KR20070119036A - 가속 백오프 기능을 포함하는 무선 랜 송신 스케줄러 - Google Patents

가속 백오프 기능을 포함하는 무선 랜 송신 스케줄러 Download PDF

Info

Publication number
KR20070119036A
KR20070119036A KR1020077023437A KR20077023437A KR20070119036A KR 20070119036 A KR20070119036 A KR 20070119036A KR 1020077023437 A KR1020077023437 A KR 1020077023437A KR 20077023437 A KR20077023437 A KR 20077023437A KR 20070119036 A KR20070119036 A KR 20070119036A
Authority
KR
South Korea
Prior art keywords
unit
state
stsm
stsmc
scheduler
Prior art date
Application number
KR1020077023437A
Other languages
English (en)
Other versions
KR101226581B1 (ko
Inventor
퍼 콘라드손
오르얀 프리쯔
Original Assignee
나노라디오 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노라디오 에이비 filed Critical 나노라디오 에이비
Publication of KR20070119036A publication Critical patent/KR20070119036A/ko
Application granted granted Critical
Publication of KR101226581B1 publication Critical patent/KR101226581B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

본 발명은 일반적으로 소프트웨어로 실행되는 하나의 제1 TX 스케줄러 상태 기계(FTSM) 유닛과, 하드웨어로 실행되는 하나의 제2 TX 스케줄러 상태 기계(STSM) 유닛의 2개의 상이한 상태 기계로 나뉘어지고, 4가지의 상이한 기본 상태로 동작하는, 전체 송신(TX) 스케줄러 상태 기계로서 설명될 수 있다. 2개의 상태 기계 사이의 기능적 구분(functional partitioning)은 상기 STSM 유닛에는 가장 제약된 실시간 요건(most-constrained real-time requirements)이 할당되고 상기 FTSM에는 모든 복합 결정(all complex decisions) 및 비 시간-임계 제어(non time-critical controls)가 할당되는 것으로 구분된다. 본 발명은 또한 고안된 송신 스케줄러를 포함하는 단말에 관한 것이다.
송신 스케줄러 상태 기계, 반송파 감지 다중 접속/충돌 회피, 송신기, 수신기

Description

가속 백오프 기능을 포함하는 무선 랜 송신 스케줄러{WLAN TRANSMIT SCHEDULER COMPRISING AN ACCELERATED BACK-OFF FUNCTION}
본 발명은 반송파 감지 다중 접속/충돌 회피(CSMA/CA) 시스템에 관한 것이며, 구체적으로 본 발명은 이러한 시스템에서 단말과 단말을 위한 송신 스케줄러에 관한 것이다.
무선 랜과 같은 임의의 반송파 감지 다중 접속/충돌 회피(CSMA/CA) 네트워크에서는 송신할 때와 송신하지 않을 때를 제어할 수 있어야 한다. 이것은 사용된 매체를 감시하고 있다가 그 매체를 아무도 사용하지 않을 때 송신하는 것을 시도함으로써 달성된다.
이러한 유형의 접속 방법에서 한 가지 중요한 기능은 백오프 기능(Back-off function)이다. CA(충돌 회피) 시스템에서, 송수신기/송신기(TX) 스케줄러가 하는 일은 공유 매체를 감시하고 그 감시에 근거하여 그 스테이션의 송신 기회를 찾아내는 것이다.
802.11 네트워크에서, 즉 IEEE 표준 802.11에 따른 네트워크 지원 및 작업에서, 송수신기/송신기 TX 디스패처(dispatcher)(즉, TX 스케줄러)는 다음의 사항을 고려해야 한다:
- 비(非) 802.11 스테이션(예를 들어, 전자 레인지나 블루투스 기기)에서 시작되는 매체에 대한 에너지 검출.
- 그외 802.11 스테이션으로부터의 송신.
TX 디스패처는 위의 실체(entity)들을 입력으로 취하는 개념상의 상태 기계를 구성한다. 채널상의 물리적 이벤트(physical events)와 각각의 상기 물리적 이벤트와 관련된 타임스탬프(timestamp)를 종합하고, 다른 스테이션에서 보낸 무선 메시지들의 내용을 검토함으로써, TX 디스패처는 계류 중인 송신을 공유 매체에 언제 배정(dispatch)할 것인지를 결정한다.
IEEE 802.11 표준에는 스테이션이 송신을 위해 매체에 언제 액세스할 수 있는지를 엄격하고 명료하게 제어하는 일련의 규칙이 정의되어 있다. 이 일련의 규칙에 따른 문제점은 결정 로직(decision logic)은 CPU 처리를 필요로 할 정도로 복잡해지고, 한편 타이밍 조건(timing requirements)은 하드웨어 처리에 더 적합할 정도로 어렵다는 것이다.
결정 로직의 복잡성 때문에 802.11 칩의 제조업자가 TX 디스패처 상태 기계를 소프트웨어만으로 구현하도록 선택하는 것은 몹시 힘든 과제이다.
그렇지만, 실제로 매체(채널)의 시간 진행(time course)은 다양한 방법으로 세분화되는 데, 이에 따라 상기 전송 표준을 실현하는 소프트웨어를 설계하는 데는 심각한 문제가 야기된다.
상태 기계를 소프트웨어로 구현하는 데 불리한 점은 다음과 같다:
- CPU가 초단파 이벤트(very high-frequency events)를 취급하므로 전력 소 모가 증가한다.
- CPU의 성능 요건이 증가한다(더 높은 클록 주파수(=보다 큰 전력 소모) 또는 더욱 향상된 CPU(=더욱 고가의 솔루션)가 요구된다).
위에서 알 수 있는 바와 같이, 이것은 소프트웨어 관점에서 보면 단순한 작업이지만, 매우 빈번하게 간섭이 일어날 수 있고 시간 불확실성이 많이 존재한다.
전술한 문제를 해결하기 위해, 종래 기술에서는 전체 TX 스케줄러 상태 기계를 2개의 상이한 상태 기계로 분할하는 것이 제안되었는데, 즉, 소프트웨어로 실행되는 하나의 제1 TX 송신 스케줄러 상태 기계(FTSM)와, 하드웨어로 실행되는 하나의 제2 TX 송신 스케줄러 상태 기계(STSM)로 나뉘어지며, 상기 제1 TX 송신 스케줄러 상태 기계는 상기 제2 송신 TX 스케줄러 상태 기계를 제어하고 관리한다.
특허출원 WO01/86434 A2에는 블루투스 프로토콜과 같은 통신 프로토콜을 실행하는 상태 기계에 대해 도시되어 있다. 또한, 동기 시분할 듀플렉스(TDD) 방식도 설명되어 있는데, 여기서 결정 및 상태 천이가 특정한 시점에서 기간적으로 이루어진다. 상기 문헌은 동기 시스템에 대해서만 설명하고 있을 뿐이므로 공유 매체에서의 충돌 회피가 필수인 동기 시스템에는 적용할 수 없다.
특허출원 EP 1 333 620 A2에는 단일의 하드웨어 백오프 카운터로 복수의 백오프 카운터를 실행하는 방법에 대해 서술되어 있다. 상태 천이가 이루어지면, 소프트웨어나 하드웨어는 백오프 카운터 값들을 조정하고 비교한다.
그렇지만, 상기 기존의 방법 및 시스템은 복잡한 하드웨어 및 소프트웨어 솔루션을 필요로 하기 때문에 상당히 복잡하고, 오랜 CPU 시간 및 배터리 전력을 소 모한다.
본 발명은 또한 일반적으로 소프트웨어로 실행되는 하나의 제1 TX 스케줄러 상태 기계(FTSM) 유닛과, 하드웨어로 실행되는 하나의 제2 TX 스케줄러 상태 기계(STSM) 유닛의 2개의 상이한 상태 기계로 나뉘어지는, 전체 송신(TX) 스케줄러 상태 기계로서 설명될 수 있다. 2개의 상태 기계 사이의 기능적 구분(functional partitioning)은 상기 STSM 유닛에는 가장 제약된 실시간 요건(most-constrained real-time requirements)이 할당되고 상기 FTSM에는 모든 복합 결정(all complex decisions) 및 비 시간-임계 제어(non time-critical controls)가 할당되는 것으로 구분된다.
상기 STSM 유닛은, 4개의 기본 상태 중 어느 한 상태에서 동작하거나 상기 4개의 기본 상태 사이를 전환할 수 있는 STSM 제어기(255)를 포함하며, 상기 4개의 기본 상태에서, 제1 상태(상태 1)는 전체 백오프 기간이 경과되었을 때 존재하고, 제2 상태(상태 2)는 상기 통신 매체가 비지 채널(BC)로 표시될 때 존재하고, 제3 상태(상태 3)는 보호 기간(DIFS) 동안 존재하며, 제4 상태(상태 4)는 백오프 기간이 측정 또는 카운트되는 동안 존재한다.
본 발명의 한 목적은 종래의 솔루션만큼 복잡하지 않은 조합된 소프트웨어 및 하드웨어 솔루션을 제공하는 것이며, 상기 하드웨어 솔루션에 의해 더욱 소형의 CPU를 사용할 수 있고 또한 필요한 CPU 처리 시간을 줄일 수 있으며 이에 따라 전력 소모를 상당히 감소시킬 수 있다.
본 발명은 독립청구항 제1항 및 제11항에 개시된 특징에 의해 정의된다.
첨부된 종속항 제2항 내지 제10항에 의해 양호한 실시예가 한정된다.
이하의 소프트웨어에 의해 관리되는 하드웨어에 따른 이점들 중 한 이점에 의하면, 본 발명에서는 소형의 CPU를 사용하여 필요한 CPU 처리 시간을 줄임으로써 전력 소모를 상당히 감소할 수 있다. 하드웨어 솔루션이 복잡하지 않고 CPU도 소형화되고 단순해짐에 따라 각 유닛의 제조 비용도 감소될 것이다.
도 1은 무선 통신용 단말(100)에 대한 개략적인 블록도이다.
도 2는 고안된 Tx 스케줄러(200)의 실시예를 포함하는 단말을 개략적으로 나타내는 블록도이다.
도 3은 CCA 신호의 예를 나타내고 있으며, 백오프 기간 및 송신 기간이 어떻게 실시간으로 제어되는지를 나타내는 도면이다.
도 4는 본 발명의 실시예에서 상태 기계 제어기들 중 하나의 동작을 나타내는 상태 차트이다.
도 1은 무선 랜과 같은 임의의 반송파 감지 다중 접속/충돌 회피(CSMA/CA) 네트워크에서 무선 통신용 단말(100)의 블록도를 개략적으로 도시하고 있다. 단말(100)은 무선 송신기(Tx) 유닛(110) 및 무선 수신기(Rx) 유닛(115)을 포함하며, 상기 두 유닛은 예를 들어 공통 스위치 및/또는 필터(125)를 통해 단말 안테나(120)에 연결되어 있다. 개별의 송신기 유닛 및 수신기 유닛 대신 공통의 송수 신기 유닛을 사용할 수도 있다. 상기 단말은 또한 데이터 버스를 통해 Tx 유닛(110) 및 Rx 유닛(115)을 제어하는 중앙 처리 장치(CPU)(130)를 포함한다. 상기 단말은 또한 일련의 다른 단말 유닛(OTU)(135), 및 사람-기계 인터페이스(MMI)나 필터 등과 같은 기능 회로를 포함하며, 이것들 중 일부는 상기 CPU(130)에 연결되고/거나 상기 CPU에 의해 제어된다.
OTU(135)는 Tx 유닛(110)에 정보를 공급하고 상기 Tx 유닛(110)은 상기 정보를 하나 이상의 반송파에 대해 변조하고 그 변조된 정보 신호를 증폭한 후, 에어 인터페이스를 통해 하나 이상의 수신 단말에 송신하기 위한 안테나(120)에 공급한다. 변조된 정보 신호는 안테나(120)에 의해 수신된 다음 Rx 유닛(115)에 공급되며 상기 Rx 유닛은 상기 정보 신호를 복조한다. 복조된 정보 신호는 OTU 블록(135)에 공급되어 추가 처리된다.
상기 정보는 데이터 패킷으로 전송된다. 상기 데이터 패킷은 선택된 채널을 통해 전송된다. 상기 선택된 채널은 아이들(idle) 상태에 있어야 하며 따라서 단말(100)은 다른 단말들로부터 전송되는 데이터 패킷의 트래픽을 감시하여야 한다. 전술한 바와 같이, 송수신기/송신기 TX 디스패처는 다음의 사항을 고려해야 한다:
- 비(非) 802.11 스테이션(예를 들어, 전자 레인지나 블루투스 기기)에서 시작되는 매체에 대한 에너지 검출.
- 그외 802.11 스테이션으로부터의 송신.
이러한 유형의 액세스 방법은 반송파 감지 다중 접속/충돌 회피(CSMA/CA) 시스템 및 백오프 기능을 포함한다. CSMA/CA 시스템에서, 송수신기/송신기(TX) 스케 줄러가 하는 일은 공유 매체를 감시하고 그 감시에 근거하여 그 자신의 스테이션/단말의 송신 기회를 찾아내는 것이다.
스케줄러에의 입력들은 다음과 같은 소스와 관련되어 있다:
1. 베이스밴드 송신기/송수신기(BB-TX) 유닛(110);
2. 베이스밴드 수신기(BB-RX) 유닛(115);
3. 네트워크 할당 벡터(NAV) 타이머 유닛(140);
4. 무선 주파수(RF) 에너지 검출 유닛(115*)
상기 입력들은 CCA 신호를 생성하는 클리어 채널 평가(clear channel assessment)(CCA) 유닛(145)에 의해 처리되며, 상기 CCA 신호는 TX 스케줄러(150)에 공급되어 CPU(130)의 제어 하에 백오프 기능에 의해 처리된다.
이러한 입력들은 IEEE 802.11 표준에 의해 정의된 일련의 규칙에 따라 처리되며, 상기 규칙은 스테이션이 전송을 위하여 매체에 액세스할 때, 즉 Tx 유닛이 데이터 패킷을 차례로 보낼 수 있는 그 시점을 엄격하고 명료하게 제어한다. TX 스케줄러(150)는 통상적으로 소프트웨어 상태 기계로서 구현된다. 이러한 일련의 규칙에 따른 문제점은 오랜 CPU 시간 및 배터리 전력을 소모하는 많은 CPU 처리를 요구하는 복잡한 처리가 필요하다는 것이다. 또한, (RF 에너지 검출에 의해 검출되는) 채널 트래픽 및 노이즈 상황으로 인해 CPU 처리시 인터럽트가 끊임 없이 야기된다.
도 2에는, 도 1에 150으로 표시된, 고안된 Tx 스케줄러(200)의 실시예를 포 함하는 단말이 도시되어 있다. 상기 TX 스케줄러는, 단말 CPU(130) 내에서 소프트웨어 프로그램으로서 실행되는 하나의 제1 송신 스케줄러 상태 기계(FTSM)(230a) 유닛과, 하드웨어 로직 회로로 실행되는 하나의 제2 송신 스케줄러 상태 기계(STSM) 유닛(230b)의 2개의 상이한 상태 기계를 포함하는 상태 기계로서 설명될 수 있다. 2개의 상태 기계 사이의 기능적 구분(functional partitioning)은 상기 STSM 유닛(230b)에는 가장 제약된 실시간 요건(most-constrained real-time requirements)이 할당되고 상기 FTSM(230a)에는 모든 복합 결정(all complex decisions) 및 비 시간-임계 제어(non time-critical controls)가 할당되는 것으로 구분된다.
본 발명은, 클리어 채널 평가(CCA) 유닛(245)을 포함하며, 상기 클리어 채널 평가 유닛은, 이하의 소스 중 하나 이상으로부터 검색되는 입력들에 의해 상기 STSM 유닛(250)에 CCA 신호를 생성한다:
1. 베이스밴드 송신기(BB-TX) 유닛(210);
2. 베이스밴드 수신기(BB-RX) 유닛(215);
3. NAV 타이머 유닛(240);
4. 무선 주파수(RF) 에너지 검출 유닛(215*)
시간 기간 동안 CCA 신호의 시간상의 진폭 변화의 예가 도 3에 도시되어 있다. CCA 신호의 레벨이 하이(high)이면 선택된 채널은 아이들 상태이고, 레벨이 로우(low)이면 채널은 비지(busy) 상태이다. 채널 상태가 비지 상태에서 아이들 상태로 변화할 때마다, 도 3에 DIF로서 표시된 보호 기간(guard period) DIFS가 시작된다. 보호 기간 DIFS(Distributed Inter-Frame Space)가 끝날 때, 또는 채널 베이스밴드에서 무선 주파수 신호가 검출되어 간섭받게 되면, 백오프 기간이 시작하게 되고, 백오프 기간이 완료될 때까지, 진행된다. 총 백오프 기간 Btot가 경과한 후에 단말은 데이터 패킷 송신을 시작한다. 10, 20, 30 및 40으로 표시된 시간 기간 동안, CCA 기능은 채널이 비지 채널(BC) 상태임을 나타낼 것이다. 15, 25, 35 및 45로 표시된 시간 기간 동안, CCA 기능은 채널이 아이들(NB) 상태임을 나타낼 것이다. CCA 신호가 비지 상태에서 아이들 상태로 전환할 때마다, DIFS 보호 기간이 시작하고 이 DIFS 기간이 경과하면, 총 백오프 기간의 카운트(또는 측정)가 시작된다. 그렇지만, 도 3에 표시된 바와 같이, 총 백오프 기간의 카운트는 아이들 상태로부터 비지 상태로의 CCA 신호의 전환에 의해 간섭받을 수 있다. 총 백오프 기간의 카운트는 이전 시간에 중지되었던 값에서 시작될 것이다. 백오프 기간은 총 백오프 기간 값에서 종료될 때까지 그 시작 값으로 리로드되지 않을 것이다. B1, B2, B3, B4는 총 백오프 기간의 부분 기간(sub-period) 또는 부분 구간(sub-interval)을 나타내는 데, 즉 백오프 하부 기간의 합 Bi, B1+B2+B3+B4는 이 경우에 총 백오프 기간 Btot가 될 것이다. 더욱 일반적으로, 이것은 ΣBi = Btot로 쓸 수 있다. 총 백오프 기간이 표시될 때, 송신될 송신기 대기행렬에 임의의 데이터 프레임(들) 또는 데이터 패킷(들)이 있으면, 베이스밴드 송신기는 송신 신호를 수신하게 될 것이다. 송신 기간(50) 동안, 상기 패킷들은 송신되고 채널은 비지 상태로 될 것이다. 송신이 종료되면, CCA 기능은 비지 상태에서 아이들 상태로 변화될 것이고, 송신될 임의의 패킷이 있든 없든 간에 보호 기간 및 백오프 기간의 새로운 시퀀스가 시작될 것이다. 본 발명에 따른 스케줄러는 전술한 원리에 따라 지속적으로 운용될 것이다.
본 발명에 따르면, 백오프 기간 Btot 및 보호 기간 DIFS는 도 2를 참조하여 설명될 하드웨어 로직 회로에 의해 확립될 것이다.
다시 도 2를 참조하면, 본 발명은, 제1 및 제2 카운터와 제2 TX 스케줄러 상태 기계(STSM) 제어기(255)를 포함하는 STSM 유닛(230b)의 상기 STSM 제어기(255)에 CCA 신호를 생성하는 클리어 채널 평가(CCA) 회로(245)를 포함하며, 상기 제1 및 제2 카운터는 상기 STSM 제어기(255)의 개별 입력에 접속되어 있다. 그러므로 2개의 카운터(260, 265)로부터의 출력 신호는 STSM 제어기(255)에 공급된다. 상태 기계는 제어 버스들(270a 및 270b) 상의 제어 신호에 의해 각각의 카운터를 각각 제어한다. 도시된 바와 같이, 각각의 제어 신호는 제어 버스를 통해 카운터(260, 265)의 앤드 게이트(261, 266)에 공급되도록 되어 있으며, 각각의 앤드 게이트(261, 266)는 각각의 카운터(260, 265)의 입력에 접속되어 있다. 제어 신호는 중지 신호 및 인에이블링 신호로서 작동하여, 클록 신호(262)가 카운터들에 각각 입력되거나 중지되도록 한다. 카운터들 역시 제어 버스(271a 및 271b)를 통해 FTSM(230a)에 의해 단말의 시동(start-up) 시에만 제어된다.
제1 카운터(261)는 미리 결정된 보호 기간(DIFS)을 측정하는 데 사용되며 CCA 기능이 '채널 비지'를 신호하자마자 그 시작 값이 리로드된다. 이 카운터는 이하의 설명에서는 보호 기간 카운터(GPC)(261)로서도 서술된다. STSMC(255)는 리로드 값 유닛(275)에 대하여 리로드 신호를 생성할 수 있으며, 상기 리로드 값 유닛(275)은 버스(272)를 통해 GPC(260)를 리로드하여 GPC(260)를 활성화시킬 수 있다.
제2 카운터(266)는 백오프 카운터로서 사용되며, GPC(260)이 제로에 이르자마자 제로로 카운트다운된다. 제2 카운터(266)는 채널 비지 상태에서 리로드되지 않는다. 제2 카운터(266) 역시 이하의 설명에서는 백오프 기간 카운터(BPC)로서도 서술된다. 이 카운터의 디폴트 값은 제로로 설정될 수 있다. 제로가 아닐 때만 카운트다운 된다(싱글 샷 카운터(single shot conuter)).
STSM 제어기(255)는 채널/매체가 아이들 상태인지 비지 상태인지에 따라 상이한 상태에 있게 된다. 채널이 자유 상태이고, 즉 채널이 다른 단말이나 마이크로웨이브 소스(microwave sources)가 송신하는 것과는 상관 없는 상태이고, CCA 신호가 아이들 상태를 나타낼 때, STSM 제어기(STSMC)(255)는 3가지 상태, 즉 대기_보호 상태(Wait_guard state), 대기_백오프 상태(Wait_backoff state) 또는 아이들_채널 상태(Idle_channel state) 중 한 상태에 있게 된다. STSM은 채널 상에 다른 활동(activity)이 없는 한, 아이들 상태라 칭하기도 하는, 제1 상태를 유지한다. 베이스밴드 채널을 통해 하나의 데이터 패킷이나 데이터 프레임이 송신될 준비가 되어 있는 때는 어떠한 특정한 지연 없이 송신될 것이다. 그러나 다른 단말의 송신에 의하여 채널이 점유되면, 즉 채널이 비지 상태이고 CCA 신호가 비지 상태를 나타내면, STSM 제어기(255)는 그 대기_자유 상태(Wait_free state)로 될 것이다.
STSMC(255)가 비지 채널을 나타내는 CCA 신호를 수신하면, STSMC(255)는 아이들_채널 상태에서 대기_자유 상태인 제2 상태로 변화한다. 이 제2 상태에서, STSMC(255)는 CCA 신호를 감시한다. STSMC(255)는 CCA 신호가 비지 채널(BC) 상태를 나타내고 있는 한 제2 상태를 유지한다.
CCA 신호가 BC에서 아이들(NB)로 전환하면, STSMC(255)는 대기_자유 상태에서 대기_보호 상태인 제3 상태로 변화하고, 제어 버스(270a)를 통해, 보호 기간 카운터(GPC)(260)가 운용되게 하는 개시_카운팅(start_counting)에 보호 기간 카운터 제어 신호를 설정한다. 카운터(260)가 간섭받지 않는 경우에는, 중지하여 그리고 경과된_보호_기간 신호(lapsed_guard_period signal)를 STSMC(255)에 생성하기 전에, 카운터(260)는 DIFS라고도 칭하는 보호 기간의 길이를 운용하도록 설정된다.
CCA 신호가 NB에서 BC로 전환되면, STSMC(255)는 대기_보호 상태인 제3 상태에서 대기_자유 상태인 제2 상태로 변화하고, STSMC(255)는 제어 버스(270a)를 통해, 보호 기간 카운터(260)가 카운트하는 것을 중지하게 하는 중지_카운팅(stop_counting)으로 GPC 제어 신호를 설정한다. 또한, STSMC(255)는 보호 기간 카운터(260)에 보호 기간의 시작 값을 리로드하기 위해 리로드 값 유닛(275)에 제어 신호를 보낸다.
STSMC(255)는 CCA 신호가 BC에서 NB로 전환할 때까지 제2 상태를 유지한다.
그렇지만, CCA 신호가 전체 보호 기간 동안 NB를 나타내고 있다면, GPC(260)는 전술한 바와 같이 DIFS 기간이 경과하였음을 나타내는 경과된_보호_기간 신호를 STSMC(255)에 생성한다. 보호 기간이 경과하면, STSMC(255)는 대기_백오프 상태인 다음의 제4 상태로 전환된다. STSMC(255)는 또한 제어 버스(270b)를 통해, 백오프 기간 카운터(BPC)(265)가 시작하고, BPC 제어 신호가 카운트를 표시하며 백오프 기간 카운터(265)가 백오프 기간이 완료되었음을 나타내는 그 중지 값에 도달되지 않는 한 BPC(265)가 계속 실행되는 것을 카운팅하도록 카운트를 계속하는, 카운팅(counting)으로 백오프_기간_카운터_제어 신호를 설정한다.
STSMC(255)는 CCA 신호가 NB에서 BC로 전환하면 BPC 제어 신호를 카운팅에서 중지_카운팅으로 전환한다.
BPC(265)가 간섭받지 않는 경우, BPC(265)는 총 백오프 기간을 운용할 것이다. 백오프 기간의 끝에 도달하면, BPC(265)는 백오프 기간이 완료되었음을 나타내는 경과된_백오프_기간_신호를 STSMC(265)에 생성한다.
경과된_백오프_기간_신호가 백오프 기간이 종료되었음을 나타내고 경과된 보호 기간 신호가 보호 기간이 종료되었음을 나타내며 CCA 신호가 NB를 표시하면, STSMC(255)는 백오프_아이들을 나타내는 신호를 송신 제어 스위치(280)에 생성한다. STSMC(255)는, CPU(230a)에 의해 제어되는 송신 제어 스위치(280)가 시그널링이 송신 유닛(110, 210)에 의해 수신될 수 있도록 설정되어 있으면, 송신 유닛(110, 210)에 시그널링을 보내어 대기 행렬 데이터 정보를 송신할 수 있다. CPU(230a)에 의해 제어되는 송신 제어 스위치(280)는 송신할 데이터 정보가 없으면 송신 유닛(110, 210)에 상기 시그널링을 보내는 것을 차단하도록 설정된다.
그렇지만, 백오프 기간 및 BPC(265)가 운용되는 시간 동안 CCA 신호가 비지 상태로 변화하면, STSMC(255)는 반대로 제4 상태에서 대기_자유 상태인 제2 상태로 변화한다. STSMC(255)는 백오프 카운터(265)를 간섭하는 중지_카운팅에 BPC 제어 신호를 설정함으로써 BPC(265)를 일시적으로 간섭한다. GPC(260)와는 달리, BPC(265)는 카운트 인터럽션(count interruption)에서 리로드되지 않는다. BPC(265)는 그 인터럽션의 순간에 카운터 값을 세이브한다(및/또는 저장한다). 이 인터럽션 카운터 값은 BPC 제어 신호가 STSMC(255)에 의해 개시_카운팅으로 전환될 때, BPC의 시작 값이다. 그렇지만, STSMC(255)가 다시 대기_백오프 상태인 제4 상태로 될 때까지는 BPC 제어 신호는 개시_카운팅으로 전환하지 않는다. STSMC(255)는 대기_보호 상태인 제3 상태를 통과하고 실행하여야 하고, GPC(260)는 전술한 바와 같이, 보호 기간 DIFS가 경과하였음을 나타내는 경과된_보호_기간 신호를 STSMC(255)에 생성하여야 한다.
전술한 바와 같이, 총 백오프 기간이 경과되었을 때, 즉 BPC가 중지 값에 도달하였을 때, BPC는 경과된_백오프_기간 신호를 상태 기계 STSMC(255)에 생성하며, 이 상태 기계 STSMC(255)는 백오프_아이들의 신호를 송신 제어 스위치(280)에 보내며, 상기 송신 제어 스위치(280)는 상기 신호를 송신기에 보내고 상기 송신기는 상기 신호를 송신하거나 차단한다. STSMC(255)는 제1 상태인 아이들 상태로 복귀하고, 이 상태에서 STSMC는 CCA 신호를 감시한다.
본 발명의 전술한 실시예에서, TX 스케줄러는 통신 매체를 통해 송신되는 데이터 프레임 또는 패킷의 하나의 싱글 대기 행렬을 공급하는 것에 대해서만 서술하였다. 그렇지만, N개의 상이한 데이터 패킷 대기 행렬을 송신해야 하는 다른 실시 예에서는, 각각의 대기 행렬이 공급될 하나의 STSM 유닛(230b)을 추가하고 각각의 STSM 유닛을 CPU에 접속하기만 하면 된다. CPU는 전술한 제어 신호를 수신하여 각각의 STSM 유닛에 설정하도록 업그레이드 될 것이다.
도 4에는, 본 발명의 실시예에서 STSMC(255)의 동작을 나타내는 상태 차트가 도시되어 있다.
본 예에서는 STSMC(255)가 그 아이들_채널 상태인 상태 1에 있을 때 동작이 시작된다. 아이들_채널 상태에서, STSMC는 대기하고 있다가 CCA 유닛(145, 245)으로부터 CCA 신호가 오는지를 감시한다. 비지_채널을 나타내는 CCA 신호가 수신되면, STSMC(255)는 대기_자유 상태인 상태 2로 변화한다. CCA 신호가 BC에서 NB로 변화하면, STSMC는 대기_보호 상태인 상태 3으로 변화하여 GPC 제어 신호를 개시_카운팅에 설정함으로써 보호 기간 카운터(260)를 개시한다. 상태 3에서, STSMC는 CCA 신호 및 경과된_보호_기간 신호에 대한 GPC(260)로부터의 출력을 지속적으로 감시한다. 상기 경과된_보호_기간 신호가 설정되기 전에 CCA 신호가 BC로 변화되면, GPC(260)는 중지되고 리로드되어 STSMC는 상태 2로 복귀한다.
CCA 신호가 BC에서 NB로 변화하고 새로운 보호 기간이 시작되면 STSMC는 상태 3으로 복귀한다. 경과된_보호_기간 신호가 설정되기 전에 CCA 신호가 BC로 변화하지 않고, STSMC(255)가 경과된_보호_기간 신호를 수신하면, 보호 기간은 종료된다. STSMC는 대기_백오프 상태인 상태 4로 변화하고, 개시_카운팅으로 BPC 제어 신호를 설정한다. 상태 4에서, STSMC는 CCA 신호 및 경과된_백오프_기간 신호에 대한 BPC(265)로부터의 출력을 지속적으로 감시한다. CCA 신호가 백오프 기간 동 안 갑작스럽게 BC를 표시하면, STSMC는 대기_백오프 상태인 상태 4에서 대기_자유 상태인 상태 2로 변화하고, BPC(265)는 (백오프 기간이 끝날 때까지의 잔여 시간을 나타내는) 현재의 카운터 백오프 기간 값에서 중지되며, 개시_카운팅 신호가 다시 수신되면 (STSMC가 상태 4로 되돌아가면) 다시 시작하고, GPC(260)는 리로드된다. CCA 신호가 BC에서 NB로 변화하고 새로운 보호 기간이 시작되면 STSMC는 대기_자유 상태에서 대기_보호 상태인 상태 3으로 변화한다. STSMC(255)가 상태 3에 있고 경과된_보호_기간 신호가 설정되기 전에 CCA 신호=BC를 수신하지 않는다면, STSM 제어기는 상태 4로 진행하여 현재의 카운터 백오프 기간 값으로부터 백오프 기간 카운팅을 시작한다.
STSMC(255)가 그 대기_백오프 상태에서, 경과된_백오프_기간 신호를 수신하면, 백오프_기간은 종료되고 STSMC(255)는 대기_백오프 상태에서 아이들 상태인 상태 1로 변화하고, STSMC(255)는 백오프_아이들 신호를 제어 스위치(280)에 보냄으로써 송신기(110, 210)는 저장된 데이터 패킷이나 데이터 프레임을 송신하게 된다. CCA 신호가 NB에서 BC로 변화하고 전술한 동작 단계들이 다시 실행될 때까지 STSMC(255)는 아이들_채널 상태인 상태 1에 머물러 있게 된다.
본 발명에 따르면, STSMC의 전술한 동작은 하드웨어 로직 회로에 의해 달성될 수 있으며, 동작 단계에서의 전술한 측정치는 암호화된다. FTSM에서의 필요한 소프트웨어 코드는 로드되거나 프로그램되어 디지털 메모리 저장부에 저장되고 이 디지털 메모리 저장부로부터 상기 코드는 마이크로프로세서, CPU, 디지털 처리 유닛 등에 액세스할 수 있다.
당업자는 프로그래밍 언어 VHDL(Virtual Hardware Definiton Language) 및 로직 회로를 구현하기 위한 대응하는 구현 도구를 이용하여 STSMC(255)를 설계하고 구현할 수 있다.
예로서, 본 발명에 따라 STSMC(255)를 구현하기 위한 VHDL에서의 코드를 다음과 같이 쓸 수 있다:
Figure 112007073264823-PCT00001
4가지의 전술한 기본 상태 내에서 동작하도록 STSMC가 설계되어 있는 전술한 본 발명에 따른 송신 스케줄러를 사용함으로써, 단말 기기의 CPU를 동작시키는 소 프트웨어를 반드시 줄일 수 있고 이에 따라 단말의 전력 소모를 현저하게 감소시킬 수 있다. 예를 들어, 복수의 백오프 카운터를 구현하기 위한 종래의 방법을 종래의 EP 1 333 620에 개시되어 있는 단일의 하드웨어 백오프 카운터로 수행하는 데는 매우 강력한 전력 소모형 CPU가 필요하다는 것은 쉽게 이해할 수 있을 것이다.
단지 4가지의 기본 상태만이 요구될 때, 종래의 문헌에서 필요한 하드웨어 회로는 본 발명에 의해 제공된 하드웨어 회로에 비해 상당히 훨씬 더 복잡하다.
본 발명의 일실시예에서, 제1 송신 스케줄러 상태 기계(FTSM, CPU, 231)는 몇 가지의 관점에서 특히 단말을 개시할 때, 제2 송신 스케줄러 상태 기계(STSM) 유닛(230b)를 제어하고 관리할 수 있다. 그렇지만, 양호한 실시예에서, STSM 제어기(STSMC, 255)는 FTSM(231)의 어떠한 간섭 없이 운용된다.
본 발명은 전술한 양호한 실시예에 제한되지 않는다. 다양한 변형, 수정 및 등가물을 사용할 수 있다. 예로서, 하나 이상의 다른 상태가 본 발명에 따른 상태 기계 STSMC에 부가되면, 그러한 동작은 단순한 변형으로 간주되고 본 발명의 범주 내의 실시예에서 가능하다. 그러므로 전술한 실시예는 본 발명의 범주를 제한하는 것이 아니며, 본 발명의 범주는 첨부된 청구의 범위에 의해 한정된다.

Claims (11)

  1. 반송파 감지 다중 접속/충돌 회피(CSMA/CA) 네트워크에서 데이터 정보를 송수신할 수 있는 단말 기기용 송신 스케줄러에 있어서,
    상기 단말 기기는,
    중앙 처리 장치(CPU), 상기 CPU에 의해 실행되는 소프트웨어 프로그램을 저장하는 소프트웨어 프로그램 저장 수단, 무선 주파수 채널과 같은 상기 CSMA/CA 네트워크 내의 통신 매체를 통해 데이터 정보를 송신하는 송신 유닛(110, 210), 및 무선 주파수 채널과 같은, 상기 CSMA/CA 네트워크 내의 통신 매체를 통해 데이터 정보를 수신하는 수신 유닛을 포함하며,
    상기 송신 스케줄러는,
    하나의 제1 송신 스케줄러 상태 기계(FTSM, CPU, 231) 유닛과, 하드웨어 로직 회로에서 실행되는 하나의 제2 송신 스케줄러 상태 기계(STSM) 유닛의 2개의 상이한 상태 기계로 나뉘어지고,
    상기 2개의 상태 기계 유닛 간의 기능적 구분(functional partioning)은 상기 STSM 유닛에는 가장 제약된 실시간 요건(most-constrained real-time requirements)이 할당되고 상기 FTSM에는 모든 복합 결정(all complex decisions) 및 비 시간-임계 제어(non time-critical controls)가 할당되는 것으로 구분되며,
    상기 STSM 유닛(230b)은, 4개의 기본 상태 중 어느 한 상태에서 동작하거나 상기 4개의 기본 상태 사이를 전환할 수 있는 STSM 제어기(255)를 포함하며,
    상기 4개의 기본 상태에서, 제1 상태(상태 1)는 전체 백오프 기간이 경과되었을 때 존재하고, 제2 상태(상태 2)는 상기 통신 매체가 비지 채널(BC)로 표시될 때 존재하고, 제3 상태(상태 3)는 보호 기간(guard period)(DIFS) 동안 존재하며, 제4 상태(상태 4)는 각각 백오프 기간이 카운트되는 동안 존재하는, 송신 스케줄러.
  2. 제1항에 있어서,
    상기 STSM 제어기(STSMC, 255)는 FTSM(231)의 어떠한 간섭 없이 실행되는 것인, 송신 스케줄러.
  3. 제2항에 있어서,
    상기 STSM 유닛은, 미리 결정된 보호 기간(DIFS)을 측정하고 상기 미리 결정된 보호 기간이 경과하였을 때 신호를 상기 STSMC로 공급하는, 제1 카운터 및 보호 기간 카운터(GPC)(260)를 포함하는, 송신 스케줄러.
  4. 제2항 또는 제3항에 있어서,
    상기 STSM 유닛은, 미리 결정된 백오프 기간(Btot)를 측정하고 상기 미리 결정된 백오프 기간이 경과하였을 때 상기 STSMC에 신호를 공급하기 위해, 제2 카운터 및 백오프 기간 카운터(265)를 포함하는, 송신 스케줄러.
  5. 제4항에 있어서,
    상기 STSM 유닛은, 클리어 채널 할당(clear channel allocation)(CCA) 유닛(145, 245)에 접속되고, 상기 클리어 채널 할당 유닛은, 상기 통신 매체를 감시할 수 있고 상기 통신 매체가 비지(BC)인지 아이들(NB)인지를 나타내는 클리어 채널 할당(CCA) 신호를 생성하여 상기 CCA 신호를 상기 STSM 제어기에 송신하는 것인, 송신 스케줄러.
  6. 제5항에 있어서,
    상기 CCA 유닛은,
    a. 베이스밴드 송신기(BB-TX) 유닛(210);
    b. 베이스밴드 수신기(BB-RX) 유닛(215);
    c. NAV 타이머 유닛(240);
    d. 무선 주파수(RF) 에너지 검출 유닛(215*)
    에 의해 생성된 입력들 중 하나 이상을 처리할 수 있는 것인, 송신 스케줄러.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 FTSM(231)은 프로그램 소프트웨어로 실행되며,
    상기 프로그램 소프트웨어는 상기 CPU(230a)에 의해 실행 가능하고 프로그램 소프트웨어 저장부에 저장될 수 있는 프로그램 소프트웨어 코드를 포함하는 것인, 송신 스케줄러.
  8. 제3항 내지 제7항 중 어느 한 항에 있어서,
    상기 STSMC(255)는, 상기 GPC(260)를 리로드하여 상기 GPC를 활성화시킬 수 있는 리로드 신호(reloading signal)를 리로드 값 유닛(reload value unit)(275)에 생성할 수 있는, 송신 스케줄러.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 STSMC(255)는, 상기 송신 유닛(110, 210)이 시그널링을 수신할 수 있도록 상기 CPU(230a)에 의해 제어되는 송신 제어 스위치(280)가 설정되어 있는 경우, 상기 송신 유닛(110, 210)에 상기 시그널링을 보내어 대기 행렬 데이터 정보(queued data information)를 송신할 수 있는, 송신 스케줄러.
  10. 제9항에 있어서,
    상기 CPU(230a)에 의해 제어되는 상기 송신 제어 스위치(280)는, 송신될 데이터 정보가 없는 경우 상기 송신 유닛(110, 210)에 상기 시그널링을 보내는 것을 차단하도록 설정되는, 송신 스케줄러.
  11. 반송파 감지 다중 접속/충돌 회피(CSMA/CA) 네트워크에서 데이터 정보를 송수신할 수 있는 단말 기기에 있어서,
    중앙 처리 장치(CPU), 상기 CPU에 의해 실행되는 소프트웨어 프로그램을 저장하는 소프트웨어 프로그램 저장 수단, 무선 주파수 채널과 같은, 상기 CSMA/CA 네트워크 내의 통신 매체를 통해 데이터 정보를 송신하는 송신 유닛(110), 및 무선 주파수 채널과 같은, 상기 CSMA/CA 네트워크 내의 통신 매체를 통해 데이터 정보를 수신하는 수신 유닛을 포함하며,
    제1항 내지 제10항 중 어느 한 항에 따른 송신 스케줄러를 포함하는 단말 기기.
KR1020077023437A 2005-03-14 2006-03-14 가속 백오프 기능을 포함하는 무선 랜 송신 스케줄러 KR101226581B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US66136005P 2005-03-14 2005-03-14
SE0500588-9 2005-03-14
US60/661,360 2005-03-14
SE0500588 2005-03-14
PCT/SE2006/000332 WO2006098688A1 (en) 2005-03-14 2006-03-14 Wlan transmit scheduler comprising an accelerated back-off function

Publications (2)

Publication Number Publication Date
KR20070119036A true KR20070119036A (ko) 2007-12-18
KR101226581B1 KR101226581B1 (ko) 2013-01-28

Family

ID=36991973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077023437A KR101226581B1 (ko) 2005-03-14 2006-03-14 가속 백오프 기능을 포함하는 무선 랜 송신 스케줄러

Country Status (5)

Country Link
US (1) US7672328B2 (ko)
EP (1) EP1859578B1 (ko)
KR (1) KR101226581B1 (ko)
CN (1) CN101156381B (ko)
WO (1) WO2006098688A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080565A (ko) * 2014-11-03 2017-07-10 삼성전자주식회사 전력 제어, 보고 및 상향링크 전송을 위한 장치 및 방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050200B2 (en) 2006-10-04 2011-11-01 Marvell World Trade Ltd. Opportunistic 40 MHz mode of transmission in wireless transmitters
US7843943B2 (en) * 2007-11-21 2010-11-30 Nokia Corporation Differentiation for bandwidth request contention
CN101291296B (zh) * 2008-06-20 2010-09-15 清华大学 一种通过跨层结构减少无线局域网媒体访问冲突的方法
JP5106291B2 (ja) 2008-07-24 2012-12-26 株式会社東芝 通信装置
CN101951612B (zh) * 2010-09-01 2012-12-19 南京航空航天大学 一种适用于多跳ad hoc网络的DCF协议公平性保证方法
EP2437428A1 (en) 2010-10-01 2012-04-04 Koninklijke Philips Electronics N.V. Device and method for load balancing for data packet transmissions in wireless networks
EP2622775B1 (en) 2010-10-01 2014-02-26 Koninklijke Philips N.V. Device and method for scheduling data packet transmissions in wireless networks
US8897280B2 (en) 2011-03-29 2014-11-25 Qualcomm Incorporated System and method for clear channel assessment that supports simultaneous transmission by multiple wireless protocols
WO2015009878A1 (en) * 2013-07-17 2015-01-22 Mediatek Singapore Pte. Ltd. Wide bandwidth favored channel access methods in wireless local area networks
US9763225B2 (en) * 2013-10-07 2017-09-12 Qualcomm Incorporated LTE-U clear channel assessment operations
US9774429B2 (en) * 2014-03-12 2017-09-26 Qualcomm Incorporated Techniques for transmitting positioning reference signals in an unlicensed radio frequency spectrum band
WO2016072685A2 (ko) * 2014-11-04 2016-05-12 엘지전자 주식회사 비면허 대역에서의 상향링크 전송 방법 및 이를 이용한 장치
US11778663B1 (en) * 2016-09-20 2023-10-03 Marvell Asia Pte, Ltd. Methods and systems for enabling communications from a station to an access point using a backoff counter and carrier sensing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9223890D0 (en) * 1992-11-13 1993-01-06 Ncr Int Inc Wireless local area network system
US5699515A (en) * 1995-01-23 1997-12-16 Hewlett-Packard Company Backoff scheme for access collision on a local area network
US5717889A (en) * 1995-06-30 1998-02-10 Intel Corporation Collison reduction algorithm for an ethernet backoff protocol
AU2001259657A1 (en) * 2000-05-08 2001-11-20 Transilica, Inc. Software modem architecture
US7133422B2 (en) * 2002-01-31 2006-11-07 Texas Instruments Incorporated Implementing enhanced distributed coordinating function (EDCF) with a single hardware backoff counter
US7359459B2 (en) 2002-02-20 2008-04-15 Freescale Semiconductor, Inc. System and method for low power clear channel assessment
US7058071B1 (en) * 2002-03-04 2006-06-06 Cisco Systems Wireless Networking (Australia) Pty Limited Method and apparatus using pipelined execution data sets for processing transmission frame sequences conforming to a wireless network MAC protocol
CN1275480C (zh) * 2003-07-31 2006-09-13 上海贝尔阿尔卡特股份有限公司 一种多标准软件无线电(sdr)基带处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080565A (ko) * 2014-11-03 2017-07-10 삼성전자주식회사 전력 제어, 보고 및 상향링크 전송을 위한 장치 및 방법

Also Published As

Publication number Publication date
CN101156381B (zh) 2010-05-19
EP1859578B1 (en) 2015-05-06
WO2006098688A1 (en) 2006-09-21
EP1859578A4 (en) 2011-12-14
US7672328B2 (en) 2010-03-02
CN101156381A (zh) 2008-04-02
EP1859578A1 (en) 2007-11-28
KR101226581B1 (ko) 2013-01-28
US20080212476A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
KR101226581B1 (ko) 가속 백오프 기능을 포함하는 무선 랜 송신 스케줄러
US9544922B2 (en) Quality of service scheme for collision-based wireless networks
JP5680983B2 (ja) 無線通信装置
US8711746B2 (en) Method, apparatus or computer program for changing from scheduled to unscheduled communication modes
CN108141882B (zh) 基于竞争的系统中的具有不同优先级的数据流和竞争窗口参数的调整
CN112055994B (zh) 具有基于定时可预测性的冲突解决方案的智能无线电仲裁器
EP2625918B1 (en) Facilitating distributed channel access for a plurality of access terminals transmitting in a wireless communication environment
KR20060113762A (ko) 사일런트 측정 주기를 이용하여 무선 자원을 관리하기 위한무선 통신 방법 및 장치
Severino et al. A Traffic Differentiation Add-On to the IEEE 802.15. 4 Protocol: implementation and experimental validation over a real-time operating system
CN113498155A (zh) 用于基于电池寿命的无线通信调度的装置、系统和方法
CN109905919A (zh) 多无线射频系统的数据传输方法及装置、存储介质、终端
US10004035B2 (en) Method of managing data transmission for wireless system
JP4733735B2 (ja) 加速バックオフ機能を具備するwlan送信スケジューラ
EP2842399B1 (en) Duty-cycle control in wireless network
EP3780866A1 (en) Parallel transmission method and device
US20060156304A1 (en) Apparatus and method for scheduling tasks in a communications network
EP1698111B1 (en) Methods and apparatuses for transmit latency reduction in wireless communication systems
CN114071502A (zh) 配置方法及装置
CN116528388A (zh) 用于无线网络的设备和方法
JP2014150419A (ja) 無線アクセス制御方法および無線通信装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8