KR20070120408A - Structure of hybrid synchronization channel, method and apparatus for transmitting signal, applying and analyzing the sequence using the same - Google Patents

Structure of hybrid synchronization channel, method and apparatus for transmitting signal, applying and analyzing the sequence using the same Download PDF

Info

Publication number
KR20070120408A
KR20070120408A KR1020060076812A KR20060076812A KR20070120408A KR 20070120408 A KR20070120408 A KR 20070120408A KR 1020060076812 A KR1020060076812 A KR 1020060076812A KR 20060076812 A KR20060076812 A KR 20060076812A KR 20070120408 A KR20070120408 A KR 20070120408A
Authority
KR
South Korea
Prior art keywords
sequence
synchronization channel
channel
synchronization
sch
Prior art date
Application number
KR1020060076812A
Other languages
Korean (ko)
Other versions
KR101265619B1 (en
Inventor
권영현
한승희
박현화
김동철
이현우
노민석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20070120408A publication Critical patent/KR20070120408A/en
Application granted granted Critical
Publication of KR101265619B1 publication Critical patent/KR101265619B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Abstract

A hybrid synchronization channel structure and a method and an apparatus for transmitting signals, applying and analyzing a sequence using the same are provided to obtain synchronization information of good quality in both of a synchronous network and an asynchronous network, and perform synchronization acquisition by auto-correlation and cross-correlation mostly performed in the synchronous and asynchronous networks, thereby improving accuracy of acquired synchronization information. A primary synchronization channel includes a sequence commonly used in a communication network, and includes a repetitive structure of a sequence in a time domain. A secondary synchronization channel includes a sequence for transmission of information except control information included in the primary synchronization channel. The secondary synchronization channel also includes a repetitive structure of the sequence at the time domain. The repetitive structure is composed by inserting a specific sequence at predetermined periods in a frequency domain.

Description

복합 동기 채널 구조, 이를 이용한 신호 전송, 시퀀스 적용, 시퀀스 분석 방법 및 장치{Structure Of Hybrid Synchronization Channel, Method and Apparatus For Transmitting Signal, Applying And Analyzing The Sequence Using The Same}Structure Of Hybrid Synchronization Channel, Method and Apparatus For Transmitting Signal, Applying And Analyzing The Sequence Using The Same}

도 1a 및 도 1b 는 각각 계층적 동기채널 구조 및 비계층적 동기채널 구조를 개념적으로 나타낸 개념도.1A and 1B are conceptual views conceptually illustrating a hierarchical sync channel structure and a non-hierarchical sync channel structure, respectively.

도 2는 본 발명의 일 실시형태에 따른 복합 동기 채널(Hybrid SCH) 구조를 개념적으로 도시한 개념도.2 is a conceptual diagram conceptually illustrating a hybrid SCH structure according to an embodiment of the present invention.

도 3은 본 발명의 일 실시형태에 따른 복합 동기 채널 신호를 전송하는 장치를 나타내는 블록도.3 is a block diagram illustrating an apparatus for transmitting a composite synchronization channel signal in accordance with an embodiment of the present invention.

도 4는 본 발명의 일 실시형태에 따른 동기획득 방법의 단계 구성을 나타내는 순서도.4 is a flowchart showing a step structure of a synchronization acquisition method according to an embodiment of the present invention.

도 5a 및 도 5b는 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 의해 각 동기채널에 삽입되는 시퀀스에 순환이동이 적용되고, 주 동기채널(P-SCH)과 보조 동기채널(S-SCH)에 동일한 시퀀스가 삽입되는 구조를 도시한 도.5A and 5B illustrate that a cyclic shift is applied to a sequence inserted into each sync channel by a sequence applying method according to an embodiment of the present invention, and a primary sync channel (P-SCH) and an auxiliary sync channel (S-SCH) are shown in FIG. Fig. Showing the structure in which the same sequence is inserted in the diagram.

도 6a 및 도 6b는 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 의해 각 동기채널에 삽입되는 시퀀스에 순환이동이 적용되고, 주 동기채널과 보조 동기채널에 하나의 시퀀스가 분할되어 삽입되는 구조를 도시한 도.6A and 6B illustrate a structure in which a cyclic shift is applied to a sequence inserted into each sync channel by a sequence applying method according to an embodiment of the present invention, and one sequence is divided and inserted into a primary sync channel and a secondary sync channel. Figure.

도 7a 및 도 7b는 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 의해 각 동기채널에 삽입되는 시퀀스에 순환이동이 적용되고, 주 동기채널과 보조 동기채널에 서로 다른 이종의 시퀀스가 삽입되는 구조를 도시한 도.7A and 7B illustrate a structure in which a cyclic shift is applied to a sequence inserted into each sync channel by a sequence applying method according to an embodiment of the present invention, and different heterogeneous sequences are inserted into a primary sync channel and a secondary sync channel. Figure.

도 8은 본 발명의 일 실시형태에 따른 시퀀스 분석 방법에 의해 수신된 시퀀스에서 무선 채널의 임펄스 응답을 나타내는 결과를 도시한 도.FIG. 8 is a diagram showing a result indicating an impulse response of a radio channel in a sequence received by a sequence analysis method according to an embodiment of the present invention. FIG.

도 9는 본 발명의 일 실시형태에 따른 시퀀스 분석 방법에 의할 경우와 종래의 시퀀스 분석 방법에 의할 경우의 검출 오류율을 비교하여 도시한 도.Fig. 9 is a diagram showing a comparison of detection error rates in the case of using the sequence analysis method according to the embodiment of the present invention and in the case of the conventional sequence analysis method.

본 발명은 통신 시스템에 대한 것으로, 더 상세하게는 복합 동기 채널 구조와 이를 이용한 신호 전송, 시퀀스 적용, 시퀀스 분석 방법 및 장치에 관한 것이다.The present invention relates to a communication system, and more particularly, to a complex synchronization channel structure and a signal transmission, sequence application, and sequence analysis method and apparatus using the same.

통신 시스템에서, 특히 무선 통신 시스템에서 단말이 서비스를 제공하는 기지국과 통신하기 위해서 단말과 기지국 간에 동기를 맞추어야 한다. 이 동기를 맞추기 위한 방법은 두 가지로 분류되는데, 하나는 기지국이 가지고 있는 시계에 단말이 동기를 늘 맞추는 방법이고, 다른 하나는 기지국과 단말 간에 임의 접속(random access)을 통해 동기를 맞추는 방법이다. In a communication system, particularly in a wireless communication system, the terminal must synchronize with the base station in order to communicate with the base station providing the service. There are two ways to achieve this synchronization, one of which is to synchronize the terminal with the clock of the base station, and the other is to synchronize through random access between the base station and the terminal. .

상술한 기지국이 가지고 있는 시계에 단말이 동기를 늘 맞추는 방법은 기지국이 일정하게 전송해주는 신호를 가지고 단말이 기지국과 동기를 맞추는 경우로서 이동통신 시스템과 같이 항상 존재하는 시스템에서 단말이 임의 시간에 기지국과 동기를 맞추기 위한 방법이다. 반면, 기지국과 단말이 임의 접속을 통해 동기를 획득함으로써 통신 기반을 확보하는 방법은, 서로 간에 항상 동기를 맞출 필요가 없으며, 통신하고자 하는 패킷단위의 좁은 시간단위에서만 동기가 이루어져 있으면 된다. 이런 방식의 시스템은 무선랜(WLAN)이나 무선팬(WPAN)과 같이 저렴하게 구현되어야 하는 시스템에서 사용하기 적합하다. The method of synchronizing the terminal with the clock of the base station described above is a case in which the terminal synchronizes with the base station with a signal transmitted by the base station constantly. In a system such as a mobile communication system where the terminal always exists at any time It's a way to keep in touch On the other hand, the method of securing a communication base by acquiring synchronization through a random access between the base station and the terminal does not always have to synchronize with each other, but only with a narrow time unit of a packet unit to communicate with. This type of system is suitable for use in systems that need to be implemented inexpensively, such as WLAN or wireless fan (WPAN).

일반적으로 이동통신 시스템에서는 시스템 구성을 셀 기반으로 구현하는데, 각 특정 위치의 단말이 이동통신 서비스에 접근하기 위해서는 자기와 신호 특성상 가장 강한 세기의 신호로 수신되는 기지국과 동기를 맞춰야 한다. 이와 같이 동기를 맞추고 나면, 기지국으로부터 다양한 신호 포맷 정보를 얻어내고, 다시 임의 접속 채널(random access channel)과 같이 상향 링크 동기를 맞출 수 있는 수단을 이용하여 자신의 존재를 알리게 된다. In general, in a mobile communication system, a system configuration is implemented based on a cell. In order for a terminal of each specific location to access a mobile communication service, it is required to synchronize with a base station that is received with a signal having the strongest strength due to its own signal characteristics. After synchronizing in this manner, various signal format information is obtained from the base station, and the user is notified again by means of synchronizing uplink synchronization such as a random access channel.

또한, 통상적으로 이동통신 기지국은 일정한 시간 프레임을 가지고 신호를 전송한다. 상기 이동통신 기지국은 특정 위치에 자신에게 동기를 맞출 수 있는 신호를 전송하는데 이를 동기채널(Synchronization channel = SCH)이라고 하며, 이 동기채널에 특정한 시퀀스를 삽입하여 전송하면, 단말은 이 시퀀스를 검출해서 그 기지국의 시간 및 주파수에 대해 동기를 맞출 수 있다. 현재 3GPP LTE 에서 논의되고 있는 동기채널에 대한 예는 다음과 같다. In addition, a mobile communication base station typically transmits a signal with a certain time frame. The mobile communication base station transmits a signal capable of synchronizing itself to a specific location. This is called a synchronization channel (SCH). When a specific sequence is inserted into the synchronization channel, the mobile station detects the sequence. Synchronization can be made with respect to the time and frequency of the base station. An example of a synchronization channel currently being discussed in 3GPP LTE is as follows.

도 1a 및 도 1b 는 각각 계층적 동기채널 구조(hierarchical SCH structure) 및 비계층적 동기채널 구조(non-hierarchical SCH structure)를 개념적으로 나타낸 개념도이다.1A and 1B are conceptual views conceptually illustrating a hierarchical SCH structure and a non-hierarchical SCH structure, respectively.

도 1a 의 경우 동기채널이 두 가지로 구분되는데 주 동기 채널(primary SCH : P-SCH)과 부 동기 채널(secondary SCH : S-SCH)이다. 이 중에서 P-SCH는 단말이 초기에 기지국의 시간 동기 및 주파수 동기를 찾기 위한 용도로 사용되며, S-SCH는 검출된 시간 동기 및 주파수 동기에 맞춰서 기지국의 ID 및 부가정보를 알아내기 위한 채널로 사용된다. 일반적으로, P-SCH 신호는 모든 기지국이 동일한 신호로 전송하고 단말은 이미 그 신호를 알고 있으며, S-SCH 신호는 각 기지국에 특화된 신호정보를 전송하고 단말은 그 특화된 신호정보를 검출해야 한다. 이와 같이 P-SCH에서 먼저 시간 동기를 찾아내고 그 다음 S-SCH에서 기지국 정보를 얻어내는 형태의 계층을 가지기 때문에 계층적 동기채널 구조하고 하며, 이를 이용하는 셀 검색을 계층적 셀 검색 방식이라고 한다. 여기서, 기지국에 특화된 신호 정보의 예를 들면, 셀 ID, 셀 그룹 ID, 다른 채널의 대역폭 정보, CP 길이, 송신 안테나 개수 등의 정보를 들 수가 있다.In the case of FIG. 1A, there are two synchronization channels: a primary SCH (P-SCH) and a secondary SCH (S-SCH). Among them, P-SCH is used for the terminal to find the time synchronization and frequency synchronization of the base station initially, S-SCH is a channel for finding the ID and additional information of the base station in accordance with the detected time synchronization and frequency synchronization Used. In general, the P-SCH signal is transmitted by all base stations to the same signal, and the terminal already knows the signal, and the S-SCH signal transmits signal information specific to each base station and the terminal should detect the specialized signal information. As described above, since the P-SCH has a hierarchical form of finding time synchronization and then obtaining base station information from the S-SCH, a hierarchical synchronization channel structure is used. A cell search using the hierarchical cell is called a hierarchical cell search. Here, for example, signal information specialized for the base station may include information such as cell ID, cell group ID, bandwidth information of another channel, CP length, number of transmitting antennas, and the like.

반면 도 1b 의 경우는 하나의 동기채널(SCH)만이 존재하며 이 채널의 구조는 시간 영역에서 반복되는 패턴을 가지는 것을 특징으로 한다. 이를 이용하여 시간 동기를 찾기 위해 단말은 기지국이 생성한 이 반복패턴을 자기상관(Auto-Correlation)을 통해서 검출해야 하며, 이 자기상관 값이 최대가 되는 위치가 시간 동기가 된다. 이 시간 동기로부터 SCH의 위치를 알아내고 SCH 채널 신호를 추출하여 그 안에 들어있는 기지국 특정 정보를 획득하는 형태이다. 도 1b 에서 SCH에 전송되는 신호는 시간 영역에서 반복구조를 가지고 있어야 하는 조건을 만족하고, 특 정 기지국에 특화된 신호를 전송하게 된다. 즉 도 1a 의 계층적 구조의 P-SCH와 S-SCH를 한꺼번에 합해놓은 형태이다.In contrast, in FIG. 1B, only one synchronization channel (SCH) exists, and the structure of the channel has a repeating pattern in the time domain. In order to find the time synchronization using this, the UE should detect this repetition pattern generated by the base station through auto-correlation, and the position where this autocorrelation value is maximum becomes time synchronization. From this time synchronization, the location of the SCH is determined, the SCH channel signal is extracted, and base station specific information contained therein is obtained. In FIG. 1B, the signal transmitted to the SCH satisfies the condition that it has a repetitive structure in the time domain and transmits a signal specific to a specific base station. That is, the P-SCH and the S-SCH of the hierarchical structure of FIG. 1A are summed together.

한편, 단말이 동기채널을 통해서 신호를 검출하기 위해서는, 어떤 신호를 검출해야 하는지가 사전에 결정되어야 한다. 이 동기채널에 사용될 신호, 즉 특정 시퀀스들은 구현된 이동통신 시스템이나 개발 중인 시스템 모두에서 다를 수 있다. 3GPP LTE 의 경우에는 CAZAC 시퀀스가 가장 막강한 후보이고, WCDMA의 경우에는 골드 코드(Gold Code)를 기반으로 하고 있다. On the other hand, in order for the terminal to detect a signal through the synchronization channel, it is necessary to determine in advance which signal to detect. The signals to be used for this sync channel, i.e. the specific sequences, may be different in both the mobile communication system and the system under development. In the case of 3GPP LTE, the CAZAC sequence is the strongest candidate, and in the case of WCDMA, it is based on the Gold Code.

상기 CAZAC 시퀀스는 두 종류가 많이 사용되고 있으며, 이는 GCL CAZAC와 Zadoff-Chu CAZAC이다. 이 두 종류 사이의 관계는 서로 공액복소수 관계로 묶이며, 따라서 Zadoff-Chu CAZAC는 GCL CAZAC에 공액복소수 연산을 적용하면 얻어진다. Zadoff-Chu CAZAC은 다음과 같이 주어진다.Two kinds of CAZAC sequences are used, which are GCL CAZAC and Zadoff-Chu CAZAC. The relationship between these two types is tied together by a conjugate complex relationship, so Zadoff-Chu CAZAC is obtained by applying the conjugate complex operation to the GCL CAZAC. Zadoff-Chu CAZAC is given by

Figure 112006057954303-PAT00001
Figure 112006057954303-PAT00002
Figure 112006057954303-PAT00001
Figure 112006057954303-PAT00002

Figure 112006057954303-PAT00003
Figure 112006057954303-PAT00004
Figure 112006057954303-PAT00003
Figure 112006057954303-PAT00004

여기서, k 는 시퀀스 인덱스를, N 은 생성될 CAZAC 시퀀스의 길이를, M은 시퀀스 ID를 나타낸다. Here k denotes a sequence index, N denotes a length of a CAZAC sequence to be generated, and M denotes a sequence ID.

상기 수학식 1 및 수학식 2와 같이 주어지는 Zadoff-Chu CAZAC 시퀀스 및 이 의 공액복소수 관계에 있는 GCL CAZAC 시퀀스를 c(k;N,M) 로 나타낼 때, 모두 다음과 같은 세 가지 특징을 가진다.When the Zadoff-Chu CAZAC sequence given by Equation 1 and Equation 2 and the GCL CAZAC sequence in the conjugate complex relationship thereof are represented by c (k; N, M), all three features are as follows.

Figure 112006057954303-PAT00005
Figure 112006057954303-PAT00005

Figure 112006057954303-PAT00006
Figure 112006057954303-PAT00006

Figure 112006057954303-PAT00007
Figure 112006057954303-PAT00007

상기 수학식 3 은 CAZAC 시퀀스는 언제나 그 크기가 1을 의미하고, 수학식 4 는 CAZAC 시퀀스의 자기상관(Auto-Correlation) 함수가 델타 함수로 표시됨을 보여준다. 여기에서 자기상관은 순환 상관(circular correlation)에 기반한다. 또한, 수학식 5 는 교차상관함수(Cross-Correlation)가 언제나 상수임을 보여준다.Equation 3 shows that a CAZAC sequence always has a size of 1, and Equation 4 shows that an auto-correlation function of a CAZAC sequence is represented as a delta function. Here autocorrelation is based on circular correlation. In addition, Equation 5 shows that the cross-correlation is always constant.

상기 수학식 3에 나타난 바와 같은 특징은 SCH로 전송되는 신호의 크기가 일정해서 PAPR (Peak-to-Average Power Ratio)가 낮으므로, 전송단에서 시간 영역 신호를 충분히 부스팅(boosting)시킬 수 있는 장점을 제공한다. 또한 상기 수학식 4에 나타난 바와 같은 특징은 단말이 동기채널로부터 시퀀스를 검출할 때, 정확한 시간 동기를 찾을 수 있게 하는 근거를 제시하며, 마지막 수학식 5의 특징은 여러 기지국의 동기채널이 섞여서 들어올 경우에 각 기지국을 구분하는데 있어서 효과적 으로 처리할 수 있게 해준다.As shown in Equation 3, since the signal transmitted to the SCH is constant, the PAPR (Peak-to-Average Power Ratio) is low, so that the boosting stage can sufficiently boost the time-domain signal. To provide. In addition, the feature as shown in Equation 4 provides a basis for finding the correct time synchronization when the terminal detects a sequence from the synchronization channel, the last feature of Equation 5 is a mixture of synchronization channels of several base stations In this case, it is possible to effectively treat each base station.

상술한 바와 같은 CAZAC 시퀀스를 도 1a 및 도 1b에서와 같이 계층적 또는 비계층적인 구조를 가지는 동기 채널에 삽입하여 전달하고, 이를 통해 동기 획득 및 셀 검색을 수행하는 방식은 이동통신 시스템의 셀들이 어떻게 배치되고 동기화되는가에 따라서 민감하게 성능이 변화한다. 계층적 구조의 경우 비계층적 구조에 비해 주파수 옵셋(off set)에 의해 시간 심볼 동기 성능에 더 큰 영향을 받는 단점이 있다. 반면에 비계층적 구조는 주파수 옵셋과 무관하게 시간 심볼 동기를 획득할 수 있지만, 간섭(interference), 즉 다른 셀로부터 신호가 겹쳐서 수신되는 경우 시간 영역에서 반복되는 특성이 파괴되어 타이밍 동기를 획득하기 어렵다.As described above, the CAZAC sequence is inserted into a synchronization channel having a hierarchical or non-hierarchical structure as shown in FIGS. 1A and 1B, and transmitted. Sensitive performance changes depending on how they are deployed and synchronized. The hierarchical structure has a disadvantage in that the time symbol synchronization performance is more affected by the frequency offset than the non-hierarchical structure. On the other hand, a non-hierarchical structure can acquire time symbol synchronization regardless of frequency offset, but when timing signals are received by interference, i.e., when signals are overlapped from other cells, the repeated characteristics in the time domain are destroyed to obtain timing synchronization. it's difficult.

또한, 비계층적 구조는 기지국간 전송 시점이 동일한 동기 네트워크(synchronous network)에서는 일반적으로 우수한 성능을 보이지만, 기지국간 전송 시점이 랜덤한 비동기 네트워크(asynchronous network)에서는 열악한 성능을 보인다. 반대로 계층적 구조는 비동기 네트워크에서 상대적으로 우수한 성능을 나타내나, 동기 네트워크에서는 그 성능이 열악하다.In addition, the non-hierarchical structure generally shows excellent performance in a synchronous network having the same transmission time between base stations, but poor performance in an asynchronous network having a random transmission time between base stations. On the contrary, hierarchical structure shows relatively good performance in asynchronous network, but poor performance in synchronous network.

아울러, 상술한 바와 같은 동기 채널을 통해 전송되는 시퀀스로서 CAZAC 시퀀스나 이외 특정 시퀀스를 사용할 경우, 이들이 제공하는 시퀀스 종류로써 부가정보를 전달하는 방안은 총 코드의 종류가 길이 N의 시퀀스에 대해서 N개 이상을 제공해주지 못하기 때문에 정보 전달에 한계가 있다.In addition, when a CAZAC sequence or a specific sequence is used as a sequence transmitted through the synchronization channel as described above, a method of transmitting additional information as a sequence type provided by them includes N pieces of total code types for a sequence of length N. There is a limit to information delivery because it does not provide the ideal.

상기와 같은 문제점을 해결하기 위해서 본 발명의 목적은 계층적 동기채널과 비계층적 동기채널의 장점을 수용한 복합적인 구조를 가지는 동기채널 구조 및 이를 전송하거나 형성하는 방법 및 장치를 제공하는 데 있다. SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide a synchronization channel structure having a complex structure accommodating the advantages of a hierarchical synchronization channel and a non-hierarchical synchronization channel, and a method and apparatus for transmitting or forming the same. .

본 발명의 다른 목적은 상술한 복합적인 구조를 가지는 채널 구조를 이용하여 동기를 획득하고, 이에 기초하여 셀 검색을 수행하는 방법을 제공하는 데 있다.Another object of the present invention is to provide a method of acquiring synchronization using the above-described channel structure having a complex structure and performing a cell search based thereon.

본 발명의 또 다른 목적은 상술한 복합적인 구조를 가지는 채널에 적용할 수 있는 시퀀스에 순환 이동을 적용하여 전송되는 제어 정보의 양을 증가시킬 수 있는 시퀀스 적용 방법을 제공하는 데 있다.Another object of the present invention is to provide a sequence application method that can increase the amount of control information transmitted by applying a cyclic shift to a sequence that can be applied to a channel having a complex structure described above.

본 발명의 또 다른 목적은 상술한 복합적인 구조를 가지는 채널에 순환이동이 적용된 시퀀스가 수신되는 경우, 이러한 시퀀스를 분석하여 제어 정보를 획득하는 방법을 제공하는 데 있다.It is still another object of the present invention to provide a method for acquiring control information by analyzing a sequence when a sequence to which a cyclic shift is applied to a channel having a complex structure is received.

상기 목적을 달성하기 위한 본 발명의 일 실시형태에 따른 동기채널 구조는 통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하며, 시간 영역에서 시퀀스의 반복구조를 포함하는 주 동기채널; 및 상기 주 동기 채널에 포함되는 제어 정보 이외의 정보 전달을 위한 시퀀스를 포함하는 보조 동기 채널을 포함한다. 이하에서는 상술한 바와 같은 구조를 가지는 동기채널 구조를 설명의 편의를 위해 "복합 동기 채널 구조"라 한다. 이때, 보조 동기채널에 포함되는 제어 정보는 주 동기채널에 포함되는 제어 정보와는 다른 이종의 정보를 포함할 수 있을 뿐만 아니라, 주 동기채널에 포함된 제어 정보를 반복하는 정보를 포함할 수도 있다.A synchronization channel structure according to an embodiment of the present invention for achieving the above object comprises a main synchronization channel including a sequence commonly used in a communication network, and including a repetition structure of the sequence in the time domain; And an auxiliary synchronization channel including a sequence for transferring information other than control information included in the primary synchronization channel. Hereinafter, the sync channel structure having the above-described structure will be referred to as a "complex sync channel structure" for convenience of description. In this case, the control information included in the auxiliary synchronization channel may not only include heterogeneous information different from the control information included in the primary synchronization channel, but may also include information for repeating control information included in the primary synchronization channel. .

또한, 여기서 주 동기채널뿐만 아니라 보조 동기 채널 역시 시간영역에서 시 퀀스의 반복구조를 포함할 수 있으며, 상술한 주 동기채널 및/또는 보조 동기채널에 포함된 반복 구조는 특정 시퀀스를 주파수 영역에서 소정 주기마다 삽입하여 이루어질 수 있다.In addition, the auxiliary synchronization channel as well as the main synchronization channel may also include a repetition structure of the sequence in the time domain, and the above-described repetition structure included in the primary synchronization channel and / or the auxiliary synchronization channel may specify a specific sequence in the frequency domain. It can be made by inserting every cycle.

본 발명의 다른 일 실시형태에 따른 신호 전송 방법은, 제어 정보를 전송하기 위해 특정 신호를 동기 채널 신호에 삽입하는 단계; 및 이 동기 채널 신호를 수신측으로 전송하는 단계를 포함하는 신호 전송 방법으로서, 상기 동기 채널은 통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하며, 시간 영역에서 시퀀스의 반복구조를 포함하는 주 동기채널; 및 주 동기 채널에 포함되는 제어 정보 이외의 정보 전달을 위한 시퀀스를 포함하는 보조 동기 채널을 포함하는 구조를 가지는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a signal transmission method comprising: inserting a specific signal into a synchronization channel signal to transmit control information; And transmitting the synchronization channel signal to a receiving side, wherein the synchronization channel includes a sequence commonly used in a communication network, the primary synchronization channel including a repetition structure of the sequence in a time domain; And an auxiliary synchronization channel including a sequence for transferring information other than control information included in the primary synchronization channel.

또한, 본 발명의 다른 일 실시형태에 따른 신호 전송 장치는 제어 정보를 전송하기 위해 특정 신호를 동기 채널 신호에 삽입하는 동기채널신호구축부; 및 이 동기채널신호구축부에 의해 구축된 동기 채널 신호를 수신측으로 전송하는 송신부를 포함하는 신호 전송 장치로서, 상기 동기 채널은 통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하며, 시간 영역에서 시퀀스의 반복구조를 포함하는 주 동기채널; 및 주 동기 채널에 포함되는 제어 정보 이외의 정보 전달을 위한 시퀀스를 포함하는 보조 동기 채널을 포함하는 구조를 가지는 것을 특징으로 한다.In addition, the signal transmission apparatus according to another embodiment of the present invention includes a synchronization channel signal construction unit for inserting a specific signal into the synchronization channel signal for transmitting control information; And a transmission unit for transmitting the synchronization channel signal established by the synchronization channel signal construction unit to a receiving side, wherein the synchronization channel includes a sequence commonly used in a communication network, and the sequence is repeated in a time domain. A main sync channel comprising a structure; And an auxiliary synchronization channel including a sequence for transferring information other than control information included in the primary synchronization channel.

한편, 상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 동기채널 구조 형성 방법은 통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하며, 시간 영역에서 시퀀스의 반복구조를 포함하는 주 동기채널을 형성하는 단계; 및 상술한 바와 같이 형성된 주 동기 채널에 포함되는 제어 정보 이외의 정보 전달을 위한 시퀀스를 포함하는 보조 동기 채널을 형성하는 단계를 포함한다. 이때, 보조 동기채널에 포함되는 제어 정보는 주 동기채널에 포함되는 제어 정보와는 다른 이종의 정보를 포함할 수 있을 뿐만 아니라, 주 동기채널에 포함된 제어 정보를 반복하는 정보를 포함할 수도 있다.Meanwhile, a method of forming a synchronization channel structure according to another embodiment of the present invention for achieving the above object includes a sequence commonly used in a communication network and includes a main synchronization channel including a repetition structure of a sequence in a time domain. Forming; And forming an auxiliary synchronization channel including a sequence for transferring information other than control information included in the primary synchronization channel formed as described above. In this case, the control information included in the auxiliary synchronization channel may not only include heterogeneous information different from the control information included in the primary synchronization channel, but may also include information for repeating control information included in the primary synchronization channel. .

상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 동기 획득 방법은 상술한 바와 같은 복합 동기 채널 구조를 이용하며, 통신이 이루어지는 네트워크가 동기식인지 여부를 판정하는 단계; 및 통신이 이루어지는 상기 네트워크가 동기식 네트워크인 경우, 주 동기 채널의 반복 구조를 통해 동기를 획득하는 단계를 포함한다.In accordance with yet another aspect of the present invention, there is provided a synchronization acquisition method. The method includes: determining whether a network in which communication is performed is synchronous using a complex synchronization channel structure as described above; And acquiring synchronization through a repetition structure of a primary synchronization channel when the network through which communication is performed is a synchronous network.

이 경우, 상술한 동기를 획득하는 단계는, 주 동기채널 및 보조 동기 채널의 반복구조 중 가장 짧은 시퀀스의 반복구조를 선택하는 단계; 및 이와 같이 선택된 가장 짧은 반복구조의 자기상관을 통해 동기를 획득하는 단계를 포함할 수 있다. 또한, 주 동기채널의 상술한 공통 시퀀스를 이용하여 상술한 바와 같이 획득된 동기의 정확성을 높이는 단계를 더 포함할 수도 있다.In this case, the acquiring of the synchronization may include selecting a repetition structure of the shortest sequence among the repetition structures of the primary synchronization channel and the auxiliary synchronization channel; And acquiring synchronization through autocorrelation of the shortest repetitive structure selected as described above. In addition, the method may further include increasing the accuracy of the synchronization obtained as described above by using the aforementioned common sequence of the main synchronization channel.

상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 동기 획득 방법은 상술한 바와 같은 복합 동기 채널 구조를 이용하며, 통신이 이루어지는 네트워크가 동기식인지 여부를 판정하는 단계; 및 통신이 이루어지는 상기 네트워크가 비동기식 네트워크인 경우, 주 동기 채널에 포함된 공통 시퀀스를 통해 동기를 획득하는 단계를 포함한다.In accordance with yet another aspect of the present invention, there is provided a synchronization acquisition method. The method includes: determining whether a network in which communication is performed is synchronous using a complex synchronization channel structure as described above; And acquiring synchronization through a common sequence included in the primary synchronization channel when the network in which the communication is made is an asynchronous network.

이 방법 역시 주 동기채널 또는 보조 동기 채널의 반복구조를 이용하여 상술한 바와 같이 획득된 동기의 정확성을 높이는 단계를 더 포함할 수 있다.The method may further include increasing the accuracy of the synchronization obtained as described above by using the repetition structure of the primary synchronization channel or the auxiliary synchronization channel.

한편, 상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 셀 검색 방법은 상술한 바와 같은 복합 동기 채널 구조를 이용하며, 통신이 이루어지는 네트워크가 동기식인지 여부를 판정하는 단계; 통신이 이루어지는 네트워크가 동기식 네트워크인 경우, 주 동기 채널의 반복 구조를 통해 동기를 획득하는 단계; 및 상술한 바와 같이 획득된 동기를 이용하여, 주 동기채널 및 보조 동기채널에 포함된 시퀀스로부터 기지국의 ID 를 포함하는 제어정보를 획득하는 단계를 포함한다.On the other hand, the cell search method according to another embodiment of the present invention for achieving the above object comprises the steps of using a complex synchronization channel structure as described above, determining whether the network to which the communication is synchronous; When the network in which the communication is performed is a synchronous network, acquiring synchronization through a repetition structure of the primary synchronization channel; And acquiring control information including an ID of the base station from a sequence included in the primary synchronization channel and the auxiliary synchronization channel using the synchronization obtained as described above.

이와 달리, 상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 셀 검색 방법은 상술한 바와 같은 복합 동기 채널 구조를 이용하며, 통신이 이루어지는 네트워크가 동기식인지 여부를 판정하는 단계; 통신이 이루어지는 네트워크가 비동기식 네트워크인 경우, 주 동기 채널에 포함된 공통 시퀀스를 통해 동기를 획득하는 단계; 및 상술한 바와 같이 획득된 동기를 이용하여, 주 동기채널 및 보조 동기채널에 포함된 시퀀스로부터 기지국의 ID 를 포함하는 제어정보를 획득하는 단계를 포함한다.Alternatively, a cell search method according to another embodiment of the present invention for achieving the above object comprises the steps of: determining whether a network in which a communication is made is synchronous, using a complex synchronous channel structure as described above; When the network in which communication is performed is an asynchronous network, obtaining synchronization through a common sequence included in the primary synchronization channel; And acquiring control information including an ID of the base station from a sequence included in the primary synchronization channel and the auxiliary synchronization channel using the synchronization obtained as described above.

또한, 상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 시퀀스 적용 방법은 주 동기 채널 및 보조 동기채널을 포함하며, 주 동기채널은 시간 영역에서 시퀀스의 반복 구조를 포함하는 구조를 가지는 동기채널에 삽입될 시퀀스를 적용하는 방법으로서, 주 동기채널 및 보조 동기 채널에 적용할 시퀀스를 생성 하는 단계; 및 시간 혹은 주파수 영역에서 상기 시퀀스들에 순환이동을 적용하는 단계를 포함한다.In addition, a sequence applying method according to another embodiment of the present invention for achieving the above object includes a main synchronization channel and an auxiliary synchronization channel, the main synchronization channel has a structure including a repeating structure of the sequence in the time domain CLAIMS 1. A method of applying a sequence to be inserted into a synchronization channel, comprising: generating a sequence to be applied to a primary synchronization channel and an auxiliary synchronization channel; And applying cyclic shift to the sequences in the time or frequency domain.

여기서, 상술한 순환이동을 적용하는 단계는, 시퀀스들의 시간 혹은 주파수 영역 중 선택된 어느 한 영역인 제 1 영역 인덱스에 소정의 지연값을 적용하는 단계; 및 시퀀스들의 길이를 기초로 한 모듈레이션 (mod) 함수를 적용하는 단계를 포함할 수 있으며, 이와 달리 상술한 순환이동을 적용하는 단계가, 주파수 혹은 시간 영역 중 선택된 어느 한 영역인 제 2 영역에서 상기 시퀀스들에 복소 지수함수를 곱하는 단계를 포함할 수 있다.The applying of the above-described cyclic shift may include applying a predetermined delay value to a first region index, which is a selected region among time or frequency domains of the sequences; And applying a modulation function based on the length of the sequences. Alternatively, the step of applying the above-described cyclic shift may be performed in the second region, which is any one selected from the frequency and time domains. And multiplying the sequences by a complex exponential function.

한편, 상술한 순환이동을 적용하는 단계에서 주 동기채널 및 보조 동기 채널에 서로 상이한 순환이동을 적용할 수 있다. 또한, 상술한 주 동기채널 및 보조 동기채널에 적용할 시퀀스를 생성하는 단계에서, 보조 동기채널에 적용되는 시퀀스는 주 동기채널에 적용되는 시퀀스의 반복 시퀀스로서 생성되거나, 상기 시퀀스가 하나의 시퀀스를 주 동기채널에 적용할 시퀀스와 보조 동기채널에 적용할 시퀀스로 분할하여 적용되거나, 상기 주 동기채널에 적용할 시퀀스와 상기 보조 동기채널에 적용할 시퀀스가 서로 상이한 유형의 시퀀스일 수 있다.Meanwhile, in the step of applying the aforementioned cyclic shift, different cyclic shifts may be applied to the primary sync channel and the auxiliary sync channel. In addition, in the step of generating a sequence to be applied to the above-described primary and secondary synchronization channel, the sequence applied to the secondary synchronization channel is generated as a repetitive sequence of the sequence applied to the primary synchronization channel, or the sequence is a sequence The sequence to be applied to the primary sync channel and the sequence to be applied to the auxiliary sync channel may be divided or applied, or the sequence to be applied to the primary sync channel and the sequence to be applied to the auxiliary sync channel may be different types of sequences.

상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시형태에 따른 시퀀스 분석 방법은 통신 시스템의 수신단에서 주 동기채널 및 보조 동기채널에 삽입된 시퀀스에 각각 순환이동을 적용한 시퀀스를 분석하는 방법으로서, 수신된 시퀀스의 차등 시퀀스를 생성함으로써 시퀀스의 ID 정보를 획득하는 단계; 및 획득된 시퀀스 ID 정보를 이용하여 선택된 시퀀스를 이용하여 수신된 시퀀스를 보상함으로써, 수 신된 시퀀스의 순환 이동치를 획득하는 단계를 포함한다.A sequence analysis method according to another embodiment of the present invention for achieving the above object is a method for analyzing a sequence in which a cyclic shift is applied to a sequence inserted into a primary sync channel and an auxiliary sync channel at a receiving end of a communication system. Obtaining ID information of the sequence by generating a differential sequence of the sequence; And compensating for the received sequence using the selected sequence by using the obtained sequence ID information, thereby obtaining a cyclic shift value of the received sequence.

이 경우, 상술한 바와 같은 순환 이동치를 획득하는 단계는, 수신된 시퀀스가 순환이동이 주파수 영역에서 적용된 시퀀스인 경우 시간영역에서 상기 수신된 시퀀스를 보상함으로써, 순환 이동치를 획득하며, 상기 수신된 시퀀스가 순환이동이 시간 영역에서 적용된 시퀀스인 경우 주파수 영역에서 상기 수신된 시퀀스를 보상함으로써, 순환 이동치를 획득하는 것일 수 있다.In this case, the step of obtaining the cyclic shift value as described above, when the received sequence is a sequence in which the cyclic shift is applied in the frequency domain, to obtain the cyclic shift value by compensating the received sequence in the time domain, the received sequence When cyclic shift is a sequence applied in the time domain, the cyclic shift value may be obtained by compensating the received sequence in the frequency domain.

또한, 상술한 순환 이동치를 획득하는 단계에서, 획득된 시퀀스 ID 정보를 이용하여 선택된 시퀀스의 공액복소수 시퀀스를 수신된 시퀀스에 곱함으로써, 상기 수신된 시퀀스를 보상하는 것일 수 있으며, 상술한 시퀀스 분석 방법은 상기 순환이동의 적용이 그룹 단위로 적용된 경우 상기 순환 이동치를 획득하는 단계가 수신 시퀀스가 보상된 상기 시퀀스의 각 지연 그룹 내의 전력을 합하는 단계; 및 상술한 바와 같이 합산된 전력 중 최대를 나타내는 그룹을 선택하는 단계를 더 포함할 수 있다.In the obtaining of the above-described cyclic shift value, the received sequence may be compensated by multiplying the received sequence by the conjugate complex sequence of the selected sequence using the obtained sequence ID information. The step of obtaining the cyclic shift value when the application of the cyclic shift is applied on a group basis may include adding power in each delay group of the sequence whose reception sequence is compensated for; And selecting a group representing the maximum of the summed powers as described above.

이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are omitted or shown in block diagram form, centering on the core functions of each structure and device, in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.

도 2 는 본 발명의 일 실시형태에 따른 복합 동기 채널 구조를 개념적으로 도시한 개념도이다.2 is a conceptual diagram conceptually illustrating a composite synchronization channel structure according to an embodiment of the present invention.

도 2에 도시된 바와 같은 복합 동기 채널 구조는 계층적 동기 채널 구조와 비계층적 동기채널 구조의 장점을 수용하여, 동기식 네트워크 및 비동기식 네트워크 모두에서 이용될 수 있는 형태를 제안하고 있다. 이는 기지국 등 하향링크의 송신단에서 계층적 동기 채널 신호를 생성하는 방식과 비계층적 동기 채널 신호를 생성하는 방식 모두를 이용할 수 있으며, 하향링크의 수신단에 해당하는 단말에서 기지국의 동기신호를 검색하는 데 있어 계층적 동기 채널을 이용한 경우에 사용하는 방식, 예를 들어 통신 네트워크에서 공통적으로 사용되는 시퀀스를 이용하여 교차상관을 행함으로써 동기를 획득하는 방식과 비계층적 동기채널을 이용한 경우에 사용하던 방식, 예를 들어 시간 영역에서 반복구조를 가지는 시퀀스를 이용하여 자기상관을 행함으로써 동기를 획득하는 방식 모두를 지원하는 형태이다.The composite synchronization channel structure as shown in FIG. 2 accommodates the advantages of the hierarchical synchronization channel structure and the non-hierarchical synchronization channel structure, and proposes a form that can be used in both a synchronous network and an asynchronous network. This method can use both a method for generating a hierarchical sync channel signal and a method for generating a non-hierarchical sync channel signal at a downlink transmitting end such as a base station. The terminal corresponding to the downlink receiving end searches for a sync signal of the base station. In the case of using a hierarchical synchronization channel, for example, a method of obtaining synchronization by performing cross-correlation using a sequence commonly used in a communication network and a method of using a non-hierarchical synchronization channel. This method supports both methods, for example, a method of acquiring synchronization by performing autocorrelation using a sequence having a repetitive structure in the time domain.

도 2 에 도시된 바와 같이 복합 동기 채널 구조는 P-SCH 및 S-SCH의 2 계층을 가지는 채널을 이용하며 P-SCH에 네트워크 전체에 공통인 시퀀스가 포함되는 점에서 계층적 동기채널 구조의 특징을 포함하며, P-SCH에만, 또는 필요에 따라 P-SCH 및 S-SCH 모두에서 시퀀스가 시간 영역 반복 구조를 가지는 점에서 비계층적 동기 채널 구조의 특징을 포함한다. 한편, S-SCH에 삽입되는 시퀀스는 각 셀마다 고유한 데이터(Cell Specific Data)를 나타내는 시퀀스가 삽입되는 것이 바람직하 며, S-SCH에 역시 상술한 바와 같이 시간 영역에서의 반복구조를 포함하는 경우, 이러한 셀 고유 시퀀스가 시간 영역에서 반복되는 구조를 형성하여 구성될 수 있다.As shown in FIG. 2, the composite synchronization channel structure uses a channel having two layers of P-SCH and S-SCH, and has a characteristic of hierarchical synchronization channel structure in that the P-SCH includes a sequence common to the entire network. And includes a feature of the non-hierarchical sync channel structure in that the sequence has a time domain repetition structure only in the P-SCH or, if necessary, in both the P-SCH and the S-SCH. On the other hand, the sequence to be inserted into the S-SCH is preferably inserted into each cell a sequence representing a cell (Cell Specific Data), the S-SCH as described above also includes a repeating structure in the time domain In this case, such a cell-specific sequence may be formed by forming a structure that is repeated in the time domain.

따라서, 상기 복합 동기 채널 구조를 형성하는 방법은 네트워크 전체에 공통으로 사용되는 시퀀스를 포함하며, 시간 영역에서 반복 구조를 가지는 P-SCH를 형성한 후, P-SCH에 의해 전달되는 제어 신호 이외의 나머지 제어 신호, 예를 들어 상술한 셀 고유 시퀀스를 포함하도록 S-SCH를 형성하는 단계를 수행하여 이루어질 수 있으나, 필요에 따라 각 채널의 형성 순서는 바뀔 수 있다. 또한, 여기서 P-SCH 및 S-SCH의 개수는 시스템에 따라 다른 개수의 OFDM 심볼 또는 채널로 구현될 수 있다.Therefore, the method of forming the composite synchronization channel structure includes a sequence commonly used throughout the network, and after forming a P-SCH having a repetitive structure in the time domain, other than a control signal transmitted by the P-SCH. The S-SCH may be formed to include the remaining control signals, for example, the cell-specific sequence described above, but the order of formation of each channel may be changed as necessary. In addition, the number of P-SCH and S-SCH may be implemented by a different number of OFDM symbols or channels depending on the system.

상술한 바와 같이 P-SCH에, 또는 P-SCH 및 S-SCH 모두에 시간영역에 있어 반복되는 구조를 가지도록 구현하기 위해, OFDM 시스템의 각 동기 채널에 신호를 다음과 같이 주파수 영역에서 N칸(N 서브캐리어) 간격으로 삽입함으로써 쉽게 구현될 수 있다. 이하의 수학식 6은 P-SCH의 송신 신호를 수학식 7은 S-SCH의 송신신호를 삽입하는 방법을 나타낸다.As described above, in order to implement a structure that is repeated in the time domain in the P-SCH or in both the P-SCH and the S-SCH, a signal is applied to each synchronization channel of the OFDM system in the N-frequency region as follows. It can be easily implemented by inserting at intervals (N subcarriers). Equation 6 below shows a method of inserting a P-SCH transmission signal and Equation 7 inserts a S-SCH transmission signal.

Figure 112006057954303-PAT00008
Figure 112006057954303-PAT00008

Figure 112006057954303-PAT00009
Figure 112006057954303-PAT00009

여기서, CP(k) 및 CS(k)는 채널 삽입 전 P-SCH 및 S-SCH를 통해 송신할 정보를 나타내는 시퀀스를, SP(k) 및 SS(k)는 동기채널로 변조되어 송신되는 신호를 나타내며, NP 및 NS는 각각 P-SCH 및 S-SCH에 주파수 영역에서 시퀀스를 삽입하는 주기를 나타낸다. P-SCH 및 S-SCH에 시퀀스 CP(k) 및 CS(k)가 삽입되는 주기 NP 및 NS는 이하에서 설명하는 바와 같이 시간영역에서 각 심볼당 시퀀스의 반복횟수를 나타내게 된다. 이는 주파수 영역에서 N칸 간격으로 신호를 삽입하는 경우, 이를 시간 영역에서 해석할 경우 시간축의 N배 압축으로 해석될 수 있으며, 따라서 일정 시간 간격을 가지는 1 심볼, 예를 들어 1 OFDM 심볼 내에서 동일한 신호가 N번 반복되는 효과를 가져 오기 때문임을 당업자라면 충분히 알 수 있다.Here, C P (k) and C S (k) modulate a sequence representing information to be transmitted through P-SCH and S-SCH before channel insertion, and S P (k) and S S (k) are modulated to a synchronization channel. And N P and N S represent a period of inserting a sequence in the frequency domain into the P-SCH and the S-SCH, respectively. The periods N P and N S in which the sequences C P (k) and C S (k) are inserted into the P-SCH and the S-SCH indicate the number of repetitions of the sequence for each symbol in the time domain as described below. This can be interpreted as N times compression of the time base when the signal is inserted at intervals of N spaces in the frequency domain, and thus equally within 1 symbol, eg 1 OFDM symbol, having a certain time interval. It will be clear to those skilled in the art that the signal has the effect of repeating N times.

도 2는 주파수 영역에서 P-SCH 및 S-SCH 모두에 주파수 영역에서 상술한 NP 및 NS를 2로 설정하여 2 칸 간격으로 시퀀스를 삽입한 예를 도시하고 있으며, 그 결과 시간 영역에서 각 OFDM 심볼 내에 동일한 시퀀스가 2 번 반복되는 구조를 가지게 된다. 이를 통해 수신측에서는 P-SCH 및 S-SCH의 각 OFDM 심볼당 2회 반복되는 구조를 통해 자기상관값을 구함으로써, 동기 정보를 획득할 수 있다.FIG. 2 illustrates an example of inserting a sequence at intervals of two spaces by setting N P and N S described above in the frequency domain to 2 in both the P-SCH and the S-SCH in the frequency domain. The same sequence is repeated twice in the OFDM symbol. Through this, the receiving side can obtain synchronization information by obtaining an autocorrelation value through a structure repeated twice for each OFDM symbol of the P-SCH and the S-SCH.

한편, 상술한 예와 달리 주파수 영역에서 데이터가 삽입되어 송수신 되는 것 이 아니라 시간 영역에서 직접 삽입되어 데이터가 송수신 되는 경우, 상술한 바와 같은 P-SCH에, 또는 P-SCH 및 S-SCH 모두에 포함되는 시간 영역에서의 반복 구조는 시간 신호를 직접 반복하여 삽입함으로써 생성될 수도 있다. 이하의 설명 전반에서 "시간영역에서의 반복구조"라는 용어는 상술한 바와 같이 주파수 영역에서 시퀀스를 소정 주기 단위로 삽입하는 것과 시간 영역에서 신호를 직접 반복하여 삽입하는 것 모두를 포함하는 개념으로 규정하여 사용하기로 한다.On the other hand, unlike the example described above, when data is inserted and transmitted and received in the time domain instead of being inserted and transmitted in the frequency domain, data is transmitted and received in the P-SCH as described above, or in both the P-SCH and S-SCH. The repetition structure in the included time domain may be generated by directly inserting the time signal. Throughout the following description, the term "repetitive structure in time domain" is defined as a concept including both inserting a sequence in a frequency unit in the frequency domain and inserting a signal in the time domain directly and repeatedly as described above. I will use it.

상술한 바와 같은 복합 동기 채널 구조를 이용할 경우, 이하에서 더 상세히 설명할 바와 같이 필요에 따라 자기상관 또는 교차상관을 이용하여 동기를 추정할 수 있으며, 또한 하나의 방법을 사용하여 추정된 동기를 다른 방법을 추가적으로 사용하여 그 추정된 동기의 정확성을 높이는 것이 가능한 우수한 성능을 가지며, 동기식 네트워크 및 비동기식 네트워크 모두에서 보다 더 정확하게 동기를 획득할 수 있는 효과를 가진다.In the case of using the composite synchronization channel structure as described above, as described in more detail below, the synchronization may be estimated using autocorrelation or cross-correlation as needed, and the estimated synchronization may be changed using one method. It is possible to increase the accuracy of the estimated synchronization by additionally using the method, and has the effect of obtaining the synchronization more accurately than in both the synchronous network and the asynchronous network.

도 3은 본 발명의 일 실시형태에 따른 복합 동기 채널 신호를 전송하는 장치를 나타내는 블록도이다.3 is a block diagram illustrating an apparatus for transmitting a composite synchronization channel signal according to an embodiment of the present invention.

이러한 동기 채널 신호를 전송하기 위한 신호 전송 장치는 통신 시스템에서 동기 채널 신호의 송신이 이루어지는 것이 상향 링크인지, 하향 링크인지에 따라 기지국, 사용자 기기를 포함하여 다양한 장치가 될 수 있음은 자명하다. 따라서, 도 3에서는 제어 신호를 전송할 수 있는 장치를 일반적인 송신측으로 도시하였다. It is apparent that the signal transmission apparatus for transmitting the synchronization channel signal may be various devices including the base station and the user equipment depending on whether the transmission of the synchronization channel signal is performed in the communication system. Therefore, in FIG. 3, an apparatus capable of transmitting control signals is illustrated as a general transmitter.

도 3에 도시된 바와 같이 본 발명의 일 실시형태에 따른 신호 전송 장치는 동기채널신호구축부(301) 및 송신부(302)를 포함한다. 여기서, 동기채널신호구축 부(301)는 신호를 전송하는 방법 중 제어 정보를 전송하기 위해 특정 신호를 동기 채널 신호에 삽입하는 단계를 수행하도록 기능하며, 여기서 동기채널은 P-SCH 및 S-SCH를 모두 포함할 것이 요구된다. 또한, P-SCH는 수신측에서 동기를 추정할 경우 교차상관에 의해 동기 획득이 가능하도록 통신 네트워크에서 전체에 공통으로 사용되는 시퀀스를 포함하며, 동시에 수신측에서 자기상관에 의해서도 동기 획득이 가능하도록 시간 영역에서 시퀀스의 반복구조를 포함하는 것이 필요하다. 또한, 전송에 이용되는 동기 채널의 S-SCH는 P-SCH에 포함되는 정보와 다른 정보, 예를 들어 셀 고유 데이터의 전달을 위한 시퀀스를 포함할 수 있으며, 경우에 따라서는 P-SCH의 시퀀스를 일부를 반복하는 부분을 포함할 수도 있다.As shown in FIG. 3, a signal transmission apparatus according to an embodiment of the present invention includes a synchronization channel signal generator 301 and a transmitter 302. Here, the synchronization channel signal construction unit 301 functions to insert a specific signal into the synchronization channel signal in order to transmit control information in the method of transmitting the signal, wherein the synchronization channels are P-SCH and S-SCH. It is required to include all of them. In addition, the P-SCH includes a sequence commonly used throughout the communication network so that synchronization can be obtained by cross-correlation when the synchronization is estimated at the receiving side, and at the same time, synchronization can be obtained by autocorrelation at the receiving side. It is necessary to include a repeating structure of the sequence in the time domain. In addition, the S-SCH of the synchronization channel used for transmission may include a sequence for transferring information different from the information included in the P-SCH, for example, cell-specific data, and in some cases, the sequence of the P-SCH. It may include a portion to repeat a part.

동기채널신호구축부(301)가 상술한 바와 같은 구조를 가지는 동기 채널을 이용하여 동기 채널 신호를 생성한 후, 송신부(302)는 본 발명의 일 실시형태에 따른 신호 전송 방법 중 이 동기 채널 신호를 수신측으로 전송하는 단계를 수행하는 기능을 한다. 도 3에서는 송신부(302)가 직렬 신호를 병렬로 변환하여 다중 안테나를 통해 전송하는 것을 예로서 도시하고 있으나, 본 발명의 일 실시형태에 따른 신호 전송 장치에서 송신부는 상술한 바와 같은 구조를 가지는 동기 채널 신호를 전송할 수 있는 한 임의의 구조를 가질 수 있으며, 도시된 바와 같이 다중 안테나를 가지는 경우에 한정되지 않으며, 하나의 안테나를 가지는 경우 역시 가능하다. After the synchronization channel signal generator 301 generates the synchronization channel signal using the synchronization channel having the structure described above, the transmitter 302 transmits the synchronization channel signal in the signal transmission method according to the embodiment of the present invention. It performs the step of transmitting to the receiving side. In FIG. 3, the transmitter 302 converts a serial signal in parallel and transmits the signal through multiple antennas. However, in the signal transmission apparatus according to the exemplary embodiment of the present invention, the transmitter has a synchronization as described above. It may have any structure as long as it can transmit a channel signal, it is not limited to having multiple antennas as shown, it is also possible to have one antenna.

이하에서는 이와 같이 송신된 동기 채널 신호를 통해 동기를 획득하는 방법에 대해 살펴 보기로 한다.Hereinafter, a method of acquiring synchronization through the synchronization channel signal transmitted as described above will be described.

도 4 는 본 발명의 일 실시형태에 따른 동기획득 방법의 단계 구성을 나타내 는 순서도이다.4 is a flowchart showing a step structure of a synchronization acquisition method according to an embodiment of the present invention.

본 발명의 일 실시형태에서의 동기채널은 상술한 바와 같이 P-SCH 및 S-SCH를 포함하는 구조를 가지며, 여기서 P-SCH는 자기상관에 의한 동기 획득이 용이하도록 시간 영역에서 시퀀스의 반복구조를 포함하고, 또한, 교차상관에 의한 동기 획득이 용이하도록 네트워크 전체에 공통적으로 이용되는 시퀀스를 포함한다. 한편, 상술한 바와 같이 통신이 이루어지는 네트워크가 동기식 네트워크인 경우, 시간 영역에서의 반복구조를 이용하여 자기상관을 수행함으로써 동기를 획득하는 방법이 유리하고, 공통 시퀀스를 통한 교차상관을 수행함으로써 동기를 획득하는 방법은 그 성능이 열악한 경향을 가지며, 비동기 네크워크에서 통신이 이루어지는 경우에는 이와 반대의 특성을 가진다. 따라서, 본 발명의 일 실시형태에 따른 동기획득 방법은 통신이 이루어지는 네트워크가 동기식 네트워크인지 비동기식 네트워크인지에 따라 선택적으로 자기상관 또는 교차상관을 수행함으로써 동기를 획득하는 방법을 제안한다. The synchronization channel in one embodiment of the present invention has a structure including the P-SCH and the S-SCH as described above, where the P-SCH is a repetitive structure of a sequence in the time domain to facilitate synchronization acquisition by autocorrelation. It includes, and also includes a sequence commonly used throughout the network to facilitate synchronization acquisition by cross-correlation. On the other hand, when the network in which communication is performed as described above is a synchronous network, a method of obtaining synchronization by performing autocorrelation using a repetitive structure in the time domain is advantageous, and synchronization is performed by performing cross-correlation through a common sequence. The acquisition method tends to be poor in performance, and has the opposite characteristics when communication is performed in an asynchronous network. Therefore, the synchronization acquisition method according to an embodiment of the present invention proposes a method for obtaining synchronization by selectively performing autocorrelation or cross-correlation according to whether a network to which communication is performed is a synchronous network or an asynchronous network.

먼저, 도 4 에 도시된 바와 같은 본 방법은 단계 S401에서 통신이 이루어지는 네트워크가 동기식인지 여부를 판정하여, 동기식 네트워크인 경우 단계 S402로 비동기식 네트워크인 경우 단계 S406으로 진행한다. 통신이 이루어지는 네트워크가 동기식 네트워크인 경우, 본 방법은 단계 S402 및 단계 S404를 통해 P-SCH의 시간영역에서의 반복구조를 자기상관을 행하는데 이용하여 동기를 획득한다. 이를 위해 수신측은 수신신호의 모든 샘플 위치에서 다음과 같은 자기상관값(MA)을 계산한다.First, as shown in FIG. 4, the method determines whether the network in which communication is performed is synchronous in step S401, and proceeds to step S402 in the case of a synchronous network, and in step S406 in the case of an asynchronous network. If the network in which the communication is made is a synchronous network, the method obtains synchronization by using the repetitive structure in the time domain of the P-SCH to perform autocorrelation through steps S402 and S404. To this end, the receiver calculates the following autocorrelation value (M A ) at all sample positions of the received signal.

Figure 112006057954303-PAT00010
Figure 112006057954303-PAT00010

여기서, r은 수신 신호, n은 시간영역 샘플 인덱스, NA는 자기상관을 구하는 길이를 나타내며, 일반적으로 반복구조의 주기와 동일하게 설정한다. 여기서, 도 4 의 단계 S402로 나타낸 바와 같이 P-SCH와 S-SCH에 포함된 반복구조들 중 최단 반복구조를 선택하여 NA를 설정하는 경우 수학식 8 과 같은 자기상관값(MA)을 계산하는 시간이 감소하여 바람직하나 이에 한정될 필요는 없다. Here, r denotes a received signal, n denotes a time domain sample index, and N A denotes a length for obtaining autocorrelation, and is generally set equal to the period of the repeating structure. Here, when N A is set by selecting the shortest repeating structure among the repeating structures included in the P-SCH and the S-SCH, as shown in step S402 of FIG. 4, an autocorrelation value M A such as Equation 8 is obtained. The calculation time is reduced and preferred, but need not be limited thereto.

상술한 바와 같은 자기상관값(MA)을 계산한 후, 단계 S404에서 수신측은 계산된 자기상관값(MA)들 중 다음과 같이 최대를 나타내는 지점을 선택한다.After calculating the autocorrelation value M A as described above, in step S404, the receiving side selects a point representing the maximum among the calculated autocorrelation values M A as follows.

Figure 112006057954303-PAT00011
Figure 112006057954303-PAT00011

상기 수학식 9 에서 획득되는 지점은 잡음과 간섭을 무시할 경우, 송신측이 SCH를 송신한 지점이 되며, 수신측은 이를 기준으로 신호처리를 수행함으로써 동기정보를 획득하게 된다.The point obtained in Equation (9) is a point at which the transmitting side transmits the SCH when the noise and the interference are ignored, and the receiving side acquires the synchronization information by performing signal processing based on this.

또한, 도 4 에 도시된 바와 같이 단계 S405를 수행하여, P-SCH에 포함된 네트워크에서 공통적으로 이용되는 시퀀스를 통해 교차상관값을 구함으로써 획득되는 동기와의 비교를 통해 동기의 정확성을 높이는 경우 더욱 그 성능을 높일 수 있으 며, 도 4의 단계 S405는 P-SCH에 포함된 공통 시퀀스를 이용하는 경우만을 예로서 설명하고 있으나, 경우에 따라 S-SCH에도 네트워크에서 공통적으로 사용되는 시퀀스를 포함할 수 있으며, 이를 교차상관에 이용함으로써 동기의 정확도를 높일 수 있음은 당업자라면 충분히 알 수 있을 것이다.In addition, as shown in FIG. 4, when step S405 is performed, the accuracy of synchronization is improved by comparing with the synchronization obtained by obtaining a cross-correlation value through a sequence commonly used in a network included in the P-SCH. Further, the performance can be improved. In step S405 of FIG. 4, only a case of using a common sequence included in the P-SCH is described as an example, but in some cases, the S-SCH may include a sequence commonly used in a network. It will be appreciated by those skilled in the art that the accuracy of the synchronization can be improved by using it in cross correlation.

한편, 단계 S401의 판정 결과 통신이 이루어지는 네트워크가 비동기식이라고 판정된 경우 상술한 바와 같이 단계 S406으로 진행한다. 단계 S406에서 수신측은 이미 알고있는 시퀀스를 수신 신호와 교차상관을 수행한다. 그 후, 단계 S407에서는 단계 S406에서 행한 교차상관값들 중 최대값을 검출하고, 이를 통해 동기 정보를 획득한다.On the other hand, when it is determined in step S401 that the network to which communication is performed is asynchronous, the process proceeds to step S406 as described above. In step S406, the receiving side cross-correlates a known sequence with the received signal. Thereafter, in step S407, the maximum value of the cross-correlation values performed in step S406 is detected, thereby obtaining synchronization information.

물론, 상술한 바와 같이 획득된 동기 정보를 초기 동기 정보로 이용하고, 도 4에 도시된 바와 같이 단계 S408에서 P-SCH 및/또는 S-SCH의 시간영역에서의 반복구조를 통해 상기 수학식 8 및 수학식 9의 과정을 거침으로써 동기의 정확성을 높이는 것이 바람직하다. Of course, the synchronization information obtained as described above is used as the initial synchronization information, and as shown in FIG. 4, through the repetition structure in the time domain of the P-SCH and / or the S-SCH as shown in FIG. And it is desirable to increase the accuracy of the synchronization by going through the process of equation (9).

이와 같은 P-SCH 및/또는 S-SCH의 반복구조는 수신측에서 시간 동기를 획득하는데 있어서 좋은 기준이 됨과 동시에 주파수 동기화를 수행하는데 정확도를 올려주게 된다. 일반적으로 반복되는 패턴의 주기가 짧을수록 주파수 동기는 그 값의 역수에 해당하는 범위에 대해 보상이 가능하다. 특히 P-SCH와 S-SCH의 반복패턴이 같지 않더라도, 수신측에서는 각자가 반복되는 패턴으로부터 각각 시간 및 주파수 동기값을 추정할 수 있으므로 단말의 셀 검색 시간을 단축시켜 주는 장점이 있다.Such a repetition structure of the P-SCH and / or S-SCH is a good reference for acquiring time synchronization at the receiving side and increases accuracy in performing frequency synchronization. In general, the shorter the period of the repeating pattern, the more the frequency synchronization can be compensated for the range corresponding to the inverse of the value. In particular, even if the repetition patterns of the P-SCH and the S-SCH are not the same, the receiving side can estimate the time and frequency synchronization values from the repeated patterns, respectively, thereby reducing the cell search time of the terminal.

또한, 본 발명의 일 실시형태에 따른 셀 검색 방법은 상술한 바와 같이 획득 된 동기 정보를 이용하여 송신측의 ID 및 이후 프로세싱에 필요한 기초정보를 포함하는 제어 정보를 획득하여 셀 검색을 수행하는 방법을 역시 제안될 수 있다.In addition, the cell search method according to an embodiment of the present invention is a method for performing a cell search by acquiring control information including the ID of the transmitting side and basic information necessary for subsequent processing using the synchronization information obtained as described above. Can also be proposed.

이하에서는 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 대해 설명하기로 한다.Hereinafter, a sequence application method according to an embodiment of the present invention will be described.

상술한 바와 같이 복합 구조를 가지는 동기 채널에 삽입되는 시퀀스들에 적용되는 순환이동은 실제 적용될 코드의 종류, 예를 들어, CAZAC 코드, PN 코드 등과는 무관하게 적용될 수 있으며, 이러한 순환이동에 적용되는 지연 정보는 가능한 모든 지연값에 대해 모두 연산해 봄으로써 적용된 지연값을 추정하는 것을 기본으로 하나, OFDM과 같이 주파수 영역에서 사용 가능한 변조 기법들을 채용하는 시스템일 경우, 이하에서 설명할 바와 같이 간단한 검출 방법에 의해 수신측에서 추정될 수 있다. 먼저, 이러한 순환이동을 적용하는 방법을 구체적으로 살펴본다.As described above, a cyclic shift applied to sequences inserted into a synchronization channel having a complex structure may be applied regardless of the type of code to be actually applied, for example, a CAZAC code, a PN code, and the like. The delay information is based on estimating the applied delay value by calculating all possible delay values, but in the case of a system employing modulation techniques usable in the frequency domain such as OFDM, a simple detection will be described later. It can be estimated at the receiving side by the method. First, the method of applying such circular movement will be described in detail.

시퀀스에 순환이동을 적용하는 방법은 2 가지로 구분될 수 있다. 하나는 시퀀스 자체를 직접 순환이동시키는 방법이고, 다른 하나는 이 시퀀스에 복소 지수를 곱하는 방법이다. 또한 시퀀스 자체를 직접 순환이동시키는 방법은 다음과 같은 수식으로 나타낼 수 있다.There are two ways to apply cyclic shift to a sequence. One is to directly cycle the sequence itself, and the other is to multiply it by a complex exponent. In addition, the method of directly cyclically moving the sequence itself can be represented by the following equation.

Figure 112006057954303-PAT00012
Figure 112006057954303-PAT00012

여기서, d는 지연값을, c(k)는 순환이동이 적용되기 이전에 채널에 적용할 시퀀스를, s(k) 는 순환이동이 적용된 시퀀스를 나타내며, N은 채널에 적용할 시퀀 스들의 길이를 나타낸다. 수학식 10에서와 같이 d만큼 지연시킨 시퀀스들을 N에 기초한 mod를 적용함으로써 생성된 시퀀스 s(k)는 c(k)와 동일한 길이를 가지나 d만큼 지연된 시퀀스로서 생성되게 된다.Here, d denotes a delay value, c (k) denotes a sequence to be applied to a channel before circular shift is applied, s (k) denotes a sequence to which circular shift is applied, and N denotes a length of sequences to be applied to the channel. Indicates. As shown in Equation 10, a sequence s (k) generated by applying mods based on N to delayed by d is generated as a sequence having the same length as c (k) but delayed by d.

상술한 바와 같이 복소 지수를 곱함으로써 순환이동을 적용하는 두번째 방법은 다음과 같이 두가지 방식으로 나타낼 수 있다.As described above, the second method of applying the cyclic shift by multiplying the complex index can be expressed in two ways as follows.

Figure 112006057954303-PAT00013
Figure 112006057954303-PAT00013

Figure 112006057954303-PAT00014
Figure 112006057954303-PAT00014

Figure 112006057954303-PAT00015
Figure 112006057954303-PAT00015

Figure 112006057954303-PAT00016
Figure 112006057954303-PAT00016

여기서, F는 퓨리에 변환을 나타내는 연산자이다.Where F is an operator representing a Fourier transform.

상기 수학식 11 및 수학식 12는 동일한 방법을 다른 방식으로 나타낸 것으로, 수학식 11과 같이 복소 지수를 곱하는 방법의 경우는 수학식 12와 같이 시퀀스를 퓨리에변환한 다음, 다른 영역에서 순환 이동시키는 것과 동일한 의미를 가진다. 이와 같이 순환이동이 적용된 시퀀스를 이용할 경우, 순환이동에 이용되는 지연값 d를 어는 정도로 하는지에 따라 추가적인 정보를 전달하는 것이 가능해지며, 또한 P-SCH와 S-SCH에 적용되는 지연값을 상이하게 하는 경우 더 많은 제어 정보를 전달할 수 있다. 또한, P-SCH 및 S-SCH에 순환이동과 아울러 다양한 방식으로 송신 되는 동기채널에 전달되는 정보의 양을 증가시킬 수 있으며, 이하 도 5a 내지 도 7b를 참조하여 설명하기로 한다.Equations 11 and 12 represent the same method in different ways. In the case of multiplying complex exponents as shown in Equation 11, Fourier transforms a sequence as shown in Equation 12 and then cyclically shifts it in another region. Has the same meaning. When using the sequence to which the cyclic shift is applied as described above, it is possible to transmit additional information depending on the extent of the delay value d used for the cyclic shift, and the delay values applied to the P-SCH and the S-SCH are different. More control information can be transferred. In addition, the amount of information transmitted on the synchronization channel transmitted in various ways as well as the cyclic movement to the P-SCH and S-SCH can be increased, with reference to Figures 5a to 7b.

도 5a 내지 도 7b는 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 의해 각 동기채널에 삽입되는 시퀀스에 순환이동(circular shift)이 적용되는 구조를 도시한 것으로서, 도 5a 및 도 5b는 P-SCH와 S-SCH에 동일한 시퀀스가 삽입되는 구조, 도 6a 및 도 6b는 P-SCH와 S-SCH에 하나의 시퀀스가 분할되어 삽입되는 구조, 도 7a 및 도 7b는 P-SCH와 S-SCH에 서로 다른 이종의 시퀀스가 삽입되는 구조를 도시한 도면이다.5A to 7B illustrate a structure in which a circular shift is applied to a sequence inserted into each synchronization channel by a sequence applying method according to an embodiment of the present invention, and FIGS. 5A and 5B illustrate P- 6A and 6B show a structure in which the same sequence is inserted into the SCH and the S-SCH. FIG. 6A and 6B show a structure in which one sequence is inserted into the P-SCH and the S-SCH. FIG. 7A and 7B show the P-SCH and the S-SCH. 2 is a diagram illustrating a structure in which different heterogeneous sequences are inserted.

도 5a의 P-SCH 및 S-SCH는 모두 주파수 영역에서 2칸 간격으로 시퀀스가 삽입됨으로써, 시간 영역에서 1 OFDM 심볼마다 2회의 반복구조를 포함하며, 양 SCH 모두 동일한 길이의 순환이동을 적용한 것을 도시하였다. 여기서, 화살표는 각 동기채널에 삽입된 시퀀스의 시작 위치를 나타낸다. 이와 같이 P-SCH 및 S-SCH에 적용된 순환 이동의 정도는 미리 정해진 제어 정보를 나타내게 되며, 도 5a의 경우 동일한 지연량을 적용한 것을 도시하고 있으며, 결과적인 P-SCH와 S-SCH에 적용된 순환이동은 동일한 정보를 나타낼 수 있으나, 서로 다른 동기채널에 적용된 동일한 지연량 정보가 서로 상이한 정보를 나타내는 것으로 설정될 수도 있다. 한편, P-SCH와 S-SCH에 적용되는 순환이동량은 도 5a와 같이 반드시 서로 동일한 필요는 없으므로 화살표는 각 동기채널에 적용된 순환이동량에 따라 어느 위치에도 존재할 수 있다.In the P-SCH and the S-SCH of FIG. 5A, sequences are inserted at intervals of two spaces in the frequency domain, thereby including two repetition structures for each OFDM symbol in the time domain, and both SCHs are subjected to the same length cyclic shift. Shown. Here, the arrow indicates the start position of the sequence inserted in each sync channel. As described above, the degree of cyclic shift applied to the P-SCH and the S-SCH indicates predetermined control information. In FIG. 5A, the same delay amount is applied, and the resulting cyclic shift is applied to the P-SCH and the S-SCH. The movement may indicate the same information, but the same delay amount information applied to different synchronization channels may be set to indicate different information. Meanwhile, since the cyclic shift amounts applied to the P-SCH and the S-SCH are not necessarily the same as shown in FIG. 5A, an arrow may exist at any position according to the cyclic shift amount applied to each sync channel.

도 5b에 도시된 P-SCH는 도 5a에 도시된 P-SCH와 상이한 정도의 순환이동을 적용한 결과를 도시하고 있으며, S-SCH는 주파수 영역에서 1칸 간격으로 삽입됨으로써 시간 영역에서 반복 구조를 가지지 않고 P-SCH와 상이한 양의 순환이동이 적용된 결과를 도시하고 있다. S-SCH가 상술한 바와 같이 주파수 영역에서 1칸 간격으로 삽입되는 경우, S-SCH는 시간 영역에서 반복 구조를 포함하지 않음으로써 이를 동기 정보 획득 과정에서 이용할 수는 없으나 삽입할 수 있는 시퀀스의 길이가 2배가 됨으로써, 송신측의 ID 등 동기 정보 이외의 정보를 획득하는데 더 정확한 결과를 얻을 수 있다. 도 5b에서는 P-SCH에 삽입되는 시퀀스의 길이는 N이며, S-SCH에 삽입되는 시퀀스의 길이는 2N으로 예를 들어 도시하였다. The P-SCH shown in FIG. 5B shows a result of applying a cyclic shift of a degree different from that of the P-SCH shown in FIG. 5A, and the S-SCH is inserted at intervals of one space in the frequency domain, thereby repeating the structure in the time domain. The result of applying a different amount of cyclic shift to P-SCH is shown. When the S-SCH is inserted at intervals of one space in the frequency domain as described above, the S-SCH does not include a repetitive structure in the time domain, so that the S-SCH cannot be used in the acquisition of synchronization information, but the length of a sequence that can be inserted By doubling, the more accurate result can be obtained in obtaining information other than the synchronization information such as the ID of the transmitting side. In FIG. 5B, the length of the sequence inserted into the P-SCH is N, and the length of the sequence inserted into the S-SCH is 2N, for example.

상술한 바와 같이 도 6a 및 도 6b 는 P-SCH 및 S-SCH에 삽입되는 시퀀스에 순환이동을 적용하며, 양 동기채널에 하나의 시퀀스를 분할하여 삽입하는 실시예를 도시하고 있다. 이에 따라 도 6a의 P-SCH와 S-SCH에는 총 2N의 길이를 가지는 시퀀스를 각각 N개의 시퀀스로 분할하여 P-SCH와 S-SCH에 삽입하는 예를 도시하고 있으며, 양 동기채널에 적용되는 순환이동량 역시 상이한 예를 도시하고 있다. 따라서, 양 동기채널에 삽입할 수 있는 시퀀스의 총 길이는 2배가 되며, 이 2배의 길이를 가지는 시퀀스와 각 동기채널에 적용되는 순환이동량을 제어함으로써 보다 많은 제어 정보를 정확하게 전달할 수 있다. 이 경우에도 P-SCH는 자기상관에 의해 동기획득이 가능하도록 시간 영역에서 반복 구조를 포함해야 하며, 교차상관에 의해 동기획득이 가능하도록 네트워크에 공통인 시퀀스를 포함하여야 하는바, 하나의 시퀀스를 분할하여 삽입한 S-SCH에 삽입된 시퀀스 역시 공통 시퀀스를 포함하는 것이 일반적일 수 있다. 다만, 정확한 동기 정보를 획득하는 것과 동기정보 이외의 제어 정보를 더 정확하게 전달하는 것과의 사이의 상관관계에 따라, P-SCH 및 S-SCH 모두에 각 셀마다 정해진 특정 시퀀스가 이용될 수도 있다. 이 경우 S-SCH 정보는 직접적인 OFDM 신호로 변환되는 것이 아니라, S-SCH의 실제 정보를 순환이동량 자체로 볼 수도 있다. As described above, FIGS. 6A and 6B illustrate embodiments in which cyclic shift is applied to sequences inserted into P-SCHs and S-SCHs, and one sequence is divided and inserted into both synchronization channels. Accordingly, the P-SCH and the S-SCH of FIG. 6A show an example of dividing a sequence having a total length of 2N into N sequences and inserting the N-sequence into the P-SCH and the S-SCH. The cyclic movement amount also shows a different example. Therefore, the total length of a sequence that can be inserted into both synchronization channels is doubled, and more control information can be accurately transmitted by controlling the sequence having the length of twice and the cyclic shift amount applied to each synchronization channel. In this case, the P-SCH must include a repetitive structure in the time domain so that synchronization can be obtained by autocorrelation, and must include a sequence common to the network so that synchronization can be obtained by cross-correlation. A sequence inserted into the divided S-SCH may also include a common sequence. However, depending on the correlation between acquiring the correct synchronization information and transmitting the control information other than the synchronization information more accurately, a specific sequence determined for each cell may be used for both the P-SCH and the S-SCH. In this case, the S-SCH information is not directly converted into an OFDM signal, but the actual information of the S-SCH may be regarded as the cyclic shift amount itself.

도 6b는 상술한 바와 같이 하나의 시퀀스를 P-SCH 및 S-SCH에 분할하여 삽입한 구조를 도시하고 있으며, 특히 도 6a의 경우와 달리 S-SCH에 반복구조를 형성하지 않음으로써 삽입가능한 시퀀스의 길이를 2배로(P-SCH 및 S-SCH 전체에 삽입되는 시퀀스의 길이를 3배로)한 예를 도시하고 있다. 이 경우 양 동기채널에 삽입할 수 있는 시퀀스의 길이는 3N이 되며, 반복구조를 포함하는 P-SCH에는 N개의 시퀀스열이, S-SCH에는 2N개의 시퀀스열이 삽입된 후 각각 상이한 양의 순환이동을 적용한 예를 도시하고 있다. 이를 통해 동기채널을 이용하여 전달할 수 있는 제어 정보의 양을 증가시킬 수 있으며, 송신측의 ID 등의 정보를 전달함에 있어서도 그 정확도를 높일 수 있다.FIG. 6B illustrates a structure in which one sequence is inserted into P-SCHs and S-SCHs as described above. In particular, unlike in the case of FIG. 6A, a sequence insertable by not forming a repeating structure in the S-SCH is illustrated. An example is shown in which the length of is doubled (the length of a sequence inserted into the entire P-SCH and S-SCH is tripled). In this case, the length of a sequence that can be inserted into both synchronization channels is 3N, and N sequence sequences are inserted into a P-SCH including a repeating structure, and 2N sequence sequences are inserted into an S-SCH. An example of moving is shown. As a result, the amount of control information that can be transmitted using the synchronization channel can be increased, and the accuracy thereof can also be increased even when transmitting information such as an ID of a transmitter.

마지막으로, 도 7a 및 도 7b는 상술한 바와 같이 P-SCH 및 S-SCH에 삽입될 시퀀스들에 순환이동을 적용하고, 각 동기채널에 삽입되는 시퀀스들이 서로 상이한 유형의 시퀀스들인 경우를 예시적으로 도시하고 있다. 여기서 P-SCH 및 S-SCH에 삽입되는 서로 다른 유형의 시퀀스는 동일한 종류의 시퀀스들 중 ID에 해당하는 값이 상이한 시퀀스일 수 있으며, 상술한 경우를 포함하여 시퀀스 생성에 이용되는 핵심 특징(key property)이 상이한 모든 시퀀스가 이에 해당할 수 있다. 이를 통해 P-SCH 및 S-SCH를 통해 송신할 수 있는 시퀀스의 조합을 증가시켜, 송신되는 제어 정 보의 양을 증가시킬 수 있다. 또한 상술한 바와 같이 P-SCH 및 S-SCH에 삽입되는 시퀀스들은 동일 또는 상이한 양의 순환이동이 적용되며, 이러한 순환이동량 자체가 또 다른 제어 정보를 나타내게 된다. 도 7a에는 P-SCH 및 S-SCH 모두 시간 영역에서 반복구조를 포함하며, 각 동기채널에 삽입되는 시퀀스들이 상이한 유형의 시퀀스들이고, 각 동기채널에 삽입된 시퀀스들에 적용되는 순환이동의 양도 상이한 예를 도시하고 있다. 한편, 도 7b에는 P-SCH만이 시간 영역에서 반복구조를 포함하며, S-SCH에는 시간 영역에서의 반복구조를 가지지 않는 대신 2배의 길이를 가지는 시퀀스열이 삽입되고, 각 동기채널에 삽입된 시퀀스들에는 상이한 정도의 순환이동이 적용되는 예를 도시하고 있다.Lastly, FIGS. 7A and 7B illustrate a case in which cyclic shift is applied to sequences to be inserted into P-SCH and S-SCH as described above, and sequences inserted into respective sync channels are different types of sequences. As shown. Here, the different types of sequences inserted into the P-SCH and the S-SCH may be sequences having different values corresponding to IDs among the same kinds of sequences, and include key features used for generating a sequence including the above-described cases. All sequences having different properties may correspond to this. This increases the amount of control information transmitted by increasing the combination of sequences that can be transmitted through the P-SCH and the S-SCH. In addition, as described above, the same or different amount of cyclic shift is applied to the sequences inserted into the P-SCH and the S-SCH, and this cyclic shift amount itself represents another control information. In FIG. 7A, both the P-SCH and the S-SCH include a repetitive structure in the time domain, and sequences inserted into respective sync channels are different types of sequences, and amounts of cyclic shift applied to sequences inserted into respective sync channels are also different. An example is shown. On the other hand, in FIG. 7B, only the P-SCH includes a repetitive structure in the time domain, and instead of having a repetitive structure in the time domain, a sequence string having a length of twice is inserted and inserted into each sync channel. The sequence shows an example in which different degrees of cyclic shift are applied.

이상에서는 도 5a 내지 도 7b를 통해 각 동기채널에 삽입되는 시퀀스들에 순환이동을 삽입함과 동시에 각 동기채널에 삽입되는 시퀀스들의 조합을 선택하여, 제어정보의 정확성 증가, 제어 정보의 조합 확대 등의 효과를 얻는 경우를 예로서 설명하였으나, 당업자는 상술한 예시를 통해 이러한 예뿐만 아니라 이와 동일한 원리를 가지는 다양한 변형예를 생각할 수 있을 것이다.5A to 7B, the cyclic shift is inserted into the sequences inserted into the respective synchronization channels and the combination of the sequences inserted into the respective synchronization channels is selected to increase the accuracy of the control information and to expand the combination of the control information. Although the case of obtaining the effect of the present invention has been described by way of example, those skilled in the art will be able to contemplate various modifications having the same principle as well as these examples.

다음으로, 본 발명의 일 실시형태에 따른 시퀀스 분석 방법에 대해 상세히 설명하기로 한다.Next, a sequence analysis method according to an embodiment of the present invention will be described in detail.

상술한 바와 같은 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 의해 생성된 시퀀스는 순환이동을 포함하며, 수신측은 이 순환이동의 정도를 통해 추가적인 제어 정보를 획득할 수 있다. 또한, 이러한 순환이동에 적용되는 순환 이동 정보는 상술한 바와 같이 가능한 모든 지연값에 대해 연산해 봄으로써 적용된 지연 값을 추정하는 것을 기본이나, 이하에서 설명할 바와 같이 간단한 검출 방법에 의해 수신측에서 추정될 수도 있다. The sequence generated by the sequence applying method according to the embodiment of the present invention as described above includes a cyclic shift, and the receiving side can acquire additional control information through the degree of the cyclic shift. In addition, the cyclic shift information applied to the cyclic shift is basically calculated by estimating the delay value applied by calculating all possible delay values as described above, but as described below, the receiver side uses a simple detection method. It may be estimated.

상술한 바와 같은 시퀀스 검출을 달성하기 위해, 먼저 수신측은 OFDM 통신에서 공통적인 사항으로서 수신된 신호의 순환전치부(Cyclic Prefix)를 제거한 후, 이산퓨리에변환 또는 가능한 경우 고속퓨리에변환을 수행한다. 이를 통해 수신된 신호(R(k))를 다음과 같이 나타낼 수 있다.To achieve sequence detection as described above, the receiving side first removes the cyclic prefix of the received signal as common in OFDM communication, and then performs a discrete Fourier transform or, if possible, a Fast Fourier transform. Through this, the received signal R (k) may be represented as follows.

Figure 112006057954303-PAT00017
Figure 112006057954303-PAT00017

, k= 0, 1, 2, ..., Nfft-1, k = 0, 1, 2, ..., N fft -1

여기서,

Figure 112006057954303-PAT00018
는 순환이동을 포함한 수신신호의 시퀀스를,
Figure 112006057954303-PAT00019
는 순환이동을 제외한 수신신호의 시퀀스를, H(k) 는 채널 응답을, N(k)는 잡음을 나타낸다.here,
Figure 112006057954303-PAT00018
Is a sequence of received signals including cyclic shift,
Figure 112006057954303-PAT00019
Denotes a sequence of received signals excluding cyclic shift, H (k) denotes a channel response, and N (k) denotes a noise.

그 후, 상기 수학식 13을 통해 획득한 신호(R(k))의 차등시퀀스 (deferential sequence)를 생성함으로써 수신 신호의 시퀀스 ID를 획득하는 단계를 수행하며, 사용된 시퀀스가 GCL CAZAC 시퀀스인 경우 아래와 같은 수식을 통해 GCL 코드의 ID에 해당하는 M값을 추정할 수 있다. Thereafter, a step of obtaining a sequence ID of a received signal by generating a differential sequence of the signal R (k) obtained through Equation 13, wherein the used sequence is a GCL CAZAC sequence The M value corresponding to the ID of the GCL code can be estimated through the following equation.

Figure 112006057954303-PAT00020
Figure 112006057954303-PAT00020

상기 수학식 14에서는 차등 인코딩값의 IDFT값의 최대값을 통해 M값을 추정하는 것을 나타내었다. 여기서, R(k-1)*·R(k) 를 계산하는 과정에서 인위적으로 가한 지연 성분인 상기 수학식 13에서의 τ성분(

Figure 112006057954303-PAT00021
)은 공액복소수 계산에 의해 k 값에 관계없는 상수가 되므로, M값을 추정하는데 영향을 주지 않는다. 이러한 특성을 이용하기 위해, 수신된 시퀀스가 순환이동이 주파수 영역에서 적용된 시퀀스인 경우 시간영역에서 상술한 바와 같은 방법으로 추정된 시퀀스의 공액복소수 시퀀스를 이용하여 보상하는 것이 바람직하며, 반대로 수신된 시퀀스가 순환이동이 시간 영역에서 적용된 시퀀스인 경우 주파수 영역에서 상술한 바와 같은 방법으로 추정된 시퀀스의 공액복소수 시퀀스를 이용하여 보상하는 것이 바람직하다. 상술한 바와 같이 순환이동이 적용된 영역과 상이한 영역에서 시퀀스의 보상이 이루어지는 경우, 순환이동 정보를 나타내는 항목은 복소지수형태의 항목으로서 나타나는바, 추정된 ID를 가지는 시퀀스의 공액복소수 시퀀스와 간단히 곱하는 과정을 통해 순환 이동치 이외의 정보를 보상할 수 있다.In Equation 14, the M value is estimated through the maximum value of the IDFT values of the differential encoding values. Here, the τ component in Equation 13, which is an artificially added delay component in the process of calculating R (k-1) * R (k) (
Figure 112006057954303-PAT00021
) Becomes a constant irrespective of the value of k by the conjugate complex calculation, and therefore does not affect the estimation of the M value. In order to use this characteristic, when the received sequence is a sequence in which the cyclic shift is applied in the frequency domain, it is preferable to compensate using a conjugate complex sequence of the sequence estimated by the method described above in the time domain, and conversely, the received sequence. If cyclic shift is a sequence applied in the time domain, it is preferable to compensate using a conjugate complex sequence of the sequence estimated by the method described above in the frequency domain. As described above, when the sequence is compensated in a region different from the region to which the circular shift is applied, the item indicating the circular shift information appears as an item of a complex index type, and is a process of simply multiplying the conjugate complex sequence of the sequence having the estimated ID. Through this, information other than the cyclic shift value can be compensated.

상기 서술한 바와 같은 방법뿐만 아니라, 순환 이동으로 인해 발생하는 모든 경우의 수만큼의 원래 시퀀스의 모든 가능한 경우에 대해 교차 상관 (cross-correlation)을 수행한 후 가장 큰 매트릭(metric)을 갖는 시퀀스를 검출하는 형태 역시 가능하다.In addition to the methods described above, cross-correlation is performed on all possible cases of the original sequence by the number of all cases that occur due to the cyclic shift, and then the sequence having the largest metric is obtained. Detection forms are also possible.

또한, 상기 수학식 14는 차등 시퀀스에 IDFT를 행한 값들 중 최대값을 검출하여 하나의 M값만을 추정하는 경우를 예로서 설명하고 있으나, 채널 상태가 열악한 경우 상술한 바와 같이 최대값만을 검출하는 것이 아니라, 소정의 임계치 이상의 값을 나타내는 인덱스를 후보로서 추출한 후 그 값들을 병렬 처리할 수 있음은 당업자에게 자명하다.In addition, Equation 14 describes a case in which only one M value is estimated by detecting a maximum value of IDFTs performed on a differential sequence as an example. However, when the channel state is poor, only the maximum value is detected as described above. Rather, it is apparent to those skilled in the art that an index representing a value above a predetermined threshold can be extracted as a candidate and then the values can be processed in parallel.

상술한 바와 같이 시퀀스의 ID 정보를 획득한 후, 수신 시퀀스를 획득된 ID 를 가지는 시퀀스에 공액복소수 연산을 수행한 시퀀스와 곱함으로써 순환 이동치를 획득하는 단계를 수행한다. 이를 수학식으로 나타내면 다음과 같다.As described above, after acquiring the ID information of the sequence, a step of obtaining a cyclic shift value is performed by multiplying the received sequence by a sequence that has performed a conjugate complex operation. This is expressed as the following equation.

Figure 112006057954303-PAT00022
Figure 112006057954303-PAT00022

이를 통해 R'(k)는 수신된 시퀀스 R(k) 중 순환이동치 성분(

Figure 112006057954303-PAT00023
)이 제거된 형태로 유도될 수 있으며, 상기 수학식 13에서 잡음성분을 무시할 경우 R'(k)는 채널응답(H(k))와 순환이동치 성분(
Figure 112006057954303-PAT00024
)만의 곱으로 나타낼 수 있다. 이와 같은 신호(R'(k))에 포함된 순환이동 정보를 보다 용이하게 검출하기 위해 다음과 같이 IFFT를 수행할 수 있다.Through this, R '(k) is a cyclic shift component of the received sequence R (k) (
Figure 112006057954303-PAT00023
) Can be derived in a removed form, and when the noise component is ignored in Equation 13, R '(k) is a channel response (H (k)) and a cyclic shift component (
Figure 112006057954303-PAT00024
Can be expressed as In order to more easily detect the cyclic shift information included in the signal R '(k), the IFFT may be performed as follows.

Figure 112006057954303-PAT00025
Figure 112006057954303-PAT00025

상기 수학식 16을 수행한 결과 시간 영역에서의 임펄스 응답을 획득할 수 있다. As a result of performing Equation 16, an impulse response in the time domain may be obtained.

도 8은 본 발명의 일 실시형태에 따른 시퀀스 분석 방법에 의해 수신된 시퀀스에서 무선 채널의 임펄스 응답을 나타내는 결과를 도시한 도면이다.FIG. 8 is a diagram illustrating a result indicating an impulse response of a wireless channel in a sequence received by a sequence analysis method according to an embodiment of the present invention.

상술한 바와 같이 수학식 16을 통해 수신된 시퀀스의 임펄스 응답을 획득할 수 있으며, 도 8은 이와 같이 획득한 임펄스 응답의 예를 도시한 것이다. 이를 분석함으로써 순환이동값의 검색이 가능하며, 그 순환이동값을 통해 전송된 제어 정보를 획득할 수 있다.As described above, the impulse response of the received sequence can be obtained through Equation 16, and FIG. 8 shows an example of the impulse response thus obtained. By analyzing this, it is possible to search the cyclic shift value, and obtain control information transmitted through the cyclic shift value.

한편, 상기 수학식 16의 결과를 이용하여 순환 이동치를 검색하는 경우와 달리, 다중경로 채널의 경우에는 단순히 도 8에 도시된 바와 같은 단일 피크치를 통해 순환 이동치를 산정하는 경우 많은 오류가 발생할 수 있다. 이러한 경우, 상술한 다중경로로 인하여 확산될 수 있는 구간의 크기(이하 "Ng"라고 함)를 고려하여, 각 시퀀스를 그룹핑하고, 상기 Ng 간격으로 순환이동을 적용함으로써, 오류를 저감시키는 방법을 고려할 수 있다. 즉, 상술한 다중경로 채널을 고려하지 않는 경우 적용할 수 있는 순환이동치는 1 ~ Nfft 만큼 다양할 수 있으나, 다중경로로 인해 확산될 수 있는 구간의 크기가 Ng라 할 경우 순환이동치는 1, Ng, 2Ng, 3Ng,... 와 같이 간격으로 하는 것이 최적의 검출 능력을 보인다. On the other hand, unlike the case of searching for a cyclic shift value using the result of Equation 16, in the case of a multipath channel, a large number of errors may occur when the cyclic shift value is simply calculated through a single peak value as shown in FIG. . In this case, in consideration of the size of the section that can be spread due to the above-described multipath (hereinafter referred to as "Ng"), by grouping each sequence and applying a cyclic shift in the Ng interval, a method for reducing the error Can be considered That is, if the above-described multipath channel is not taken into account, the applicable circular shift value is 1 to N fft. However, if the size of the section that can be spread due to the multipath is Ng, the cyclic shift value is 1, Ng, 2Ng, 3Ng, ... shows the optimal detection capability.

이 경우, 수신측에서 순환 이동치를 검색하는 것은 상술한 바와 같이 순환 이동치의 간격이 Ng단위로만 결정되기 때문에, 크기 Ng의 각 그룹 단위로 파워를 합하여 최대를 나타내는 그룹을 검출함으로써 순환이동치를 결정할 수 있으며, 이는 이하의 수학식 17과 같이 나타낼 수 있다.In this case, since retrieving the cyclic shift value at the receiving side is determined only in units of Ng as described above, the cyclic shift value can be determined by detecting a group representing the maximum by summing the power in each group unit of size Ng. This can be expressed as Equation 17 below.

Figure 112006057954303-PAT00026
Figure 112006057954303-PAT00026

여기서, Nfft는 FFT 구간에서의 시퀀스의 길이, Ng는 순환이동을 적용할 수 있는 그룹의 수, g는 그룹 색인 (g=0, 1, 2, .., Nfft/Ng) 을 나타낸다.Where N fft is the length of the sequence in the FFT interval, Ng is the number of groups to which cyclic shift is applicable, and g is the group index (g = 0, 1, 2, .., N fft / Ng).

물론, 상기 수학식 17을 통해 순환 이동치를 검출하는 방법은 다중경로 채널과 같이 채널 상태가 양호하지 못한 경우에 한정하는 것이 바람직하며, 다중경로 확산과 같은 항목을 고려하지 않아도 되는 채널의 경우에는, 상기 수학식 16과 같은 단일 피크치 검출을 통해 순환 이동치를 획득하는 것이 바람직함을 물론이다.Of course, the method for detecting the cyclic shift value through Equation 17 is preferably limited to a case in which a channel state is not good, such as a multipath channel. In the case of a channel that does not require consideration of an item such as multipath spreading, It is a matter of course that it is preferable to obtain a cyclic shift value through the detection of a single peak value as shown in Equation (16).

한편, 상술한 본 발명의 일 실시형태에 따른 시퀀스 분석 방법의 성능에 대해 설명하면 다음과 같다.On the other hand, the performance of the sequence analysis method according to an embodiment of the present invention described above is as follows.

도 9는 본 발명의 일 실시형태에 따른 시퀀스 분석 방법에 의할 경우와 종래의 시퀀스 분석 방법에 의할 경우의 검출 오류율을 비교하여 도시한 도면이다.9 is a diagram showing a comparison of detection error rates in the case of using the sequence analysis method according to the embodiment of the present invention and in the case of the conventional sequence analysis method.

도 9에서 (1) Delayed S-SCH는 본 발명에서 제안된 방법의 단계 구성을 모두 이용하는 것이 아닌 이미 알고 있는 시퀀스를 통해 수학식 15 및 수학식 16을 통해 순환 이동치만을 검출하는 경우의 검출 오류율을 도시한 것이며, (2) Only GCL(IDFT)는 본 발명에서 제안된 방법의 단계 구성을 모두 이용하는 것이 아닌 순환이동의 적용 없이 시퀀스의 ID를 추정하는 단계, 즉 상기 수학식 14에 해당하는 단계까지만을 수행한 경우의 검출 오류율을 도시한 것이며, (3) Proposed는 본 발 명의 일 실시형태에 따른 시퀀스 검출 방법의 모든 단계 구성을 수행하여 시퀀스를 분석하는 경우의 검출 오류율을 도시한 것이다.In FIG. 9, (1) Delayed S-SCH detects only a cyclic shift value through Equations 15 and 16 through a known sequence rather than using all the step configurations of the method proposed in the present invention. (2) Only GCL (IDFT) is a step of estimating the ID of a sequence without applying a cyclic shift instead of using all of the step configurations of the method proposed in the present invention, that is, the step corresponding to Equation (14). (3) Proposed shows a detection error rate when analyzing a sequence by performing all the steps of the sequence detection method according to an embodiment of the present invention.

따라서, 상기 (3) 은 (1) 및 (2) 에서 행한 단계 구성을 조합하여 모두 행한 방법으로서, (1), (2) 중 상대적으로 열악한 성능을 가지는 쪽에 의해 전체 성능이 좌우되며, 도 9에서는 (2)의 성능에 의해 좌우되는 것을 예로서 도시하였다. 그러므로, 본 발명에 따른 경우 종래 기술에서 각 단계 구성을 조합한다 하더라도 추가적인 오류율의 증가가 없음을 알 수 있다. 아울러, 본 발명에 따를 경우 종래 기술에서 생성할 수 있는 셀 ID의 수에 적용가능한 순환이동치를 곱한 만큼 증가된 셀 ID 수를 가질 수 있음은 상술한 바와 같다. 그 예로서 본 발명자는 시퀀스의 길이 N이 75인 경우 종래의 통신 시스템에서 생성가능한 셀 ID의 수는 40개 였으나, 본 발명에 의해 적용가능한 순환이동치가 8가지인 경우, 40*8 에 해당하는 320개의 셀 ID를 생성할 수 있으며, 이에 따른 추가적인 오류율의 증가는 발생하지 않음을 모의 실험을 통해 확인할 수 있었다.Therefore, the above (3) is a method performed by combining the step configuration performed in (1) and (2), the overall performance of which is determined by the relatively poor performance of (1), (2), Fig. 9 In the figure, an example that depends on the performance of (2) is shown. Therefore, according to the present invention, it can be seen that there is no increase in the additional error rate even if each step configuration is combined in the prior art. In addition, according to the present invention, as described above, the cell ID may be increased by multiplying the number of cell IDs that can be generated in the prior art by the cyclic shift value. As an example, the inventors found that the number of cell IDs that can be generated in the conventional communication system is 40 when the length N of the sequence is 75. However, the present invention corresponds to 40 * 8 when 8 cyclic shift values are applicable according to the present invention. The simulation can confirm that 320 cell IDs can be generated and no additional error rate increases.

상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것 이다. The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

상기와 같은 본 발명의 일 실시형태에 따른 동기 채널 구조에 의할 경우, 동기식 네트워크 및 비동기식 네트워크 모두에서 양호한 품질의 동기 정보를 획득할 수 있으며, 동기식 네트워크에서 주로 행하던 자기상관에 의한 동기 획득과 비동기식 네트워크에서 주로 행하던 교차상관에 의한 동기획득을 병행하여 수행함으로써 획득된 동기 정보의 정확성을 높이는 효과를 가져온다.According to the synchronous channel structure according to an embodiment of the present invention as described above, it is possible to obtain the synchronization information of good quality in both the synchronous network and the asynchronous network, the synchronization acquisition and asynchronous by the autocorrelation mainly used in the synchronous network By performing the synchronization acquisition by the cross-correlation mainly performed in the network, the effect of improving the accuracy of the obtained synchronization information is obtained.

또한, 본 발명의 일 실시형태에 따른 동기 획득 방법 및 셀 검색 방법에 의할 경우, 통신이 이루어지는 네트워크가 동기식인지 비동기식인지 여부를 판정하여 적절한 동기 획득 방법을 선택할 수 있으며, P-SCH 및 S-SCH에 포함된 최단 길이를 가지는 반복구조를 이용하여 동기 획득에 있어 필요한 계산량을 감소시키는 효과를 가져올 수 있으며, 이에 기초한 셀 검색 방법은 이와 같은 정확성을 가지는 동기 정보에 기초하여 이후 프로세싱에 필요한 기초정보를 획득 할 수 있다.In addition, according to the synchronization acquisition method and the cell search method according to an embodiment of the present invention, it is possible to determine whether a network in which communication is performed is synchronous or asynchronous, and to select an appropriate synchronization acquisition method, and P-SCH and S- By using the repetition structure having the shortest length included in the SCH, it is possible to reduce the amount of computation required for the acquisition of synchronization, and the cell search method based on this is based on the synchronization information having such accuracy. Can be obtained.

또한, 본 발명의 일 실시형태에 따른 시퀀스 적용 방법에 의할 경우, 각 동기채널에 삽입되는 시퀀스에 추가적인 정보 전달이 가능하며, 각 동기채널에 삽입되는 시퀀스의 유형을 제어함으로써 전달되는 정보의 정확성 및 종류를 확장할 수 있는 효과를 가진다.In addition, according to the method of applying a sequence according to an embodiment of the present invention, additional information may be transmitted to a sequence inserted into each sync channel, and the accuracy of the information transmitted by controlling the type of the sequence inserted into each sync channel. And it has the effect of extending the kind.

아울러, 본 발명의 일 실시형태에 따른 시퀀스 분석 방법에 의할 경우, 종래에 비한 추가적 오류율의 증가 없이, 전달 및 분석할 수 있는 제어정보의 양을 확장할 수 있는 효과를 가진다.In addition, the sequence analysis method according to an embodiment of the present invention has an effect of extending the amount of control information that can be transmitted and analyzed without increasing an additional error rate as compared with the related art.

Claims (20)

통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하며, 시간 영역에서 시퀀스의 반복구조를 포함하는 주 동기채널; 및 A main synchronization channel including a sequence commonly used in a communication network and including a repetition structure of the sequence in a time domain; And 상기 주 동기 채널에 포함되는 제어 정보 이외의 정보 전달을 위한 시퀀스를 포함하는 보조 동기 채널을 포함하는, 동기채널 구조.And an auxiliary synchronization channel including a sequence for transferring information other than control information included in the primary synchronization channel. 제 1 항에 있어서,The method of claim 1, 상기 보조 동기 채널 역시 시간영역에서 시퀀스의 반복구조를 포함하는, 동기 채널 구조.And the auxiliary synchronization channel also includes a repeating structure of a sequence in the time domain. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 반복 구조는 특정 시퀀스를 주파수 영역에서 소정 주기마다 삽입하여 이루어지는, 동기 채널 구조.The repeating structure is a synchronization channel structure formed by inserting a specific sequence every predetermined period in the frequency domain. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 반복 구조는 특정 시퀀스를 시간 영역에서 직접 반복하여 삽입함으로써 이루어지는, 동기 채널 구조.And the repetition structure is achieved by repeatedly inserting a specific sequence directly in the time domain. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 주 동기채널 및 상기 보조 동기 채널의 시퀀스들은 순환이동 정보를 포함하는, 동기 채널 구조.And the sequences of the primary sync channel and the auxiliary sync channel include cyclic shift information. 주 동기채널 및 보조 동기채널을 포함하며, 상기 주 동기 채널은 통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하고 시간 영역에서 시퀀스의 반복구조를 포함하는 구조를 가지는 동기채널을 이용하여 동기를 획득하는 방법에 있어서,A method for acquiring synchronization using a synchronization channel including a primary synchronization channel and an auxiliary synchronization channel, wherein the primary synchronization channel includes a sequence commonly used in a communication network and has a structure including a repetition structure of a sequence in a time domain. To 통신이 이루어지는 네트워크가 동기식인지 여부를 판정하는 단계; 및Determining whether the network over which the communication is made is synchronous; And 상기 네트워크가 동기식 네트워크인 경우, 상기 주 동기 채널의 상기 반복 구조를 통해 동기를 획득하는 단계를 포함하는, 동기 획득 방법.If the network is a synchronous network, acquiring synchronization through the repeating structure of the primary synchronization channel. 제 6 항에 있어서,The method of claim 6, 상기 보조 동기 채널 역시 시간 영역에서 시퀀스의 반복 구조를 포함하며,The auxiliary synchronization channel also includes a repetition structure of a sequence in the time domain, 상기 동기를 획득하는 단계는, Acquiring the synchronization, 상기 주 동기채널 및 상기 보조 동기 채널의 반복구조 중 가장 짧은 시퀀스의 반복구조를 선택하는 단계; 및Selecting a repetition structure of the shortest sequence among the repetition structures of the primary synchronization channel and the auxiliary synchronization channel; And 상기 선택된 가장 짧은 반복구조의 자기상관을 통해 동기를 획득하는 단계를 포함하는, 동기획득 방법.And obtaining synchronization through autocorrelation of the selected shortest repetition structure. 제 6 항 또는 제 7 항에 있어서,The method according to claim 6 or 7, 상기 주 동기채널의 상기 공통 시퀀스를 이용하여 상기 획득된 동기의 정확 성을 높이는 단계를 더 포함하는, 동기획득 방법.And increasing the accuracy of the obtained synchronization using the common sequence of the primary synchronization channel. 주 동기채널 및 보조 동기 채널을 포함하며, 상기 주 동기 채널은 통신 네트워크에서 공통으로 사용되는 시퀀스를 포함하고 시간 영역에서 시퀀스의 반복구조를 포함하는 구조를 가지는 동기채널을 이용하여 동기를 획득하는 방법에 있어서,A method for acquiring synchronization using a synchronization channel including a primary synchronization channel and an auxiliary synchronization channel, wherein the primary synchronization channel includes a sequence commonly used in a communication network, and has a structure including a repetition structure of a sequence in a time domain. To 통신이 이루어지는 상기 통신 네트워크가 동기식인지 여부를 판정하는 단계; 및Determining whether the communication network over which communication is made is synchronous; And 상기 통신 네트워크가 비동기식 네트워크인 경우, 상기 주 동기 채널에 포함된 상기 공통 시퀀스를 통해 동기를 획득하는 단계를 포함하는, 동기 획득 방법,If the communication network is an asynchronous network, acquiring synchronization through the common sequence included in the primary synchronization channel; 제 9 항에 있어서,The method of claim 9, 상기 주 동기채널 또는 상기 보조 동기 채널의 상기 반복구조를 이용하여 상기 획득된 동기의 정확성을 높이는 단계를 더 포함하는, 동기획득 방법.And using the repetition structure of the primary synchronization channel or the auxiliary synchronization channel to increase the accuracy of the obtained synchronization. 주 동기 채널 및 보조 동기채널을 포함하며, 상기 주 동기채널은 시간 영역에서 시퀀스의 반복 구조를 포함하는 구조를 가지는 동기채널에 삽입될 시퀀스를 적용하는 방법에 있어서,A method of applying a sequence to be inserted into a synchronization channel including a primary synchronization channel and a secondary synchronization channel, the primary synchronization channel having a structure including a repetition structure of a sequence in a time domain, 상기 주 동기채널 및 상기 보조 동기 채널에 적용할 시퀀스를 생성하는 단계; 및Generating a sequence to be applied to the primary sync channel and the auxiliary sync channel; And 상기 시간 영역 혹은 주파수 영역에서 상기 시퀀스들에 순환이동을 적용하는 단계를 포함하는, 시퀀스 적용방법.Applying a cyclic shift to the sequences in the time domain or frequency domain. 제 11 항에 있어서,The method of claim 11, 상기 순환이동을 적용하는 단계는, Applying the circular movement, 상기 시퀀스들의 상기 시간 영역 혹은 상기 주파수 영역 중 선택된 어느 한 영역인 제 1 영역의 인덱스에 소정의 지연값을 적용하는 단계; 및Applying a predetermined delay value to an index of a first region, the selected one of the time domain or the frequency domain of the sequences; And 상기 시퀀스들의 길이를 기초로 한 모듈레이션 (mod) 함수를 적용하는 단계를 포함하는, 시퀀스 적용방법.Applying a modulation function based on the length of the sequences. 제 11 항에 있어서,The method of claim 11, 상기 순환이동을 적용하는 단계는, 상기 시간 영역 혹은 상기 주파수 영역 중 선택된 어느 한 영역인 제 2 영역에서 상기 시퀀스들에 복소 지수함수를 곱하는 단계를 포함하는, 시퀀스 적용방법.The applying the cyclic shift comprises multiplying the sequences by a complex exponential function in a second region, which is any one of the time domain or the frequency domain. 제 11 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13, 상기 순환이동을 적용하는 단계에서 상기 주 동기채널 및 상기 보조 동기 채널에 서로 상이한 순환이동을 적용하는, 시퀀스 적용방법.And applying different cyclic shifts to the primary sync channel and the auxiliary sync channel in applying the cyclic shift. 제 11 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13, 상기 주 동기채널 및 상기 보조 동기채널에 적용할 시퀀스를 생성하는 단계 에서 상기 보조 동기채널에 적용되는 시퀀스는 상기 주 동기채널에 적용되는 시퀀스의 반복 시퀀스로서 생성되는, 시퀀스 적용방법.Generating a sequence to be applied to the primary synchronization channel and the auxiliary synchronization channel, wherein the sequence applied to the auxiliary synchronization channel is generated as a repetitive sequence of the sequence applied to the primary synchronization channel. 제 11 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13, 상기 주 동기채널 및 상기 보조 동기채널에 적용할 시퀀스를 생성하는 단계에서 상기 시퀀스는 하나의 시퀀스를 상기 주 동기채널에 적용할 시퀀스와 상기 보조 동기채널에 적용할 시퀀스로 분할하여 적용하는, 시퀀스 적용방법.In the generating of the sequence to be applied to the primary synchronization channel and the auxiliary synchronization channel, the sequence is applied by dividing and applying one sequence into a sequence to be applied to the primary synchronization channel and a sequence to be applied to the auxiliary synchronization channel. Way. 제 11 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13, 상기 주 동기채널 및 상기 보조 동기채널에 적용할 시퀀스를 생성하는 단계에서 상기 주 동기채널에 적용할 시퀀스와 상기 보조 동기채널에 적용할 시퀀스는 서로 상이한 유형의 시퀀스인, 시퀀스 적용방법.Generating a sequence to be applied to the primary synchronization channel and the auxiliary synchronization channel; and a sequence to be applied to the primary synchronization channel and a sequence to be applied to the auxiliary synchronization channel are sequences of different types. 통신 시스템의 수신단에서 주 동기채널 및 보조 동기채널에 삽입된 시퀀스에 각각 순환이동을 적용한 시퀀스를 분석하는 방법에 있어서,A method for analyzing a sequence in which a cyclic shift is applied to a sequence inserted into a primary sync channel and a secondary sync channel at a receiving end of a communication system, 수신된 시퀀스의 차등 시퀀스를 생성함으로써 시퀀스의 ID 정보를 획득하는 단계; 및Obtaining ID information of the sequence by generating a differential sequence of the received sequence; And 획득된 상기 시퀀스 ID 정보를 통해 선택된 시퀀스의 공액복소수 시퀀스를 상기 수신된 시퀀스와 곱함으로써, 상기 수신된 시퀀스를 보상하고 상기 수신된 시퀀스의 순환 이동치를 획득하는 단계를 포함하는, 시퀀스 분석 방법.Compensating for the received sequence and obtaining a cyclic shift of the received sequence by multiplying the conjugated complex sequence of the selected sequence with the obtained sequence ID information. 제 18 항에 있어서,The method of claim 18, 상기 순환 이동치를 획득하는 단계는, 상기 수신된 시퀀스가 순환이동이 주파수 영역에서 적용된 시퀀스인 경우 시간영역에서 상기 수신된 시퀀스를 보상함으로써, 상기 순환 이동치를 획득하고,The acquiring of the cyclic shift value may include obtaining the cyclic shift value by compensating the received sequence in the time domain when the received sequence is a sequence in which the cyclic shift is applied in the frequency domain. 상기 수신된 시퀀스가 순환이동이 시간 영역에서 적용된 시퀀스인 경우 주파수 영역에서 상기 수신된 시퀀스를 보상함으로써, 상기 순환 이동치를 획득하는, 시퀀스 분석 방법.And obtaining the cyclic shift value by compensating the received sequence in the frequency domain when the received sequence is a sequence in which cyclic shift is applied in the time domain. 제 18 항 또는 제 19 항에 있어서,The method of claim 18 or 19, 상기 순환이동의 적용이 그룹 단위로 적용된 경우, 상기 순환 이동치를 획득하는 단계는, When the application of the circular shift is applied in group units, the obtaining of the circular shift value may include: 상기 수신 시퀀스가 보상된 상기 시퀀스의 각 지연 그룹 내의 전력을 합하는 단계; 및Summing power in each delay group of the sequence for which the received sequence is compensated; And 상기 합산된 전력 중 최대를 나타내는 그룹을 선택하는 단계를 더 포함하는, 시퀀스 분석 방법.Selecting a group representing the maximum of the summed powers.
KR1020060076812A 2006-06-19 2006-08-14 Structure Of Hybrid Synchronization Channel Method and Apparatus For Transmitting Signal Applying And Analyzing The Sequence Using The Same KR101265619B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80519506P 2006-06-19 2006-06-19
US60/805,195 2006-06-19

Publications (2)

Publication Number Publication Date
KR20070120408A true KR20070120408A (en) 2007-12-24
KR101265619B1 KR101265619B1 (en) 2013-05-22

Family

ID=39138244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060076812A KR101265619B1 (en) 2006-06-19 2006-08-14 Structure Of Hybrid Synchronization Channel Method and Apparatus For Transmitting Signal Applying And Analyzing The Sequence Using The Same

Country Status (1)

Country Link
KR (1) KR101265619B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113807A2 (en) * 2008-03-11 2009-09-17 엘지전자 주식회사 Method of generating data and transmitting synchronization channel in mobile communication system
US8743855B2 (en) 2007-12-17 2014-06-03 Lg Electronics Inc. Method of generating data and transmitting synchronization channel in mobile communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI285484B (en) 2004-12-27 2007-08-11 Ind Tech Res Inst Method for detecting signal and estimating symbol timing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8743855B2 (en) 2007-12-17 2014-06-03 Lg Electronics Inc. Method of generating data and transmitting synchronization channel in mobile communication system
WO2009113807A2 (en) * 2008-03-11 2009-09-17 엘지전자 주식회사 Method of generating data and transmitting synchronization channel in mobile communication system
WO2009113807A3 (en) * 2008-03-11 2009-11-05 엘지전자 주식회사 Method of generating data and transmitting synchronization channel in mobile communication system

Also Published As

Publication number Publication date
KR101265619B1 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
US8320360B2 (en) Method and apparatus for fast cell search
US10009928B2 (en) Method, apparatus and system for random access
US8254344B2 (en) Reference sequence construction for fast cell search
US9179478B2 (en) Method and arrangement in a telecommunication system
KR100865251B1 (en) Method and apparatus for pilot signal transmission
US7801180B2 (en) Systems, apparatus and techniques for fast cell search and accurate synchronization in wireless communications
KR101080906B1 (en) Apparatus for acquired preamble sequence
US20060039451A1 (en) Method and apparatus for fast cell search
WO2009003066A1 (en) Method and apparatus for using an unique index set for psc sequence in a wireless communication system
US10135654B2 (en) Method and apparatus for generating code sequence in a communication system
KR100689552B1 (en) Method and apparatus for searching cell in a wireless communication system
KR101181976B1 (en) Apparatus for acquired preamble sequence
KR20090106510A (en) Adaptive cell id detection in a cellular communications system
KR101162216B1 (en) Method For Transmitting and Receiving Signal In The Communication System Using Variable Length Cyclic Prefix, And Basestation and User Equipment Doing The Same
KR101265619B1 (en) Structure Of Hybrid Synchronization Channel Method and Apparatus For Transmitting Signal Applying And Analyzing The Sequence Using The Same
KR20090065414A (en) Method for performing cell search procedure in wireless communication system
Silva et al. Cell search in long term evolution systems: primary and secondary synchronization
CN101820407A (en) Serial interference cancellation based frequency domain initial ranging method and system
TWI507064B (en) Neighbor cell search method
Tomatis et al. Synchronization and cell search

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160422

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee