 솔레노이드 밸브(100)를 개방하여 실외측 열교환기(60)의 입구측 배관과 압축기(10)의 토출구측 배관이 바이패스 되도록 형성된 바이패스관(90)이 개방되도록 한다(S300).As a result of the determination, when it is determined that the driving integration time of the compressor 10 reaches the set time and the temperature sensed by the defrost sensor reaches the set temperature, the solenoid valve 100 is opened to open the outdoor heat exchanger 60. The bypass pipe 90 formed to bypass the inlet pipe and the discharge port pipe of the compressor 10 is opened (S300).

즉, 실내의 난방운전을 실시하면서, 상기 바이패스관(90)을 개방하여 압축기(10)의 토출구(10a)를 통해 토출되는 고온, 고압의 냉매중 일부가 상기 바이패스관 (90)을 통해 실외측 열교환기(60)로 직접 유입되도록 하여 실외측 열교환기(60)에 착상된 성에를 제거하는 냉매 바이패스 제상 단계를 수행하게 되는 것이다.That is, while performing indoor heating operation, some of the high temperature and high pressure refrigerant discharged through the discharge port 10a of the compressor 10 by opening the bypass pipe 90 may pass through the bypass pipe 90. The refrigerant bypass defrosting step of removing frost formed on the outdoor heat exchanger 60 by directly flowing to the outdoor heat exchanger 60 is performed.

이후, 일정시간이 경과하면 상기 솔레노이드 밸브(100)를 폐쇄하고, 사방밸브(20)가 절환되도록 하여 압축기(10)로부터 토출되는 냉매가 실외측 열교환기(60)로 모두 유입되도록 하는 역사이클 제상 단계를 수행한다(S400). Thereafter, when the predetermined time passes, the solenoid valve 100 is closed and the four-way valve 20 is switched so that the refrigerant discharged from the compressor 10 is introduced into the outdoor heat exchanger 60. Perform the step (S400).

이때, 상기 냉매 바이패스 제상 단계를 수행하고 일정시간이 경과된 후에 역사이클 제상 단계를 수행하게 되면, 압축기(10)의 토출구(10a)를 통해 토출되는 고온, 고압의 냉매 중 일부가 실외측 열교환기(60)로 바이패스 되어 압축기(10)의 토출구(10a) 측과 흡입구(10b) 측의 냉매 압력 차이가 일반 난방운전에 비하여 감소하게 된다.At this time, if the reverse bypass defrosting step is performed after the predetermined time elapses after the refrigerant bypass defrosting step, a part of the high-temperature and high-pressure refrigerant discharged through the discharge port 10a of the compressor 10 is heat exchanged on the outdoor side. Bypassing to the machine 60, the refrigerant pressure difference between the discharge port (10a) side and the suction port (10b) side of the compressor 10 is reduced compared to the normal heating operation.

따라서, 이와 같이, 압축기(10)의 토출구측과 흡입구측 냉매 압력 차이의 감소로 인하여 제상운전으로의 냉매사이클을 전환하게 되는 경우, 압축기(10)의 사이클 전환으로 인한 손상이 감소되어 역사이클로의 전환과정을 위해 압축기(10)를 일정시간동안 정지하는 구동 지연시간을 갖지 않아도 된다. 즉, 압축기(10)의 구동지연시간을 갖을 필요가 없어 제상운전 시간을 단축할 수 있는 효과가 있는 것이다.Thus, when the refrigerant cycle to the defrosting operation is switched due to the decrease in the refrigerant pressure difference between the discharge port side and the suction port side of the compressor 10, the damage caused by the cycle change of the compressor 10 is reduced, so that It is not necessary to have a driving delay time for stopping the compressor 10 for a predetermined time for the conversion process. In other words, there is no need to have a drive delay time of the compressor 10, thereby reducing the defrosting operation time.

이후, 상기 실외측 열교환기(60)의 제상이 완료되었는지의 여부를 판단하여(S500), 실외측 열교환기(60)의 제상이 완료되었다고 판단되면, 다시 난방운전을 수행하기 위하여 일정시간동안 압축기(10)의 구동을 정지한다(S600).Thereafter, it is determined whether the defrost of the outdoor heat exchanger 60 is completed (S500), and when it is determined that the defrost of the outdoor heat exchanger 60 is completed, the compressor for a predetermined time to perform the heating operation again. The driving of 10 is stopped (S600).

이어서, 사방밸브(20)가 절환되도록 하고, 압축기(10)를 재구동하여 난방운전을 수행한다(S700).Subsequently, the four-way valve 20 is switched, and the compressor 10 is driven again to perform a heating operation (S700).

본 발명에 따른 히트펌프 공기조화기의 제상운전 방법은 상술한 바와 같이, 냉매 바이패스 제상방식과 역사이클 제상방식을 병행하여 압축기의 역사이클 구동시에 토출구측과 흡입구측의 냉매 압력차이를 줄여줌으로써, 제상운전을 수행하게 되는 경우 압축기의 구동지연시간을 갖을 필요가 없어, 제상운전 시간을 단축할 수 있는 효과가 있다.The defrosting operation method of the heat pump air conditioner according to the present invention, as described above, by reducing the refrigerant pressure difference between the discharge port side and the suction port side during the reverse cycle driving of the compressor by the refrigerant bypass defrost method and the reverse cycle defrost method When the defrosting operation is performed, there is no need to have a driving delay time of the compressor, thereby reducing the defrosting operation time.

Claims (3)

압축기를 구동시켜 난방운전을 수행하는 단계;Driving the compressor to perform a heating operation; 상기 압축기의 구동 적산 시간 및 외기온도를 검출하여 상기 압축기의 구동 적산 시간이 설정시간에 도달하고, 상기 외기온도가 제상운전을 필요로 하는 설정온도 이하인지를 판단하여 제상운전 조건을 판단하는 단계;Determining a defrosting operation condition by detecting a driving integration time and an outside temperature of the compressor and determining whether the driving integration time of the compressor reaches a set time and whether the outside temperature is below a set temperature requiring defrosting operation; 상기 판단결과, 상기 압축기의 구동적산 시간이 설정시간에 도달하고, 상기 외기온도가 설정온도 이하인 경우, 상기 압축기의 토출구측 배관과 실외측 열교환기의 입구측 배관을 바이패스시킨 바이패스관이 개폐되도록 작동하는 솔레노이드 밸브를 개방하는 냉매 바이패스 제상 단계; 및As a result of the determination, when the driving integration time of the compressor reaches the set time and the outside temperature is lower than the set temperature, the bypass pipe which bypasses the discharge port side pipe of the compressor and the inlet side pipe of the outdoor heat exchanger is opened and closed. A refrigerant bypass defrosting step of opening a solenoid valve actuated so as to operate; And 상기 솔레노이드 밸브를 폐쇄하고, 사방밸브를 절환하여 상기 압축기로부터토출되는 냉매가 상기 실외측 열교환기로 직접 유입되도록 하는 역사이클 제상 단계를 포함하는 히트펌프 공기조화기의 제상운전 방법.And a reverse cycle defrosting step of closing the solenoid valve and switching the four-way valve so that the refrigerant discharged from the compressor flows directly into the outdoor side heat exchanger. 제 1항에 있어서,The method of claim 1, 상기 냉매 바이패스 제상 단계는 상기 압축기의 토출구 및 흡입구의 압력차가 일정범위 이하로 하강될 때까지 상기 솔레노이드 밸브를 개방하는 것을 특징으로 하는 히트펌프 공기조화기의 제상운전 방법.The defrosting step of the refrigerant bypass defrosting operation of the heat pump air conditioner, characterized in that for opening the solenoid valve until the pressure difference between the discharge port and the suction port of the compressor falls below a predetermined range. 제 1항에 있어서,The method of claim 1, 상기 역사이클 제상 단계 이후에,After the reverse cycle defrosting step, 상기 실외측 열교환기의 제상이 완료되었는지의 여부를 판단하는 단계;Determining whether defrost of the outdoor heat exchanger is completed; 상기 판단결과, 실외측 열교환기의 제상이 완료된 경우, 일정시간동안 압축기를 정지하는 압축기 구동 지연 단계; 및A compressor driving delay step of stopping the compressor for a predetermined time when the defrost of the outdoor heat exchanger is completed; And 상기 압축기 구동 지연 시간이 설정시간을 경과하면, 난방운전이 수행되도록 상기 사방밸브를 절환하고, 압축기를 재구동하는 단계를 더 포함하는 것을 특징으로 하는 히트펌프 공기조화기의 제상운전 방법.And switching the four-way valve and re-driving the compressor so that the heating operation is performed when the compressor driving delay time passes the set time.
KR1020060059653A 2006-06-29 2006-06-29 Defrosting method of heat-pump air conditioner KR20080001308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060059653A KR20080001308A (en) 2006-06-29 2006-06-29 Defrosting method of heat-pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060059653A KR20080001308A (en) 2006-06-29 2006-06-29 Defrosting method of heat-pump air conditioner

Publications (1)

Publication Number Publication Date
KR20080001308A true KR20080001308A (en) 2008-01-03

Family

ID=39213346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060059653A KR20080001308A (en) 2006-06-29 2006-06-29 Defrosting method of heat-pump air conditioner

Country Status (1)

Country Link
KR (1) KR20080001308A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245152A (en) * 2013-05-20 2013-08-14 杭州三花微通道换热器有限公司 Heat pump system
CN103245153A (en) * 2013-05-20 2013-08-14 杭州三花微通道换热器有限公司 Heat pump system
CN103486783A (en) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 Air conditioner system and defrosting control method thereof
CN103712363A (en) * 2014-01-13 2014-04-09 克莱门特捷联制冷设备(上海)有限公司 Multipurpose defrosting control method for reverse circulating heat pump and corresponding heat pump device
CN103940163A (en) * 2014-04-14 2014-07-23 美的集团武汉制冷设备有限公司 Defrosting control method and device
CN104075512A (en) * 2014-06-10 2014-10-01 烟台顿汉布什工业有限公司 Full-liquid type air cooling and heating pump set
CN104654685A (en) * 2013-11-19 2015-05-27 美的集团股份有限公司 Defrosting control method and device for heat pump system
KR20160099330A (en) * 2015-02-12 2016-08-22 김종봉 A Reverse cyclic defrosting apparatus and showcase refrigerator
WO2017190613A1 (en) * 2016-05-05 2017-11-09 广东美的制冷设备有限公司 Air conditioner control method and device
CN107388663A (en) * 2017-08-03 2017-11-24 珠海格力电器股份有限公司 Control method of heat pump system and heat pump system
US11125449B2 (en) 2019-03-20 2021-09-21 Johnson Controls Technology Company Systems and methods for transitioning between a cooling operating mode and a reheat operating mode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245153B (en) * 2013-05-20 2016-04-06 杭州三花微通道换热器有限公司 Heat pump
CN103245153A (en) * 2013-05-20 2013-08-14 杭州三花微通道换热器有限公司 Heat pump system
CN103245152A (en) * 2013-05-20 2013-08-14 杭州三花微通道换热器有限公司 Heat pump system
CN103486783A (en) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 Air conditioner system and defrosting control method thereof
CN103486783B (en) * 2013-09-26 2015-09-30 广东美的制冷设备有限公司 Air-conditioner system and defrosting control method thereof
CN104654685B (en) * 2013-11-19 2017-06-06 美的集团股份有限公司 The defrosting control method and device of heat pump
CN104654685A (en) * 2013-11-19 2015-05-27 美的集团股份有限公司 Defrosting control method and device for heat pump system
CN103712363A (en) * 2014-01-13 2014-04-09 克莱门特捷联制冷设备(上海)有限公司 Multipurpose defrosting control method for reverse circulating heat pump and corresponding heat pump device
CN103712363B (en) * 2014-01-13 2016-03-02 克莱门特捷联制冷设备(上海)有限公司 The multipurpose defrosting control method of inverse circulating heat pump
CN103940163A (en) * 2014-04-14 2014-07-23 美的集团武汉制冷设备有限公司 Defrosting control method and device
CN104075512A (en) * 2014-06-10 2014-10-01 烟台顿汉布什工业有限公司 Full-liquid type air cooling and heating pump set
KR20160099330A (en) * 2015-02-12 2016-08-22 김종봉 A Reverse cyclic defrosting apparatus and showcase refrigerator
WO2017190613A1 (en) * 2016-05-05 2017-11-09 广东美的制冷设备有限公司 Air conditioner control method and device
CN107388663A (en) * 2017-08-03 2017-11-24 珠海格力电器股份有限公司 Control method of heat pump system and heat pump system
WO2019024881A1 (en) * 2017-08-03 2019-02-07 格力电器(武汉)有限公司 Control method for heat pump system and heat pump system
CN107388663B (en) * 2017-08-03 2019-03-26 珠海格力电器股份有限公司 Control method of heat pump system and heat pump system
US11193704B2 (en) 2017-08-03 2021-12-07 Gree Electric Appliances (Wuhan) Co., Ltd Heat pump reversing valve control based on the valve reversing pressure and the system pressure
US11125449B2 (en) 2019-03-20 2021-09-21 Johnson Controls Technology Company Systems and methods for transitioning between a cooling operating mode and a reheat operating mode

Similar Documents

Publication Publication Date Title
KR20080001308A (en) Defrosting method of heat-pump air conditioner
JP5265010B2 (en) Heat pump equipment
EP1571405B1 (en) Control method for heat pumps
KR101588205B1 (en) Air conditioner and Defrosting driving method of the same
WO2007013345A1 (en) Refrigeration device
KR100762513B1 (en) Defrost apparatus of heat pump air conditioner
JP2003240391A (en) Air conditioner
JP2023503192A (en) air conditioner
EP3961126B1 (en) Multi-air conditioner for heating and cooling operations
KR100681464B1 (en) Heat pump air-conditioner of injection type and defrosting method thereof
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
KR100764707B1 (en) Heat pump air-conditioner, and method for controlling defrosting mode thereof
JP5313467B2 (en) Air conditioning system and control method thereof
KR101075168B1 (en) Method for defrost of heat pump system
US20220252317A1 (en) A heat pump
KR20070041060A (en) Air conditioner and its control method for the pressure equilibrium
KR100643689B1 (en) Heat pump air-conditioner
JP3661014B2 (en) Refrigeration equipment
JP2004085047A (en) Air conditioner
KR100652799B1 (en) Control method for multi type air conditioner
KR100588846B1 (en) Heat pump air-conditioner
KR102261131B1 (en) Heat pump air-conditioner having defrosting
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof
WO2024218929A1 (en) Air conditioning device
KR20100088378A (en) Air conditioner and defrosting driving method of the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application