JP2000232023A - Soft ferrite core - Google Patents

Soft ferrite core

Info

Publication number
JP2000232023A
JP2000232023A JP11031211A JP3121199A JP2000232023A JP 2000232023 A JP2000232023 A JP 2000232023A JP 11031211 A JP11031211 A JP 11031211A JP 3121199 A JP3121199 A JP 3121199A JP 2000232023 A JP2000232023 A JP 2000232023A
Authority
JP
Japan
Prior art keywords
core
hole
cross
sectional area
middle leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11031211A
Other languages
Japanese (ja)
Inventor
Takashi Kono
貴史 河野
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11031211A priority Critical patent/JP2000232023A/en
Publication of JP2000232023A publication Critical patent/JP2000232023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of binder removing cracks by specifying the cross-sectional area of the middle leg of a soft ferrite core including that of a through hole and the ratio of the cross-sectional area of the through hole to that of the middle leg. SOLUTION: A through hole 3 is formed in advance through the middle leg 2 of a large-sized soft ferrite core 1 at the time of compression-molding the core by means of a mold. The cross-sectional area S 6 of the middle leg 2 including that Sh 7 of the through hole 3 is adjusted to >=400 mm and the cross-sectional areas S 6 and Sh 7 of the leg 2 and through hole 2 are adjusted to meet a relation, Sh/S>=0.005. The above-mentioned cross-sectional area adjustment is preferable, because the core loss of the core 1 under the condition of 100 kHg, 200 mT, and 80 deg.C can be suppressed to 600 kW/m2. Since the through hole 3 is made through the middle leg 2 of the core 1 and the hole 3 is baked, the binder removal from the central part of the leg 2 and oxygen supply from the outside of the core 1 are promoted and a reaction to the surface of the core advances without delay. Therefore, the ununiformed temperature distribution in the core is significantly improved to a uniform distribution and the occurrence of binder removing cracks can be suppressed. Simultaneously, the magnetic characteristic of the core 1 is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高周波トランスやコ
イルなどに広く用いられるソフトフェライトコアに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft ferrite core widely used for high-frequency transformers and coils.

【0002】[0002]

【従来技術】ソフトフェライトコアはJISにも規定さ
れており、JIS C2514(E形フェライト磁心)
には図3に示すようなE形コア11、図4に示すような
ER形コア12、E形コア2個を対向して組合わせたE
E形コア、ER形コア2個を対向して組合わせたEER
形コアなどが示されている。また、JIS C2516
(ポット形フェライト磁心)には図5に示すようなPP
形コア13、図6に示すようなRM形コア14、図7に
示すようなEP形コア15などが示されている。これら
のJISには、フェライトコアの中脚の横断面積が25
0mm2未満のものが記載されている。
2. Description of the Related Art Soft ferrite cores are also specified in JIS, and JIS C2514 (E type ferrite core)
In FIG. 3, an E-shaped core 11 as shown in FIG. 3, an ER-shaped core 12 as shown in FIG.
EER with two E-shaped cores and two ER-shaped cores facing each other
Shaped cores and the like are shown. Also, JIS C2516
(Pot type ferrite core) has PP as shown in FIG.
A core 13, an RM core 14 as shown in FIG. 6, and an EP core 15 as shown in FIG. 7 are shown. According to these JIS, the cross-sectional area of the center leg of the ferrite core is 25
Those with less than 0 mm 2 are described.

【0003】ソフトフェライトコアの製造方法は、次の
通りである。先ず所定の組成のソフトフェライト原料を
混合、仮焼、粉砕した後、ポリビニルアルコール(PV
A)などの有機物系バインダを加えて造粒し、流動性な
どに優れた顆粒を作製する。この顆粒を金型に充填して
圧縮成形し、この成形体を温度、酸素濃度などが制御さ
れた炉中で焼成する。
A method for manufacturing a soft ferrite core is as follows. First, a soft ferrite raw material having a predetermined composition is mixed, calcined, and pulverized.
An organic binder such as A) is added and granulated to produce granules excellent in fluidity and the like. The granules are filled in a mold and compression-molded, and the molded body is fired in a furnace in which the temperature, oxygen concentration and the like are controlled.

【0004】この焼成工程でソフトフェライトコアの製
品に欠陥が発生することがある。発生する欠陥原因のう
ち、焼成初期に発生するものにバインダの分解、燃焼が
関与して発生する割れ欠陥(以降脱バインダクラックと
呼ぶ)がある。図2はこの欠陥を示すもので、図2
(a)はER形コアの斜視図、図2(b)はその底面図
である。中脚2の側面、コアの底面の中央付近に大きな
クラック5が生ずる。脱バインダクラック発生を防止す
るために例えば特開平7−57925号公報にはER形
フェライトコアの中脚の脚長方向に直径1mm以下の細
孔を中脚長の1/2長程度設けて焼成する技術が開示さ
れている。
[0004] In this firing step, defects may occur in the product of the soft ferrite core. Among the defects that occur, those that occur at the early stage of firing include cracking defects (hereinafter referred to as binder-free cracks) that occur due to the decomposition and combustion of the binder. FIG. 2 illustrates this defect.
FIG. 2A is a perspective view of an ER type core, and FIG. 2B is a bottom view thereof. A large crack 5 is formed on the side surface of the middle leg 2 and near the center of the bottom surface of the core. In order to prevent the occurrence of binder cracking, for example, Japanese Unexamined Patent Publication No. 7-57925 discloses a technique in which pores having a diameter of 1 mm or less are provided in the leg length direction of the center leg of an ER type ferrite core in the length of about 1/2 of the length of the center leg and firing. Is disclosed.

【0005】また、JIS C2516には、中脚の軸
心に貫通孔を有するものもある。このJIS C251
6に示されている中脚の貫通孔は、芯棒を通してコア間
の隙間の調整を行うためのものである。またJIS C
2516に記載されている中脚の横断面積が250mm
2未満のフェライトコアでは、貫通孔がなくても割れが
生じない。
[0005] Some JIS C2516 have a through hole in the axis of the center leg. This JIS C251
The through hole of the middle leg shown in FIG. 6 is for adjusting the gap between the cores through the core rod. JIS C
The cross-sectional area of the middle leg described in 2516 is 250 mm
With less than 2 ferrite cores, cracks do not occur even without through holes.

【0006】[0006]

【発明が解決しようとする課題】近年、大電力を扱うト
ランス等の用途のために、大型のソフトフェライトコア
の要求が高まりつつある。従来生産していた比較的小型
のコアと比較すると、ソフトフェライトコアの大型化に
伴って、特に焼成工程では500℃以下の温度域で生じ
るバインダの分解や燃焼反応が不均一となるため、脱バ
インダクラックが頻発するという問題を生じている。と
りわけ中脚の横断面積が400mm2を越えるような大
型ソフトフェライトコアでは脱バインダクラックが生じ
やすいが、前述の特開平7−57925号公報による技
術によっても脱バインダクラックを防止する手段として
は不十分であった。また不均一な反応に起因して、ソフ
トフェライトとしての代表的な磁気特性であるコアロス
が700kW/m3を越えるほどに劣化していた。
In recent years, there has been an increasing demand for large soft ferrite cores for applications such as transformers handling large power. Compared with the relatively small cores conventionally produced, with the increase in the size of the soft ferrite core, especially in the firing step, the decomposition and combustion reaction of the binder occurring in the temperature range of 500 ° C or less become non-uniform. There is a problem that binder cracks frequently occur. In particular, a large soft ferrite core having a cross section of the middle leg exceeding 400 mm 2 is liable to cause binder cracking. However, the technique disclosed in Japanese Patent Application Laid-Open No. 7-57925 is still insufficient as a means for preventing binder cracking. Met. In addition, due to the non-uniform reaction, the core loss, which is a typical magnetic characteristic of soft ferrite, deteriorated so as to exceed 700 kW / m 3 .

【0007】本発明は、例えば大電力電源用トランスな
どに用いられる中脚の横断面積が400mm2以上の大
型ソフトフェライトコアにおけるこのような脱バインダ
クラック発生を防止し、磁気特性を改善した、ソフトフ
ェライトコアを提供することを目的とするものである。
[0007] The present invention provides a soft soft ferrite core having a middle leg having a cross-sectional area of 400 mm 2 or more used in a transformer for a high-power power supply or the like, in which such a binder crack is prevented from occurring and the magnetic characteristics are improved. It is an object of the present invention to provide a ferrite core.

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点を解
決するためになされたもので、その技術手段は、コアの
中脚に貫通孔を有するE形又はポット形のソフトフェラ
イトコアであって、貫通孔の横断面積Shを含む中脚の
横断面積Sが400mm2以上であり、前記貫通孔の横
断面積Shと前記中脚の横断面積Sとの比が下記(1)
式を満足することを特徴とするソフトフェライトコアで
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the technical means thereof is an E-shaped or pot-shaped soft ferrite core having a through hole in the center leg of the core. The cross-sectional area S of the middle leg including the cross-sectional area Sh of the through-hole is 400 mm 2 or more, and the ratio of the cross-sectional area Sh of the through-hole to the cross-sectional area S of the middle leg is as follows (1).
A soft ferrite core characterized by satisfying the formula.

【0009】 Sh/S ≧ 0.005 ……(1) S:中脚の横断面積(貫通孔の横断面積を含む)(mm
2) Sh:貫通孔の横断面積(mm2) この場合に、上記ソフトフェライトコアは、100kH
z,200mT,80℃におけるコアロスが600kW
/m3以下のコアを得ることができ好適である。
Sh / S ≧ 0.005 (1) S: Cross-sectional area of middle leg (including cross-sectional area of through hole) (mm)
2 ) Sh: cross-sectional area of through-hole (mm 2 ) In this case, the soft ferrite core is 100 kHz.
600kW core loss at 200mT, 80 ℃
/ M 3 or less is preferable.

【0010】[0010]

【発明の実施の形態】本発明は、金型による圧縮成形時
に予め大型ソフトフェライトコアの中脚に貫通孔を形成
しておくか、又は得られた成形体に対して当該部に機械
的に貫通孔を形成することに特徴がある。この際、図1
に示すような中脚の横断面積(貫通孔の横断面積を含
む)S6と貫通孔の横断面積Sh7を、Sh/S≧0.
005とする。こうすることによって100kHz、2
00mT、80℃におけるコアロスを600kW/m3
以下とすることができ、好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method of forming a through hole in a middle leg of a large soft ferrite core in advance during compression molding by a mold, or mechanically forming a through hole in the obtained molded body. The feature is that a through hole is formed. At this time, FIG.
The cross-sectional area (including the cross-sectional area of the through-hole) S6 of the middle leg and the cross-sectional area Sh7 of the through-hole as shown in FIG.
005. By doing so, 100 kHz, 2
The core loss at 00 mT and 80 ° C. is 600 kW / m 3.
It can be as follows, which is preferable.

【0011】焼成工程では温度上昇とともにバインダの
分解が生じ、次いでバインダ自身やその分解生成物が燃
焼し発熱する。大型コアの内部の中心部分では生成ガス
が滞留しコア外へ脱出し難く、一方、バインダの燃焼に
必要な酸素のコア外からの拡散が遅く、また、コア表面
に較べて温度も低いので、これら一連の反応がコア表面
部分に対して遅れる。このことが、脱バインダクラック
を発生しやすい一因となっている。焼成工程が進行する
に伴ってこの脱バインダクラックが拡大することもあ
る。このような反応を通じて最終的にソフトフェライト
コアの表面部分と内部の中心部で焼結密度や微細組織に
差を生じ、これらが磁気特性劣化の原因となると推定さ
れる。
In the firing step, the binder is decomposed as the temperature rises, and then the binder itself and its decomposition products are burned to generate heat. In the central part inside the large core, the generated gas stays and it is difficult to escape to the outside of the core.On the other hand, the diffusion of oxygen necessary for the combustion of the binder from the outside of the core is slow, and the temperature is lower than the core surface, These series of reactions are delayed with respect to the core surface portion. This is one of the causes of the occurrence of binder cracks. As the firing process proceeds, the binder removal crack may increase. It is presumed that a difference in sintered density and microstructure is finally generated between the surface portion and the inner central portion of the soft ferrite core through such a reaction, and these cause deterioration of magnetic properties.

【0012】しかしながら、図1に示すように、大型ソ
フトフェライトコア1の中脚2に貫通孔3を設けること
により、中脚2の中央部からのバインダ除去やコア外か
らの酸素供給が促進され、コア表面に対して反応が遅れ
なく進むようになる。従って、コア内の不均一温度分布
が大幅に改善されて均一化し、脱バインダクラック発生
を抑制できるようになった。このことによって100k
Hz、200mT、80℃におけるコアロスPcはPc
≦600kW/m3を得ることができた。さらに、Sh
/S≧0.01となる場合にはコアロスPcはPc≦5
00kW/m3を得ることができる。
However, as shown in FIG. 1, by providing the through hole 3 in the middle leg 2 of the large soft ferrite core 1, removal of the binder from the center of the middle leg 2 and supply of oxygen from outside the core are promoted. Thus, the reaction proceeds to the core surface without delay. Therefore, the non-uniform temperature distribution in the core is greatly improved and made uniform, and the occurrence of binder cracking can be suppressed. This allows 100k
Hz, 200 mT, 80 ° C., the core loss Pc is Pc
≦ 600 kW / m 3 could be obtained. Furthermore, Sh
When /S≧0.01, the core loss Pc is Pc ≦ 5.
00 kW / m 3 can be obtained.

【0013】ソフトフェライトの主成分としては、Mn
−Zn系フェライトの場合、低損失を得ることができる
Fe23:51〜55mol%、ZnO:6〜25mo
l%、MnO:残部であることが好ましい。また微量成
分としては、磁気特性を改善するため、必要に応じてS
i、Ca、Nb、Ta、V、Ti、Sn、Sb、Na、
K、Co、Ni、W、Mo、Cuなどを最終的に酸化物
となる形態で添加含有させることが適当である。さらに
ソフトフェライトコアの形状に関しては、E形、ポット
形のようにコア中央部に中脚を有する形状であれば本発
明を適用することができる。例えばJIS−C2514
記載のE形、ER形、JIS−C2516記載のPP
形、RM形、EP形、更にはこれらから派生した形状の
コアを挙げることができる。この際、中脚や貫通孔の形
状は問わない。なお、中脚の横断面積が400mm2
満の場合は貫通孔を設けなくても脱バインダクラックを
生じることは少ない。
The main component of soft ferrite is Mn.
For -Zn ferrite, it is possible to obtain a low-loss Fe 2 O 3: 51~55mol%, ZnO: 6~25mo
1%, MnO: preferably the balance. In addition, as a trace component, in order to improve magnetic properties, S
i, Ca, Nb, Ta, V, Ti, Sn, Sb, Na,
It is appropriate to add and contain K, Co, Ni, W, Mo, Cu, and the like in a form that finally becomes an oxide. Further, as for the shape of the soft ferrite core, the present invention can be applied to a shape having a middle leg at the center of the core, such as an E shape or a pot shape. For example, JIS-C2514
E type, ER type described, PP described in JIS-C2516
Shapes, RM shapes, EP shapes, and cores having shapes derived therefrom can be mentioned. At this time, the shapes of the middle leg and the through hole are not limited. If the cross-sectional area of the middle leg is less than 400 mm 2, binder cracking is less likely to occur even if no through hole is provided.

【0014】[0014]

【実施例】焼結体の組成がFe23:MnO:ZnO=
53.5:35.0:11.5mol%、微量成分がS
iO2:CaO:Nb25:Sb23=0.025:
0.06:0.025:0.04wt%となるように調
製した低損失MnZnフェライト粉砕粉を作製し、PV
A濃度が0.6wt%となる条件で造粒し、これを用い
て図1に示すようなE形あるいはER形の成形体を作製
した。次に中脚の軸心に貫通孔を開け、貫通孔を設けな
い試料を比較材として1350℃で焼成した。貫通孔は
E形コアでは正方形断面、ER形コアでは円形断面とし
た。脱バインダ反応が終了するまでの昇温速度は50℃
/Hとした。得られたソフトフェライトコア1について
脱バインダクラックの発生有無と100kHz、200
mT、80℃におけるコアロスを測定した。結果を表1
に示す。なおコアロスの測定はEE形コアあるいはEE
R形コアで行った。本発明の方法により、E型コアの中
脚に適切な大きさの貫通孔を設けることによって、脱バ
インダクラックが大幅に軽減されると同時に磁気特性が
改善されることが明らかである。
EXAMPLE The composition of the sintered body was Fe 2 O 3 : MnO: ZnO =
53.5: 35.0: 11.5mol%, trace component is S
iO 2 : CaO: Nb 2 O 5 : Sb 2 O 3 = 0.025:
Pulverized powder of low loss MnZn ferrite prepared to be 0.06: 0.025: 0.04 wt% was prepared, and PV
Granulation was performed under the condition that the A concentration was 0.6 wt%, and an E-shaped or ER-shaped molded body as shown in FIG. Next, a through-hole was formed in the axis of the center leg, and a sample having no through-hole was fired at 1350 ° C. as a comparative material. The through hole had a square cross section in the E-shaped core and a circular cross section in the ER-shaped core. The heating rate until the binder removal reaction is completed is 50 ° C.
/ H. Regarding the obtained soft ferrite core 1, the presence or absence of occurrence of binder crack removal and the frequency of 100 kHz, 200 kHz
The core loss at mT and 80 ° C. was measured. Table 1 shows the results
Shown in The core loss is measured using an EE type core or EE
Performed with an R-shaped core. It is clear that the method of the present invention significantly reduces the binder removal cracks and improves the magnetic properties by providing an appropriately sized through hole in the middle leg of the E-shaped core.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明によれば、中脚の横断面積が40
0m2以上の大型コアにおいて、ソフトフェライトコア
の中脚部の脚長手方向に適切な大きさの貫通孔を設けて
焼成することにより、焼成工程の脱バインダ温度域で発
生頻度が高かった脱バインダクラックの発生を効果的に
抑制し、100kHz、200mT、80℃におけるコ
アロスを600kW/m3以下の実用的範囲まで改善す
ることができた。
According to the present invention, the cross-sectional area of the middle leg is 40
In a large core of 0 m 2 or more, by providing a through hole of an appropriate size in the longitudinal direction of the middle leg of the soft ferrite core and firing, a debinding that occurs frequently in the debinding temperature range of the firing process The generation of cracks was effectively suppressed, and the core loss at 100 kHz, 200 mT, and 80 ° C. was improved to a practical range of 600 kW / m 3 or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例のER形ソフトフェライトコアを模式的
に示す(a)斜視図、(b)底面図である。
FIG. 1A is a perspective view schematically showing an ER type soft ferrite core of an example, and FIG. 1B is a bottom view.

【図2】割れ欠陥を示す説明図である。FIG. 2 is an explanatory diagram showing crack defects.

【図3】E形コアの斜視図である。FIG. 3 is a perspective view of an E-shaped core.

【図4】ER形コアの斜視図である。FIG. 4 is a perspective view of an ER type core.

【図5】PP形コアの斜視図である。FIG. 5 is a perspective view of a PP core.

【図6】RM形コアの斜視図である。FIG. 6 is a perspective view of an RM type core.

【図7】EP形コアの斜視図である。FIG. 7 is a perspective view of an EP core.

【符号の説明】[Explanation of symbols]

1 ソフトフェライトコア 2 中脚 3 貫通孔 4 コア底面 5 クラック 6 中脚の横断面積(貫通孔の横断面積を含む) 7 貫通孔の横断面積 11 E形コア 12 ER形コア 13 PP形コア 14 RM形コア 15 EP形コア DESCRIPTION OF SYMBOLS 1 Soft ferrite core 2 Middle leg 3 Through hole 4 Core bottom surface 5 Crack 6 Cross sectional area of middle leg (including cross sectional area of through hole) 7 Cross sectional area of through hole 11 E type core 12 ER type core 13 PP type core 14 RM Shaped Core 15 EP Shaped Core

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コアの中脚に貫通孔を有するE形又はポ
ット形のソフトフェライトコアであって、貫通孔の横断
面積Shを含む中脚の横断面積Sが400mm2以上で
あり、前記貫通孔の横断面積Shと前記中脚の横断面積
Sと比が下記(1)式を満足することを特徴とするソフ
トフェライトコア。 Sh/S ≧ 0.005 ……(1) S:中脚の横断面積(貫通孔の横断面積を含む)(mm
2) Sh:貫通孔の横断面積(mm2
1. An E-shaped or pot-shaped soft ferrite core having a through hole in a middle leg of the core, wherein a cross-sectional area S of the middle leg including a cross-sectional area Sh of the through hole is 400 mm 2 or more, and A soft ferrite core, wherein the ratio of the cross sectional area Sh of the hole to the cross sectional area S of the middle leg satisfies the following expression (1). Sh / S ≧ 0.005 (1) S: Cross-sectional area of middle leg (including cross-sectional area of through hole) (mm)
2 ) Sh: cross-sectional area of through-hole (mm 2 )
JP11031211A 1999-02-09 1999-02-09 Soft ferrite core Pending JP2000232023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031211A JP2000232023A (en) 1999-02-09 1999-02-09 Soft ferrite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031211A JP2000232023A (en) 1999-02-09 1999-02-09 Soft ferrite core

Publications (1)

Publication Number Publication Date
JP2000232023A true JP2000232023A (en) 2000-08-22

Family

ID=12325111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031211A Pending JP2000232023A (en) 1999-02-09 1999-02-09 Soft ferrite core

Country Status (1)

Country Link
JP (1) JP2000232023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269687B1 (en) * 2006-05-22 2013-05-30 한국생산기술연구원 Fabricating method of soft ferrite powders
TWI615862B (en) * 2011-05-05 2018-02-21 好根那公司 An inductor core and a method for manufacturing an inductor core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269687B1 (en) * 2006-05-22 2013-05-30 한국생산기술연구원 Fabricating method of soft ferrite powders
TWI615862B (en) * 2011-05-05 2018-02-21 好根那公司 An inductor core and a method for manufacturing an inductor core

Similar Documents

Publication Publication Date Title
JP5374537B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
JP6380770B2 (en) Soft magnetic metal powder and soft magnetic metal powder core.
JP2005255489A (en) Ferrite sintered compact, method for manufacturing the same, and ferrite core and ferrite coil using the same
JP7182016B2 (en) MnCoZn ferrite
JP2001307914A (en) Magnetic powder for dust core, dust core using it, and method for manufacturing dust core
JP2000232023A (en) Soft ferrite core
JP2005116820A (en) Dust core
KR20020016501A (en) Compressed powder core
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JPWO2020189035A1 (en) MnCoZn-based ferrite and its manufacturing method
WO2022186222A1 (en) Magnetic material, dust core, inductor and method for producing dust core
JP7185791B2 (en) MnZn ferrite
JP2004123432A (en) High-resistance low-loss ferrite
JP7406022B1 (en) MnZnCo ferrite
JP3408587B2 (en) Method of manufacturing soft ferrite E-type core
JPH10326706A (en) Manganese-nickel-based ferrite material
TWI761760B (en) Manganese-zinc-based fertilizer granulated iron and method for producing the same
JP2002134331A (en) Soft ferrite core and its manufacturing method
JP2000353613A (en) MANUFACTURE OF Mn-Zn FERRITE
JPH06314608A (en) Low loss oxide magnetic material
WO2020189035A1 (en) MnCoZn FERRITE AND METHOD FOR PRODUCING SAME
JPH05238817A (en) Low-loss ferrite and its production
JP2004196658A (en) Manganese-zinc ferrite and method of manufacturing the same
JPWO2020189036A1 (en) MnZn-based ferrite and its manufacturing method
JP2000144204A (en) Production of sintered soft ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031