KR20070112522A - Fabricating method of soft ferrite powders - Google Patents

Fabricating method of soft ferrite powders Download PDF

Info

Publication number
KR20070112522A
KR20070112522A KR1020060045529A KR20060045529A KR20070112522A KR 20070112522 A KR20070112522 A KR 20070112522A KR 1020060045529 A KR1020060045529 A KR 1020060045529A KR 20060045529 A KR20060045529 A KR 20060045529A KR 20070112522 A KR20070112522 A KR 20070112522A
Authority
KR
South Korea
Prior art keywords
powder
die
binder
powders
soft magnetic
Prior art date
Application number
KR1020060045529A
Other languages
Korean (ko)
Other versions
KR101269687B1 (en
Inventor
채진원
윤철호
차현록
정태욱
Original Assignee
주식회사 대우일렉트로닉스
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스, 한국생산기술연구원 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1020060045529A priority Critical patent/KR101269687B1/en
Publication of KR20070112522A publication Critical patent/KR20070112522A/en
Application granted granted Critical
Publication of KR101269687B1 publication Critical patent/KR101269687B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A method for manufacturing soft ferrite powders is provided to maintain uniform strength of powders by adjusting the amount of binder to be inserted into a die. An isolating process is performed to isolate metallic powders(S102). An insertion process is performed to insert the isolated metallic powders and a binder into an inside of a die(S104). A molding process is performed to mold the complex particle powders and the binder under the pressure of 10-30 ton/cm^2 at the room temperature within the die(S106). A thermal process is performed to treat thermally the molded result at the temperature of 400-900 degrees centigrade(S108). In the pressing process, the uniform strength of the complex particle powders is maintained by adjusting the amount of the binder to be inserted into the die.

Description

연자성 분말 제조방법 {Fabricating method of soft ferrite powders}Fabricating method of soft ferrite powders

도 1은 본 발명의 바람직한 실시 예에 따른 연자성 분말 제조 방법을 도시한 플로우 차트이다.1 is a flowchart illustrating a method of manufacturing soft magnetic powder according to a preferred embodiment of the present invention.

도 2는 본 발명의 바람직한 일 실시예로서 분말을 압분하는 금형을 도시한 사시도이다. Figure 2 is a perspective view showing a mold for compacting powder as an embodiment of the present invention.

도 3은 본 발명의 바람직한 일 실시예로서 분말을 압분하는 금형을 도시한 정면도이다.Figure 3 is a front view showing a mold for compacting powder as an embodiment of the present invention.

본 발명은 연자성 분말 제조방법에 관한 것으로, 보다 상세하게는 압분과정에서 다이에 삽입하는 바인더의 양을 조절하여 연자성 분말을 제조하는 방법에 관한 것이다. The present invention relates to a soft magnetic powder manufacturing method, and more particularly to a method for manufacturing a soft magnetic powder by adjusting the amount of the binder inserted in the die during the compacting process.

연자성 물질은 인덕터 내의 코어 물질, 전기장치의 고정자 및 회전자, 액츄에이터, 센서 및 변압기 코어와 같은 용도에 이용된다. 통상적으로 전기장치 내의 회전자 및 고정자와 같은 연자성 코어는 적층된 강박판(steel laminates)으로 제조된다. 연자성 복합(SMC) 물질은 일반적으로 철계의 연자성 입자들을 기초로 하며 각 입자들은 전기 절연 코팅된다. SMC 부품은 통상적인 분말 야금학적 공정을 이용하여, 선택적인 윤활제 및 결합제와 함께 절연된 입자들을 압축함으로써 제조된다. 그러한 분말 야금학적 기술을 이용함으로써, 압축 공정에 의해 3차원적인 형상이 얻어질 수 있고 또한 SMC 물질이 3차원적인 자속(magnetic flux)을 지원할 수 있게 됨에 따라, 강박판을 이용하는 경우 보다 SMC 부품을 디자인할 때 높은 자유도를 갖는 물질을 제조하는 것이 가능하다. Soft magnetic materials are used in applications such as core materials in inductors, stators and rotors of electrical devices, actuators, sensors and transformer cores. Typically, soft magnetic cores, such as rotors and stators in electrical devices, are made of laminated steel laminates. Soft magnetic composite (SMC) materials are generally based on iron-based soft magnetic particles, each of which is electrically insulating coated. SMC parts are manufactured by compressing the insulated particles together with an optional lubricant and binder, using conventional powder metallurgical processes. By using such powder metallurgical techniques, three-dimensional shapes can be obtained by the compression process, and the SMC material can support three-dimensional magnetic flux, which makes it possible to fabricate SMC parts more than with steel sheets. It is possible to produce materials with high degrees of freedom in design.

철 코어 부품의 두가지 주요 특징은 상기 코어 부품의 투자율 및 철심손(core less)특징이다. 물질의 투자율은 자속을 지원할 수 있는 능력 또는 자화되는 능력의 척도이다. 투자율은 자기력 또는 자기장 세기에 대한 유도 자속의 비율로 정의된다. 자성 물질이 변화되는 자기장에 노출되는 경우에, 자기이력 손실과 와류(eddy currents) 손실 때문에 에너지 손실이 발생한다. 자기이력 손실은 철 코어 부품 내부의 잔류 자기력을 극복하는데 필요한 에너지의 소비에 의해서 발생된다. 와류 손실은 교류(AC) 상태에 의해 야기되는 전화(changing) 자속 때문에 전류가 철 코어 부품 내에 생성되는 것에 의해서 발생된다. 부품의 높은 전기 저항은 멤돌이 전류를 최소화 하기에 바람직하다.Two major features of iron core parts are the permeability and core less characteristics of the core part. The permeability of a substance is a measure of its ability to support flux or to be magnetized. Permeability is defined as the ratio of induced magnetic flux to magnetic force or magnetic field strength. When the magnetic material is exposed to varying magnetic fields, energy losses occur due to the loss of magnetic history and eddy currents. Magnetic hysteresis loss is caused by the consumption of energy required to overcome residual magnetic forces inside the iron core part. Vortex losses are caused by current being generated in the iron core part because of the changing magnetic flux caused by the alternating current (AC) state. The high electrical resistance of the component is desirable to minimize eddy currents.

코팅된 철계 분말을 이용하는 자성 코어 부품의 분말 야금학적 제조에서의 연구는 최종 부품의 다른 특성들에 유해한 영향을 미치지 않고 특정 물리적 특성 및 자성 특성을 향상시키는 철 분말 조성물의 개발방향으로 전개되어 왔다. 바람직한 부품특성은 예를들면, 확장된 주파수 범위에 걸친 높은 투자율, 낮은 철심손, 높은 포화유도, 및 높은 강도를 포함한다. 일반적으로 부품의 증가된 밀도는 충분 한 전기 저항성이 유지될 수 있다는 조건하에서 이러한 모든 특성들을 향상시킨다. 바람직한 분말 특성은 압축 몰딩 기술의 적합성을 포함하는데, 이는 분말이 고밀도 부품으로 쉽게 몰딩될 수 있음을 의미하며, 또한 부품 표면 상의 손상없이 몰딩 장치로부터 쉽게 배출될 수 있음을 의미한다. Research in powder metallurgical manufacture of magnetic core parts using coated iron-based powders has been developed towards the development of iron powder compositions that enhance certain physical and magnetic properties without adversely affecting other properties of the final part. Preferred component properties include, for example, high permeability, extended iron core loss, high saturation induction, and high strength over an extended frequency range. In general, the increased density of the component improves all these properties under the condition that sufficient electrical resistance can be maintained. Preferred powder properties include the suitability of compression molding techniques, which means that the powder can be easily molded into high-density parts, and can also be easily ejected from the molding apparatus without damage on the part surface.

이때, 금속 분말을 절연하여 다이 내에서 압분하는 과정에서, 다이의 형상 및 크기에 따라 압분되는 다이의 외측에 비하여 내측부에 위치한 분말의 강도가 약해지는 현상이 발생하는 문제점이 있었다. At this time, in the process of insulating the metal powder and compacting in the die, there is a problem that the strength of the powder located on the inner side is weakened compared to the outside of the die being pressed according to the shape and size of the die.

본 발명은 상기한 문제점을 해결하기 위한 것으로, 압분되는 다이의 외측에 비하여 내측부에 위치한 분말의 강도가 약해지는 현상을 방지하기 위하여 다이에 삽입하는 바인더의 양을 다디의 위치에 따라 조절하는 연자성 분말 제조 방법을 제공하는데 그 목적이 있다.The present invention is to solve the above problems, in order to prevent the weakening of the strength of the powder located on the inner side relative to the outer side of the die is soft magnetic control to adjust the amount of binder inserted in the die according to the position of the Daddy It is an object to provide a powder production method.

상기 목적을 달성하기 위한 일 형태에 따른 본 발명은, 연자성 분말 제조방법에 있어서, 금속 분말을 절연하는 단계와 절연된 분말을 다이 내에서 압분하는 단계와 압분된 분말을 열처리하는 단계를 포함하고, 압분 단계는 상기 분말의 균일한 강도를 위하여 상기 다이에 삽입하는 바인더의 양을 조절하는 것을 특징으로 한다.According to one aspect of the present invention, there is provided a method of manufacturing a soft magnetic powder, the method comprising: insulating a metal powder, compacting the insulated powder in a die, and heat treating the compacted powder; , The compacting step is characterized in that for controlling the uniform strength of the powder to adjust the amount of the binder inserted into the die.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 1은 본 발명의 바람직한 실시 예에 따른 연자성 분말 제조 방법을 도시한 플로우 차트이다. 도시된 바와 같이, 금속 분말에 결합제 용액 및 첨가제 용액을 부가 및 혼합하여 금속 분말을 절연화한다(102 단계). 이때, 압축 공정을 위해 초기 재료(starting materials)로서 적절히 사용될 수 있는 금속 분말로는 철과 니켈과 같은 금속으로부터 예비성형되는 분말 등이 있다. 철-계 분말(iron-based powders)의 경우에는, 탄소, 크롬, 망간, 몰리브덴, 구리, 니켈, 인, 황 등과 같은 합금 요소가 최종 소결된 생산물의 성질을 수정하기 위해 첨가될 수 있다. 상기 철-계 분말은 철 입자와 합금요소의 혼합물 및 거의 순수한 철 입자(합금 원소가 없음), 예비-합금된 철-계 입자, 확산-합금된 철-계 입자로 구성된 그룹으로부터 선택될 수 있다. 이 때, 결합제에 에틸 알코올을 포함시킴으로써 코어 로스를 향상시킬 수 있게 된다.1 is a flowchart illustrating a method of manufacturing soft magnetic powder according to a preferred embodiment of the present invention. As shown, the metal powder is insulated by adding and mixing a binder solution and an additive solution to the metal powder (step 102). At this time, the metal powder that can be suitably used as a starting material for the compression process includes a powder preformed from metals such as iron and nickel. In the case of iron-based powders, alloying elements such as carbon, chromium, manganese, molybdenum, copper, nickel, phosphorus, sulfur and the like may be added to modify the properties of the final sintered product. The iron-based powder may be selected from the group consisting of a mixture of iron particles and alloying elements and almost pure iron particles (without alloying elements), pre-alloyed iron-based particles, and diffusion-alloyed iron-based particles. . At this time, it is possible to improve core loss by including ethyl alcohol in the binder.

금속 분말에 결합제 용액 및 첨가제 용액을 부가 및 혼합하여 금속 분말을 절연한 후에는, 다이 내에 절연된 분말과 바인더를 삽입한다(104단계). 이때, 다이의 내측부에서 외측부로 진행함에 따라 삽입하는 바인더의 양을 감소시키는 것이 바람직하다. 압분 단계에서 다이의 내측부는 외측부에 비해 상대적으로 압력을 적게 받기 때문이다. 위와 같이 내측부에 삽입하는 바인더의 양을 더 증가시키는 경우, 바인더로 인해 다이의 내측부에 압력을 적게 받아도 외측부와 동일한 강도를 유지할 수 있게 된다. 이때, 다이의 내측부와 외측부의 말단의 바인더의 농도차가 10내지 20%로 하는 것이 바람직하다. After the metal powder is insulated by adding and mixing the binder solution and the additive solution to the metal powder, the insulated powder and the binder are inserted into the die (step 104). At this time, it is desirable to reduce the amount of binder to be inserted as it proceeds from the inner side to the outer side of the die. This is because the inner part of the die is relatively less pressured than the outer part in the compacting step. As described above, when the amount of the binder inserted into the inner part is further increased, the same strength as that of the outer part can be maintained even if the pressure is applied to the inner part of the die due to the binder. At this time, it is preferable that the concentration difference between the binders at the ends of the inner side and the outer side of the die is 10 to 20%.

도 2는 본 발명의 바람직한 일 실시예로서 분말을 압분하는 금형을 도시한 사시도이고, 도 3은 분말을 압분하는 금형을 도시한 정면도이다. 도 2 및 도 3을 참조하면, 상하에서 압분시에 외측부(204, 304)보다 내측부(202, 302)가 압력을 덜 받게 된다. 따라서 다이의 내측부(202, 302)에 외측부(204, 304)에 비하여 많은 양의 바인더를 첨가하여 내측부(202, 302)와 외측부(204, 304)에 동일한 강도를 유지하게 된다.2 is a perspective view illustrating a mold for compacting powder as a preferred embodiment of the present invention, Figure 3 is a front view showing a mold for compacting powder. 2 and 3, the inner side portions 202 and 302 are subjected to less pressure than the outer side portions 204 and 304 when pressed up and down. Therefore, a larger amount of binder is added to the inner portions 202 and 302 of the die than the outer portions 204 and 304 to maintain the same strength in the inner portions 202 and 302 and the outer portions 204 and 304.

다이 내에 절연된 분말과 바인더를 삽입한 후에는 이를 다이 내에서 상온으로 10 내지 30 ton/cm2 의 압력 하에서 성형한다(106단계). 성형 압력이 10 ton/cm2 미만이면 코어의 성형밀도가 낮아져 연자기 특성이 나빠지며, 30 ton/cm2 를 초과하면 성형용 금형의 마모 증대 및 표면 흠의 빈번 발생 등으로 인하여 금형의 교체 주기가 빨라져 생산 원가가 높아지기 때문이다. 그리고 성형시간은 5내지 30초이며, 특히 10초 이내로 하는 것이 바람직하다. 고밀도를 달성하기 위해 고압축력을 사용할 지라도 높은 전기 저항성이 달성될 수 있다.After inserting the insulated powder and binder into the die, it is molded in a die under a pressure of 10 to 30 ton / cm 2 at room temperature (step 106). If the compacting pressure exceeds 10 ton / cm 2 is less than if the molding density of the core becomes lower soft magnetic properties or ppajimyeo, 30 ton / cm 2 due to the increase in the wear of the molding die and the surface of inclusions frequently occur, such as the periodic replacement of the mold This is because the production costs are higher due to the faster speed. The molding time is 5 to 30 seconds, particularly preferably 10 seconds or less. High electrical resistance can be achieved even when high compression forces are used to achieve high density.

압축은 값 비싼 투자비 없이 신규한 방법을 수행할 수 있음을 의미하는 표준장비로 수행될 수 있다. 압축은 일축으로 수행되며 바람직하게는 주위 온도 또는 주위보다 높은 온도에서 단일 단계로 수행된다. 대안적으로, 위의 압축은 특허공보 WO 02/38315에 기재된 바와 같이 진동 기계(percussion machine)의 도움으로 수행될 수도 있다.Compression can be done with standard equipment, which means that the new method can be carried out without costly investment. Compression is performed uniaxially and preferably in a single step at ambient temperature or above ambient temperature. Alternatively, the above compression may be carried out with the aid of a percussion machine as described in patent publication WO 02/38315.

위의 과정에 따라 성형된 결과물은 열처리 단계를 거치게 된다(108 단계). 이와 같이 열처리하는 과정을 거치는 것은 주로 분말의 제조 시 또는 성형 시 야기 된 내부 응력을 제거하고 결합제의 경화에 의한 성형된 코어의 강도를 높이거나, 열처리 동안 결정립의 성장에 의한 자기적인 특성을 향상시키기 위한 것이다.The result molded according to the above process is subjected to a heat treatment step (step 108). This heat treatment process mainly removes the internal stress caused during the manufacture or molding of the powder and increases the strength of the molded core by curing the binder, or improves the magnetic properties due to the growth of the grain during heat treatment. It is for.

열처리 온도는 400 내지 900℃, 특히 500 내지 800℃인 것이 바람직하다. 만약 열처리온도가 400℃ 미만이면 성형한 코어의 내부응력이 충분히 제거되지 않고, 900℃를 초과하면 결합제의 분해 및 제조원가가 높아지므로 바람직하지 못하다. It is preferable that heat processing temperature is 400-900 degreeC, especially 500-800 degreeC. If the heat treatment temperature is less than 400 ° C, the internal stress of the molded core is not sufficiently removed, and if it exceeds 900 ° C, the decomposition and manufacturing cost of the binder become high, which is not preferable.

이때 열처리는 대기 분위기에서 이루이지는 것이 바람직하다. 그리고 열처리 시간은 10 내지 150분 정도로 하는 것이 적당하다. 만약 열처리 시간이 10분 미만이면 응력제거가 충분치 않고, 150분을 초과하면 생산성이 저하되어 바람직하지 못하다. At this time, the heat treatment is preferably carried out in the atmosphere. The heat treatment time is suitably about 10 to 150 minutes. If the heat treatment time is less than 10 minutes, the stress is not enough, if more than 150 minutes productivity is lowered, which is undesirable.

이때 열처리 이전에 제조된 분말을 볼밀(BALL MILL), 어트리션 밀(ATTRITION MILL), 로드 밀(ROD MILL) 등으로 기계적인 가공을 수행할 수도 있다. 이와 같은 기계적인 가공을 거치는 이유는 합금 분말을 분쇄하거나 혹은 합금 분말에 응력을 가하여 열처리시 재결정을 용이하게 함으로써 기계적인 가공을 거치지 않고 열처리한 분말에 비해 상대적으로 낮은 열처리 온도에서 우수한 연자기적 특성의 분말을 획득할 수 있으며, 또한 합금 분말을 사용한 코어 성형시에도 성형성이 우수하지 않은 구형 분말을 불규칙 형상의 분말로 전환시켜 그 성형성을 향상시킬 수 있기 때문이다.In this case, the powder prepared before the heat treatment may be mechanically processed by a ball mill, an attrition mill, a rod mill, or the like. The reason for this mechanical processing is to crush the alloy powder or apply stress to the alloy powder to facilitate recrystallization during heat treatment, so that the soft magnetic properties are excellent at a relatively low heat treatment temperature compared to the powder heat treated without mechanical processing. This is because the powder can be obtained, and the spherical powder, which is not excellent in formability, can also be converted into an irregularly shaped powder to improve its formability even in the core molding using the alloy powder.

이러한 본원 발명인 방법 및 장치는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.Such a method and apparatus of the present invention have been described with reference to the embodiments shown in the drawings for clarity, but these are merely exemplary, and various modifications and equivalent other embodiments are possible to those skilled in the art. Will understand. Therefore, the true technical protection scope of the present invention will be defined by the appended claims.

본 발명에 따르면, 연자성 분말을 제조할 때, 압분 과정에서 다이에 삽입하는 바인더의 양을 조절함으로써 연자성 분말이 다이의 형상과 관계없이 균일한 강도를 갖도록 하는 효과가 있다. According to the present invention, when manufacturing the soft magnetic powder, by controlling the amount of the binder to be inserted into the die during the compacting process has an effect that the soft magnetic powder has a uniform strength irrespective of the die shape.

Claims (4)

연자성 분말 제조방법에 있어서,In the soft magnetic powder manufacturing method, 금속 분말을 절연하는 단계와Insulating metal powder and 상기 절연된 분말을 다이 내에서 압분하는 단계와Compacting the insulated powder in a die; 상기 압분된 분말을 열처리하는 단계를 포함하고,Heat-treating the compacted powder, 상기 압분 단계는 상기 분말의 균일한 강도를 위하여 상기 다이에 삽입하는 바인더의 양을 조절하는 것을 특징으로 하는 연자성 분말 제조방법. The compacting step is a soft magnetic powder manufacturing method, characterized in that for controlling the amount of the binder inserted into the die for uniform strength of the powder. 제 1 항에 있어서,The method of claim 1, 상기 압분단계는 상기 다이의 내측부에서 외측부로 진행함에 따라 상기 삽입하는 바인더의 양을 감소시키는 것을 특징으로 하는 연자성 분말 제조방법. The compacting step is a soft magnetic powder manufacturing method, characterized in that to reduce the amount of the binder to be inserted from the inner portion to the outer portion of the die. 제 2 항에 있어서The method of claim 2 상기 다이의 내측부와 외측부의 말단의 상기 바인더의 농도차가 10내지 20%인 것을 특징으로 하는 분말 코어의 제조 방법.The difference in density of the binder at the ends of the inner side and the outer side of the die is 10 to 20%. 제 1 항 또는 제 2 항에 있어서The method according to claim 1 or 2 상기 열처리 단계는 대기 분위기에서 이루어지는 것을 특징으로 하는 분말 코어의 제조 방법.The heat treatment step is a method for producing a powder core, characterized in that the atmosphere is made.
KR1020060045529A 2006-05-22 2006-05-22 Fabricating method of soft ferrite powders KR101269687B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060045529A KR101269687B1 (en) 2006-05-22 2006-05-22 Fabricating method of soft ferrite powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060045529A KR101269687B1 (en) 2006-05-22 2006-05-22 Fabricating method of soft ferrite powders

Publications (2)

Publication Number Publication Date
KR20070112522A true KR20070112522A (en) 2007-11-27
KR101269687B1 KR101269687B1 (en) 2013-05-30

Family

ID=39090800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060045529A KR101269687B1 (en) 2006-05-22 2006-05-22 Fabricating method of soft ferrite powders

Country Status (1)

Country Link
KR (1) KR101269687B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805907A (en) * 2018-08-02 2021-05-14 美国轮轴制造公司 Systems and methods for additive manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238640A (en) * 1998-02-19 1999-08-31 Citizen Watch Co Ltd Manufacture of compression-molded bonded magnet
JP2000232023A (en) * 1999-02-09 2000-08-22 Kawasaki Steel Corp Soft ferrite core
JP2004197212A (en) * 2002-10-21 2004-07-15 Aisin Seiki Co Ltd Soft magnetic molding, method of producing soft magnetic molding, and soft magnetic powder material
KR100531253B1 (en) * 2003-08-14 2005-11-28 (주) 아모센스 Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805907A (en) * 2018-08-02 2021-05-14 美国轮轴制造公司 Systems and methods for additive manufacturing

Also Published As

Publication number Publication date
KR101269687B1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
CA2613862C (en) Method for manufacturing of insulated soft magnetic metal powder formed body
EP2458601B1 (en) Soft magnetic powdered core and method for producing same
KR101976971B1 (en) Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
JP2007214366A (en) Powder magnetic core, powder for use thereof, and manufacturing methods of them
CN102264492A (en) Composite soft magnetic material and method for producing same
US20090152489A1 (en) Composition for producing soft magnetic composites by powder metallurgy
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
EP1595267B1 (en) High performance magnetic composite for ac applications and a process for manufacturing the same
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
CA2552142C (en) Powder composition, method for making soft magnetic components and soft magnetic composite component
CA2891206C (en) Iron powder for dust cores
KR101269687B1 (en) Fabricating method of soft ferrite powders
JP2020053439A (en) Composite magnetic material, metal composite core, reactor, and method of manufacturing metal composite core
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
EP1675137A1 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
KR20070112521A (en) Fabricating method of soft ferrite powders
EP1556871B1 (en) Heat treatment of soft magnetic components
JP2021093405A (en) Method of manufacturing dust core
KR20070112524A (en) Fabricating method of powder cores
WO2009136854A1 (en) Method for improving the magnetic properties of a compacted and heat treated soft magnetic composite component
Roberts et al. An overview of the powder processing of soft magnetic composites
JP6073066B2 (en) Method for producing soft magnetic iron-based powder for dust core
WO2005035171A1 (en) Method of producing a soft magnetic composite component with high resistivity
MXPA06007461A (en) Powder composition, method for making soft magnetic components and soft magnetic composite component

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160304

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170518

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180423

Year of fee payment: 6