KR20070091401A - Method for manufacturing polyethersulfone membrane by air coagulation - Google Patents

Method for manufacturing polyethersulfone membrane by air coagulation Download PDF

Info

Publication number
KR20070091401A
KR20070091401A KR1020060020820A KR20060020820A KR20070091401A KR 20070091401 A KR20070091401 A KR 20070091401A KR 1020060020820 A KR1020060020820 A KR 1020060020820A KR 20060020820 A KR20060020820 A KR 20060020820A KR 20070091401 A KR20070091401 A KR 20070091401A
Authority
KR
South Korea
Prior art keywords
membrane
polyethersulfone
solution
solvent
air
Prior art date
Application number
KR1020060020820A
Other languages
Korean (ko)
Other versions
KR100850116B1 (en
Inventor
김연수
윤성로
이두현
이은호
Original Assignee
주식회사 새 한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새 한 filed Critical 주식회사 새 한
Priority to KR1020060020820A priority Critical patent/KR100850116B1/en
Publication of KR20070091401A publication Critical patent/KR20070091401A/en
Application granted granted Critical
Publication of KR100850116B1 publication Critical patent/KR100850116B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A method for manufacturing a polyethersulfone membrane having proper filtrating efficiency, high flux and improved service cycle is provided, and a method for manufacturing a polyethersulfone membrane, which establishes the reproducibility of asymmetrical cross-sectional structure and physical properties of the polyethersulfone membrane more stably, is provided. A method for manufacturing an asymmetrical polyethersulfone membrane comprises the steps of: providing a solution prepared by dissolving polyethersulfone into a solvent; uniformly mixing a non-solvent and hydrophilic material and a pore-adjusting reaction catalyst with the polymer solution; casting the uniform solution on a continuous support and exposing the cast solution to circulated air having proper temperature and humidity, thereby solidifying the solution; and extracting a non-solidified compound from a polyethersulfone solidified body. The membrane has an average substantial pore size of 0.01 to 2.0 mum. The circulated air has a temperature ranging from 20 to 65 deg.C and a humidity ranging from 30 to 80%. The air is ejected at a rate of 1 to 20 m/min according to the pore size. The membrane has a porosity of 70% or more. The reaction catalyst includes an epoxy-based compound.

Description

에어 응고법에 의한 폴리에테르술폰 멤브레인의 제조방법{Method for manufacturing Polyethersulfone membrane by air coagulation} Method for manufacturing polyethersulfone membrane by air coagulation method {Method for manufacturing Polyethersulfone membrane by air coagulation}

본 발명은 적정 여과효율을 가지며, 사용주기 향상 및 고유량 물성을 발현할수 있는 Air응고법에 의한 멤브레인을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a membrane by the air coagulation method that has a moderate filtration efficiency, can improve the use cycle and express high flow properties.

폴리에테르술폰 수지는 폴리술폰수지와 함께 내산성, 내알카리성의 내화학성이 요구되는 산업현장을 제외한 분야에서 수처리 분야에서 광범위하게 이용되고 있는 범용 멤브레인에 사용되고 있다. 예로부터 구미 각지에서 이에 대한 다양한 멤브레인의 제조방법이 소개되어 왔다. 이에 발명이 속하는 종래기술을 살펴보면 다음과 같다.Polyethersulfone resins are used in general-purpose membranes that are widely used in the field of water treatment in areas other than industrial fields where acid resistance and alkali resistance chemical resistance are required together with polysulfone resins. Since ancient times, various methods for producing a variety of membranes have been introduced. Looking at the prior art to which the invention belongs as follows.

미국특허 제 5,886,059호는 습식 응고법에 기초하고 있는 것으로, 앞면과 뒷면의 기공크기가 50:1의 비율로 차이가 있는, 단면구조가 비대칭형인 멤브레인의 제조방법을 개시하고 있다. 이에 따르면, 폴리에테르술폰과 용매를 혼합한 후, 비용매를 균일하게 가한다. 이 용액을 지지체위에 캐스팅 하여 공기에 2초정도 노출시킨 후 응고조에서 응고시키면, 실질 기공크기가 0.05 ∼ 2㎛ 범위의 비대칭형 멤브레인을 얻을수 있다고 기술하고 있다. U. S. Patent No. 5,886, 059, which is based on a wet coagulation method, discloses a method for producing a membrane having an asymmetric cross-sectional structure with a pore size difference of 50: 1 on the front and back sides. According to this, after mixing a polyether sulfone and a solvent, a non-solvent is added uniformly. The solution is cast on a support, exposed to air for 2 seconds, and then coagulated in a coagulation bath to give an asymmetric membrane with a practical pore size in the range of 0.05 to 2 μm.

미국특허 제 5,906,742호 또한 습식 응고법에 기초한 것으로, 술폰폴리머와 친수성 폴리머를 혼합하여 캐스팅한, 미세다공성을 가지는 비대칭형 구조의 멤브레인을 개시하고 있다. 이 멤브레인의 공극은 평균 1 ∼ 5㎛ 범위이고, 술폰 폴리머로서 폴리에테르술폰 및 폴리아릴술폰을 사용하고 친수성폴리머로서 폴리비닐-피로리돈을 사용한다. 치밀하게 밀집한 층의 두께는 멤브레인 두께의 약 15-25%이다. 제조 방법을 살펴보면 술폰 폴리머 농도는 8∼14%이고, 친수성 폴리머의 농도가 5∼25%인 용액을 박막으로 캐스팅하고, 캐스팅된 필름은 상대습도 50∼80%에서 5초내지 35초 간 노출시킨다. 이후 온도 30 ∼ 70℃ 범위에서 응고시킨다.U. S. Patent No. 5,906, 742 also discloses a membrane having a microporous asymmetric structure, which is based on a wet coagulation method, in which a sulfon polymer and a hydrophilic polymer are mixed and cast. The pores of this membrane range on average from 1 to 5 μm, using polyethersulfones and polyarylsulfones as sulfone polymers and polyvinyl-pyrrolidone as hydrophilic polymers. The thickness of the densely packed layer is about 15-25% of the membrane thickness. In the manufacturing method, the sulfon polymer concentration was 8-14%, the solution of hydrophilic polymer concentration 5-25% was cast as a thin film, and the cast film was exposed for 5 seconds to 35 seconds at a relative humidity of 50-80%. . Then, the temperature is solidified in the range of 30 to 70 ℃.

미국특허 제 6,056,903호에 기술된 방법은, 밀집된(dense) 표면층의 형성없이 미세다공성을 가지는 대칭형 멤브레인의 제조에 관한 것으로, 폴리에테르술폰 폴리머, 용매, 탄소원자수가 2∼20개의 범위를 가지는 지방족 글리콜을 함유하는 용액을 지지체 위에 캐스팅한후, 이를 대기중에 노출한다. 이후, 물과 지방족 글리콜이 함유된 응고조를 통과 시키고 수세, 건조하여 멤브레인을 제조한다. 기술된 바와 같이 이 또한 습식 응고법에 기초하고 있다.The method described in US Pat. No. 6,056,903 relates to the preparation of symmetrical membranes with microporosity without the formation of dense surface layers, polyethersulfone polymers, solvents, aliphatic glycols having a range of 2 to 20 carbon atoms. After casting a solution containing on a support, it is exposed to the atmosphere. Subsequently, the membrane is prepared by passing a coagulation bath containing water and aliphatic glycol, washing with water and drying. As described, this is also based on wet coagulation.

미국특허 제 6,565,782호는 앞면과 뒷면의 기공크기가 5 ∼1,000배의 비율차가 나는 0.1 ∼ 10㎛의 평균입경을 가지는 비대칭형 멤브레인의 제조방법에 관한 것으로, 상기 미국특허 5,906,742호에 기술된 방법과 거의 유사하다. 따라서, 습식 응고법에 기초하고 있다.US Pat. No. 6,565,782 relates to a method for producing an asymmetric membrane having an average particle diameter of 0.1 to 10 μm with a pore size difference of 5 to 1,000 times between the front and back sides, and the method described in US Pat. No. 5,906,742. Almost similar. Therefore, it is based on the wet coagulation method.

종래 기술에서 보는 바와 같이 폴리술폰 및 폴리에테르술폰 멤브레인의 제조법의 특징은 폴리머용액 조성상에서 차이를 보이나, 제조 공정상의 관점에서는 거 의 대부분 습식 응고에 기초하여 대칭형 혹은 비대칭형 멤브레인을 제조하고 있다. As shown in the prior art, the manufacturing method of the polysulfone and polyether sulfone membranes differs in the polymer solution composition, but from the viewpoint of the manufacturing process, most of the symmetric or asymmetric membranes are manufactured based on wet coagulation.

그러나, 종래의 폴리에테르술폰 이나 폴리술폰 멤브레인을 습식 응고법으로 제조할 경우, 고유량 및 사용주기 저하 현상이 나타나는 문제점이 노출되고 있다. 또한, 상기 종래의 습식 응고법은 멤브레인의 단면형상이나 물성의 재현성이 낮다. However, when the conventional polyether sulfone or polysulfone membrane is manufactured by the wet coagulation method, there is a problem in that high flow rate and a decrease in the service life appear. In addition, the conventional wet coagulation method has low reproducibility of the cross-sectional shape and physical properties of the membrane.

따라서 관련업계에서 요구하고 있는 적정 여과 효율을 가지면서 고유량과 사용주기 저하 현상을 획기적으로 성능 개선한 폴리에테르술폰 멤브레인을, 재현성 있게 제조하는 새로운 방법이 필요하다.Therefore, there is a need for a new method of reproducibly producing a polyethersulfone membrane having a proper filtration efficiency required by the industry and dramatically improving performance of a high flow rate and a low cycle of use.

본 발명은 상기한 바와 같은, 종래 기술에 의한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 적정여과 효율을 가지며, 고유량 및 사용주기가 향상된 폴리에테르 술폰 멤브레인을 제조하는 방법을 제공하는 것이다.The present invention is to solve the problems according to the prior art as described above, an object of the present invention is to provide a method for producing a polyether sulfone membrane having a moderate filtration efficiency, improved flow rate and life cycle.

또한 본 발명의 다른 목적은, 폴리에테르 술폰 멤브레인의 비대칭형 단면 구조와 물성의 재현성을 보다 안정적으로 확립한 폴리에테르 술폰 멤브레인의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a polyether sulfone membrane in which the asymmetric cross-sectional structure of the polyether sulfone membrane and the reproducibility of physical properties are more stably established.

상기의 목적을 달성하기 위하여, 본 발명은, 폴리에테르술폰을 용매에 용해한 용액을 제공하는 단계; 비용매 및 친수화 물질, 기공조절 반응촉매를 상기 폴리머 용액에 균일하게 혼합하는 단계; 상기 균일한 용액을 연속상 지지체 상에 캐스팅하고 적절한 온도와 습도를 가지는 순환 에어(AIR)에 노출시켜 응고시키는 단계; 폴리에테르술폰 응고체에서 미 응고된 화합물을 추출하는 단계를 포함하는, 비대칭형 폴 리에테르 술폰 멤브레인을 제조하는 방법을 제공한다.In order to achieve the above object, the present invention provides a step of dissolving a polyether sulfone in a solvent; Uniformly mixing a non-solvent, a hydrophilic material, and a pore control reaction catalyst with the polymer solution; Casting the homogeneous solution onto a continuous phase support and solidifying by exposure to circulating air (AIR) having a suitable temperature and humidity; Provided is a method of making an asymmetric polyether sulfone membrane, comprising extracting uncoagulated compound from a polyethersulfone coagulant.

상기 제조 방법에서, 상기 멤브레인은 실질 기공크기가 평균 0.01∼2.0㎛의 범위인 것이 바람직하다.In the production method, the membrane is preferably a practical pore size in the range of 0.01 to 2.0 ㎛ average.

다른 관점에서, 상기 순환 공기는 20∼65℃ 범위의 온도를 가지는 것이 바람직하다. 또한, 상기 순환 공기는 30∼80% 범위의 습도를 가지는 것이 바람직하다.In another aspect, the circulating air preferably has a temperature in the range of 20 to 65 ° C. In addition, the circulating air preferably has a humidity in the range of 30 to 80%.

본 발명의 방법에서, 상기 공기는 기공 크기에 따라 1∼20m/min 범위의 속도로 분사된다.In the process of the invention, the air is injected at a speed in the range of 1-20 m / min, depending on the pore size.

또한, 본 발명의 멤브레인은 70% 이상의 기공도를 가지는, 비대칭형 구조이다.In addition, the membrane of the present invention is an asymmetric structure, having a porosity of 70% or more.

상기 반응촉매는 에폭시계 화합물을 포함하는 것이 바람직하다.The reaction catalyst preferably contains an epoxy compound.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

멤브레인에 형성되는 미세기공의 단면 구조는 크게 나누어 대칭 구조와 비대칭 구조로 나눌 수 있다. 이중, 대칭형 구조는 다공성 조절에 의해 고유량을 얻을수 있으나, 사용주기가 점차 줄어든다. 따라서, 적정여과 효율을 가지면서 고유량 및 사용주기 저하 현상을 방지하기 위해서는 비대칭형 구조가 유리하며, 본 발명에서 이러한 비대칭형 구조를 보다 쉽게 제조할 수 있는 방법을 제공한다.The cross-sectional structure of the micropores formed in the membrane can be largely divided into symmetrical structure and asymmetrical structure. The double, symmetrical structure can obtain a high flow rate by controlling the porosity, but the cycle of use decreases gradually. Therefore, an asymmetrical structure is advantageous in order to have a high filtration efficiency and to prevent a high flow rate and a decrease in the use cycle, and the present invention provides a method for easily manufacturing such an asymmetrical structure.

이를 위해, 폴리머, 용매, 비용매, 반응촉매를 기본조성으로 하여 용매/비용매의 조성비와 고분자농도 및 반응촉매에 의한 표면의 기공크기를 조절할 수 있는 처방 설계 및 적당한 범위의 구배를 가지는 온도, 습도함유 공기를 도포액의 표면과 접촉하도록 분사 순환시킴으로써 응고를 시켜 공기와 접촉하는 도포액의 표면은 큰 기공을, 지지체상 도포액 이면측은 상대적으로 밀집된(dense) 적은 기공을 형성함으로써 원하는 비대칭형 단면 구조를 가지는 멤브레인을 제조할 수 있다. To this end, a polymer, a solvent, a non-solvent, and a reaction catalyst are used as a basic composition, and a prescription design for controlling the composition ratio of the solvent / non-solvent, the polymer concentration, and the pore size of the surface by the reaction catalyst, and a temperature having an appropriate range of gradients, The surface of the coating liquid in contact with air is solidified by spray circulating the moisture-containing air in contact with the surface of the coating liquid, and the back side of the coating liquid on the support forms relatively dense pores to form a desired asymmetry. It is possible to produce a membrane having a cross-sectional structure.

좀 더 상세히 설명하면, 고화공정 조건 중 제막속도를 0.2m/min, 온도 구배범위를 20∼65℃, 습도범위를 30∼80%로 실시하여 고화 과정을 거친다. 이때 순환 공기의 온도 및 습도 뿐 만 아니라, 분사속도 조절시키며, 도포액에 함유된 반응촉매가 공기와 도포액 표면의 반응을 적절히 조절하여 도포액의 용매 및 비용매의 증발속도를 조절함으로써 균일한 기공크기를 가진 미세다공의 균질 멤브레인을 제조 할 수 있다. 또한 기공도의 조절은 공기 응고 이후의 수세공정에서 잔류된 용매, 비용매를 완전히 추출해 냄으로써 고다공성을 확보 할수 In more detail, during the solidification process, the film forming speed is 0.2 m / min, the temperature gradient range is 20 to 65 ° C., and the humidity range is 30 to 80%. At this time, not only the temperature and humidity of the circulating air but also the injection speed are controlled, and the reaction catalyst contained in the coating liquid controls the reaction between the air and the surface of the coating liquid to adjust the evaporation rate of the solvent and the non-solvent in the coating liquid. It is possible to produce a microporous homogeneous membrane having a pore size. In addition, the control of porosity can ensure high porosity by completely extracting the solvent and non-solvent remaining in the washing process after air coagulation.

있는 것이다. It is.

구체적으로, 비대칭형 구조의 미세 기공을 가지는 폴리에테르술폰 멤브레인을 제조하기 위해, 먼저, 폴리에테르술폰 수지에 유기 화합물과 이들을 용해할 수 있는 용매를 첨가하여 혼합용액을 만든다.Specifically, to prepare a polyether sulfone membrane having fine pores having an asymmetric structure, first, an organic compound and a solvent capable of dissolving them are added to the polyether sulfone resin to prepare a mixed solution.

다음, 상기 용액에, 비용매 및 친수화 물질, 기공조절 반응 촉매를 균일하게 혼합한다.Next, the non-solvent, the hydrophilized material and the pore control catalyst are uniformly mixed with the solution.

상기 조액된 용액을 폴리에스터 필름 지지체위에 캐스팅 한 후 온/습도 구배장치를 사용하여, 부분적으로 응고시킨 멤브레인을 형성한다.The crude solution is cast on a polyester film support and then formed using a temperature / humidity gradient to form a partially solidified membrane.

결과된 멤브레인을 물 또는 알코올 혼합용액에 침지함으로써, 미응고된 유기 화합물을 응고된 멤브레인으로부터 용해, 추출하여 미세기공을 형성한다.By immersing the resulting membrane in water or an alcohol mixed solution, the uncoagulated organic compound is dissolved and extracted from the coagulated membrane to form micropores.

본 발명에 사용되기 적합한 용매로는, 공지의 범용 용매일 수 있고, 또는 2 종류 이상의 혼합 용매일 수 있다. 하지만, 비대칭형 구조의 미세 기공을 만들기 위한 직접적 요소는 적절한 첨가제를 첨가해야 한다.Suitable solvents for use in the present invention may be known general purpose solvents or two or more types of mixed solvents. However, the direct factor for making the micropores of the asymmetric structure must be the addition of appropriate additives.

본 발명에서 사용되는 폴리에테르술폰의 용매로는 일차적으로 순환 공기에 의한 고형화 과정을 거친 멤브레인에 상호 침투 가능한 유효한 기공을 많이 만들기 위해, 가소성 및 친수성이 있고 폴리에테르술폰 수지를 잘 용해 할 수 있는 유기용매이다.As a solvent of the polyether sulfone used in the present invention, an organic material capable of plasticizing and hydrophilicity and dissolving polyether sulfone resin well in order to make many effective pores that can interpenetrate into the membrane which is primarily subjected to solidification by circulating air. Solvent.

다공성 멤브레인을 만들때 중요한 것은 폴리에테르술폰 폴리머가 매우 균일하게 섞여야 하고, 수세공정에서 물이나 알코올 혼합용액에 추출 시 상기 첨가된 유기 화합물이 효과적으로 배출 되어야 한다는 것이다.What is important when making a porous membrane is that the polyethersulfone polymer should be mixed very uniformly, and the added organic compounds should be effectively discharged when extracted with water or alcohol mixed solution in the washing process.

폴리에테르술폰 폴리머와 유기 화합물을 모두 용해할 수 있는 용매로는 N-메틸-2-피롤리돈 (NMP), 디메틸포름아미드(DMF), 디메틸설폭사이드, 디메틸아세트아미드(DMAc) 또는 이들의 혼합액이 바람직하다.As a solvent capable of dissolving both the polyether sulfone polymer and the organic compound, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide, dimethylacetamide (DMAc) or a mixture thereof This is preferable.

상기에서 언급한 유기 화합물은 아세테이트계, 에테르계, 알코올계, 케톤계, 에스테르계 또는 이들의 혼합물일수 있고, 이들 유기 화합물은 폴리에테르술폰 수지 조액 조성물 100중량부에 대하여 6∼25 중량부의 비율로 혼합하는 것이 적당하다.The above-mentioned organic compounds may be acetate, ether, alcohol, ketone, ester or mixtures thereof, and these organic compounds may be contained in a proportion of 6 to 25 parts by weight based on 100 parts by weight of the polyether sulfone resin crude liquid composition. It is suitable to mix.

본 발명에 따르면, 첨가제로서는 화학적으로 균일하게 섞일 수 있으면서도 쉽게 분리되지 않는 아세테이트 화합물, 알코올 화합물 및 순환 공기에 의해 비용매의 증발 반응 속도를 제어하는 첨가촉매의 구성을 특징으로 한다.According to the present invention, the additive is characterized by a composition of an addition catalyst which controls the evaporation reaction rate of the non-solvent by an acetate compound, an alcohol compound and circulating air which can be chemically uniformly mixed but not easily separated.

예를 들어, 부틸아세테이트, 폴리에틸렌글리콜, 기공조절 반응촉매를 폴리에 테르술폰 수지 용액과 균일하게 혼합한다. 이를 필름 지지체 위에 캐스팅하고, 적정의 온도/습도 함유한 순환 공기를 분사하여 도포액의 표면과 접촉시키면서 도포액 내의 비용매의 증발과 동시에 습기 노출에 의한 응고를 동시에 진행시켜 표면 기공크기를 조절한다. 물론 지지체와 면한 공기 비접촉면은 상대적으로, 순환 공기 접촉이 차단되어 밀집된(dense) 표면층이 형성된다. 이로써 비대칭형의 폴리에테르 술폰 멤브레인으로 응고된다. For example, butyl acetate, polyethylene glycol, and pore control reaction catalyst are uniformly mixed with the polyether sulfone resin solution. This is cast on a film support, and the surface pore size is controlled by simultaneously evaporating the non-solvent in the coating solution and simultaneously solidifying by moisture exposure while injecting circulating air containing a proper temperature / humidity to contact the surface of the coating solution. . Of course, the air non-contact surface facing the support is relatively blocked from the circulation air contact to form a dense surface layer. This solidifies into an asymmetric polyether sulfone membrane.

물론 도포액 내부의 비용매의 증발은 급격히 일어나지 않도록 충분한 체류시간과 공기의 분사속도를 정밀히 제어 하도록 한다.Of course, to ensure that the evaporation of the non-solvent in the coating liquid does not occur rapidly, sufficient residence time and the injection speed of the air to be precisely controlled.

이후, 여전히 잔류되어 있는 멤브레인내부의 용매, 비용매 및 기타 첨가제 화합물을 알코올 혼합물 또는 물로 제거하면, 그 자리에 극미세 기공이 형성되어 다공성 있는 폴리에테르술폰 멤브레인 형상을 완성 시킨다. 이를 적절한 건조공정을 거쳐 우리가 원하는 비대칭형 단면구조와 다공성에 의한 적정효율, 고유량, 사용주기 향상 개선이 가능한 멤브레인을 재현성 있게 제조할수 있다.Then, the solvent, non-solvent, and other additive compounds remaining in the membrane are removed with an alcohol mixture or water, and micropores are formed therein to complete the porous polyether sulfone membrane shape. Through this proper drying process, we can reproducibly produce a membrane that can improve the efficiency, high flow rate, and useful life by asymmetrical cross-sectional structure and porosity that we want.

이후, 선택적으로, 각 산업체의 용도에 따른 후처리 공정의 한 방법으로 친수성이 더욱 필요한 경우에는 자외선 처리등 친수물질 가교반응에 의해 멤브레인에 친수 기능을 부여할 수도 있다.Thereafter, optionally, when hydrophilicity is further required as a method of post-treatment process according to the use of each industry, the hydrophilic function may be imparted to the membrane by a hydrophilic material crosslinking reaction such as UV treatment.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단 이들 실시예는 본 발명의 일부 예일뿐, 본 발명의 범위가 이들 만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are only some examples of the present invention, and the scope of the present invention is not limited to these.

하기 실시예에서 사용된 폴리에테르술폰 수지는 분자량이 100,000∼ 300,000 이다. 펠렛이나 분말형태의 폴리에테르술폰을 용매에 용해시켜 불투명하고도 점도가 높은 액상으로 만드는데, 사용가능한 용매로는 상기에 서술한 N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸설폭사이드, 디메틸아세트아미드(DMAc) 또는 이들의 혼합액이 바람직하다.The polyether sulfone resin used in the following examples has a molecular weight of 100,000 to 300,000. Pellets or powdered polyether sulfones are dissolved in a solvent to form an opaque, highly viscous liquid. The solvents that can be used are N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF). ), Dimethyl sulfoxide, dimethylacetamide (DMAc) or a mixture thereof.

본 실험에서는 NMP를 사용하여 용해하고 여기에 아세테이트계, 알코올계 유기화합물과 순환 공기에 의한 응고화 반응시 기공 형성 속도를 조절하는 촉매제로 에폭시계 화합물을 첨가하였고, 수지의 작업온도를 정밀하게 제어하였다.In this experiment, NMP was used to dissolve and epoxy-based compounds were added as catalysts to control the pore formation rate during the coagulation reaction with acetate-based and alcohol-based organic compounds and circulating air. It was.

[실시예] EXAMPLE

[실시예 1] (Air 응고법; 평균기공 0.1㎛) Example 1 (Air coagulation method; average pore 0.1 μm)

폴리에테르술폰 수지 (E6020-P, BASF사 제조)를 18∼20%, N-메틸-2-피롤리돈 (NMP) 30∼40%, 부틸아세테이트 15∼20%, 폴리에테르글리콜800 10∼15%, 반응촉매 1∼5%의 조성용액을 만든다. 이때 용액을 30℃로 유지한다. 이 용액을 연속상 필름 지지체위에 균일하게 캐스팅한 후 두께가 100∼120㎛ 되도록 코팅한다. 온도범위 20∼65℃ 범위, 습도범위 30∼80% 구배장치를 이용하여 순환 공기로 코팅된 도포용액을 처리하여 표면층의 기공크기를 만들고 IPA/물 혼합용액 조성비가 일정하게 유지되어 있는 응고조를 통과시켜 응고를 완성시킨다. 이후 멤브레인을 필름지지체로부터 박리시키고, 수세조에서 미세 다공성의 멤브레인 내부에 함유되어 있는 잔여 용매성분을 완전히 추출하고, 하기 표 1의 조건으로 멤브레인을 80℃의 공기로 건 조하여 제조한다. 이후 상기에 언급한 친수화 처리를 통하여 제조된 멤브레인의 물성을 정해진 하기 평가방법에 의거 측정하였다. 결과를 표 2에 요약하였다.18 to 20% of polyether sulfone resin (E6020-P, manufactured by BASF), 30 to 40% of N-methyl-2-pyrrolidone (NMP), 15 to 20% of butyl acetate, 10 to 15 of polyether glycol 800 A composition solution of 1% to 5% of reaction catalyst is prepared. At this time the solution is maintained at 30 ℃. The solution is uniformly cast on the continuous film support and then coated to have a thickness of 100 to 120 µm. Process the coating solution coated with circulating air using the temperature range 20 ~ 65 ℃ and humidity range 30 ~ 80% gradient device to make the pore size of the surface layer, and the coagulation tank in which the composition ratio of IPA / water is kept constant Pass through to complete solidification. Thereafter, the membrane is peeled off from the film support, and the remaining solvent component contained in the microporous membrane in the washing tank is completely extracted, and the membrane is prepared by drying the air at 80 ° C. under the conditions shown in Table 1 below. Then, the physical properties of the membrane prepared through the hydrophilization treatment mentioned above were measured based on the following evaluation method. The results are summarized in Table 2.

[실시예 2∼4](Air 응고법; 평균기공 0.2㎛∼0.8㎛) Examples 2 to 4 (Air coagulation method; average porosity 0.2 µm to 0.8 µm)

하기 표 1 및 2에 제시된 조건으로 폴리에테르술폰의 순환 공기 접촉량 및 체류시간을 변화시킨 것을 제외하고는 실시예 1과 동일하게 진행하였다. 하기 평가 방법에 의거 측정한 결과를 표 2에 요약하였다In the same manner as in Example 1, except that the circulating air contact amount and residence time of the polyether sulfone were changed under the conditions shown in Tables 1 and 2 below. The results measured according to the following evaluation methods are summarized in Table 2.

물성평가 방법Property evaluation method

(1) 유량은 멤브레인을 지름 47mm 디스크 장착후 일정압력(10Psi)으로 단위면적 및 분당 통과유량을 측정하였다.  (1) The flow rate measured the unit area and the flow rate per minute at a constant pressure (10 Psi) after mounting a disk with a diameter of 47 mm.

(2) 기포점(bubble point)은 (주) PMI 제작사 모델을 사용하여 WET용액으로 순수를 적시어 측정하였다.  (2) The bubble point was measured by moistening pure water with a WET solution using a PMI Co., Ltd. model.

(3) 유속감소율은 멤브레인을 지름 47mm 평막 평가기 ((주)새한 제작)에 장착 후 초기 유속과 일정한 압력(0.9bar)으로 멤브레인에 더스트(dust) 표준 용액 2L 통과시킨 시점의 시간당 통과한 순간 유속을 측정하여 감소한 것으로 표시하였다.  (3) The flow rate reduction rate is the moment when the membrane passes through the membrane at 47mm diameter flat membrane evaluator (manufactured by Saehan Co., Ltd.) at the time of passing 2L of dust standard solution through the membrane at the initial flow rate and constant pressure (0.9bar). The flow rate was measured and indicated as being reduced.

[비교예 1 ∼ 4](습식응고법 ; 평균기공 0.1㎛ ∼ 0.8㎛) [Comparative Examples 1-4] (Wet Coagulation Method; Average Pore 0.1 µm to 0.8 µm)

온습도 구배장비를 사용하여 순환 공기 응고법을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 멤브레인을 제조하였다. 상기 평가 방법 에 의거 측정한 결과를 표 3에 요약하였다Membrane was prepared in the same manner as in Example 1 except that the circulating air coagulation method was not used using a temperature and humidity gradient equipment. The results measured according to the above evaluation method are summarized in Table 3.

표1Table 1

기공크기 (㎛)Pore size (㎛) 순환 에어Circulating air 체류시간(분)Retention time (minutes) 분사속도 (m/min)  Injection speed (m / min) 온도범위 (℃)  Temperature range (℃) 습도범위 (%) Humidity Range (%) 실시예1 Example 1 0.1 0.1 > 1 > 1 < 3 <3 20 ∼ 65  20 to 65 30 ∼ 80  30 to 80 실시예2 Example 2 0.2 0.2 > 3 > 3 < 6 <6 실시예3 Example 3 0.45 0.45 > 4 > 4 < 10    <10 실시예4 Example 4 0.8 0.8 > 6 > 6 < 15  <15

표2Table 2

기공 크기 (㎛)Pore size (㎛) 고분자농도Polymer concentration 응고조조성 Coagulation 물성평가             Property evaluation PES(%)PES (%) 용해온도Melting temperature 속도 (m/min)Speed (m / min) 응고조 (% IPA)Coagulation bath (% IPA) 두께 (㎛)Thickness (㎛) 유량 (㎖/분/㎠)Flow rate (ml / min / cm 2) IPA (B.P;Psi)IPA (B.P; Psi) 유속감소율 (%)Flow rate reduction rate (%) 실시예1Example 1 0.10.1 18∼20 18-20 3030 0.2 0.2 5050 100∼120100-120 7∼11 7-11 30∼36 30 to 36 20∼30 20-30 실시예2Example 2 0.20.2 14∼1614-16 3030 0.2 0.2 5050 100∼120100-120 16∼25 16-25 20∼26 20 to 26 20∼30 20-30 실시예3Example 3 0.450.45 10∼1210 to 12 3030 0.2 0.2 5050 100∼120100-120 26∼34 26-34 12∼16 12-16 20∼30 20-30 실시예4Example 4 0.80.8 8∼10  8 to 10 3030 0.2 0.2 5050 100∼120 100-120 45∼60 45 to 60 6∼96-9 30∼40  30-40

표3Table 3

기공크기 (㎛)Pore size (㎛) 고분자농도Polymer concentration 응고조조성 Coagulation 물성평가Property evaluation PES(%)PES (%) 용해온도Melting temperature 속도 (m/min) Speed (m / min) 응고조 (% IPA)Coagulation bath (% IPA) 두께 (㎛)Thickness (㎛) 유량 (㎖/분/㎠)Flow rate (ml / min / cm 2) IPA (B.P;Psi)  IPA (B.P; Psi) 유속 감소율 (%)Flow rate reduction rate (%) 비교예1Comparative Example 1 0.10.1 18∼20 18-20 3030 0.20.2 5050 100∼120100-120 3∼53 to 5 28∼3128-31 45∼60 45 to 60 비교예2Comparative Example 2 0.20.2 14∼1614-16 3030 0.20.2 5050 100∼120100-120 8∼128 to 12 18∼2218-22 40∼50 40-50 비교예3Comparative Example 3 0.450.45 10∼1210 to 12 3030 0.20.2 5050 100∼120100-120 16∼2216-22 10∼1210 to 12 35∼50 35-50 비교예4Comparative Example 4 측정 불가Not measurable 8∼10  8 to 10 3030 0.20.2 5050 100∼120 100-120 20∼2620 to 26 12∼15 12-15 70∼80 70-80

전술한 바와 같이, 본 발명에 따른 제조 방법은 폴리에테르 술폰 멤브레인의 비대칭형 단면 구조와 물성의 재현성을 보다 안정적으로 확립하며, 또한 제조된 폴리에테르 술폰 멤브레인은 적정여과 효율을 보이며, 고유량 및 사용주기가 향상된 특성을 나타낸다.As described above, the production method according to the present invention more stably establishes the asymmetric cross-sectional structure and reproducibility of the physical properties of the polyether sulfone membrane, and the prepared polyether sulfone membrane exhibits optimum filtration efficiency, high flow rate and use. The cycle exhibits improved characteristics.

Claims (7)

폴리에테르술폰을 용매에 용해한 용액을 제공하는 단계;Providing a solution of polyethersulfone dissolved in a solvent; 비용매 및 친수화 물질, 기공조절 반응촉매를 상기 폴리머 용액에 균일하게 혼합하는 단계;Uniformly mixing a non-solvent, a hydrophilic material, and a pore control reaction catalyst with the polymer solution; 상기 균일한 용액을 연속상 지지체 상에 캐스팅하고 적절한 온도와 습도를 가지는 순환 공기에 노출시켜 응고시키는 단계;Casting the homogeneous solution onto a continuous phase support and solidifying by exposure to circulating air having a suitable temperature and humidity; 폴리에테르술폰 응고체에서 미 응고된 화합물을 추출하는 단계를 포함하는, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.A method of making an asymmetric polyether sulfone membrane, comprising extracting an uncoagulated compound from a polyethersulfone coagulant. 제 1 항에 있어서, 상기 멤브레인은 실질 기공크기가 평균 0.01∼2.0㎛의 범위인, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.The method of claim 1, wherein the membrane has an average pore size in the range of 0.01-2.0 μm on average. 제 1 항에 있어서, 상기 순환 공기는 20∼65℃ 범위의 온도를 가지는, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.The method of claim 1, wherein the circulating air has a temperature in the range of 20-65 ° C. 3. 제 1 항에 있어서, 상기 순환 공기는 30∼80% 범위의 습도를 가지는, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.The method of claim 1, wherein the circulating air has a humidity in the range of 30-80%. 제 1 항에 있어서, 상기 공기는 기공 크기에 따라 1∼20m/min 범위의 속도로 분사되는, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.The method of claim 1, wherein the air is injected at a speed in the range of 1-20 m / min, depending on the pore size. 제 1 항에 있어서, 멤브레인은 70% 이상의 기공도를 가지는, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.The method of claim 1, wherein the membrane has a porosity of at least 70%. 제 1 항에 있어서, 상기 반응촉매는 에폭시계 화합물을 포함하는, 비대칭형 폴리에테르 술폰 멤브레인을 제조하는 방법.The method of claim 1, wherein the reaction catalyst comprises an epoxy-based compound.
KR1020060020820A 2006-03-06 2006-03-06 Method for manufacturing Polyethersulfone membrane by air coagulation KR100850116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060020820A KR100850116B1 (en) 2006-03-06 2006-03-06 Method for manufacturing Polyethersulfone membrane by air coagulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060020820A KR100850116B1 (en) 2006-03-06 2006-03-06 Method for manufacturing Polyethersulfone membrane by air coagulation

Publications (2)

Publication Number Publication Date
KR20070091401A true KR20070091401A (en) 2007-09-11
KR100850116B1 KR100850116B1 (en) 2008-08-04

Family

ID=38689197

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060020820A KR100850116B1 (en) 2006-03-06 2006-03-06 Method for manufacturing Polyethersulfone membrane by air coagulation

Country Status (1)

Country Link
KR (1) KR100850116B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855664B1 (en) * 2007-02-15 2008-09-03 웅진케미칼 주식회사 Manufacturing method of porous membrane, porous membrane produced thereby and microfiltration pleated membrane filer using the same
KR100950087B1 (en) * 2008-04-21 2010-03-29 한국화학연구원 Process for the preparation of polyether sulfone copolymers
KR100950931B1 (en) * 2007-11-13 2010-04-01 웅진케미칼 주식회사 Manufacturing method of polyethersulfone membrane with highly asymmetric structure and its product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141611A (en) 1986-12-02 1988-06-14 Fuji Photo Film Co Ltd Production of microporous membrane
JPS63141610A (en) 1986-12-02 1988-06-14 Fuji Photo Film Co Ltd Production of microporous membrane
US5958989A (en) 1997-07-08 1999-09-28 Usf Filtration And Separations Group, Inc. Highly asymmetric ultrafiltration membranes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855664B1 (en) * 2007-02-15 2008-09-03 웅진케미칼 주식회사 Manufacturing method of porous membrane, porous membrane produced thereby and microfiltration pleated membrane filer using the same
KR100950931B1 (en) * 2007-11-13 2010-04-01 웅진케미칼 주식회사 Manufacturing method of polyethersulfone membrane with highly asymmetric structure and its product
KR100950087B1 (en) * 2008-04-21 2010-03-29 한국화학연구원 Process for the preparation of polyether sulfone copolymers

Also Published As

Publication number Publication date
KR100850116B1 (en) 2008-08-04

Similar Documents

Publication Publication Date Title
JP5722621B2 (en) Polyvinylidene fluoride porous flat membrane and method for producing the same
KR20090013643A (en) Polyvinylidene difluoride hollow fiber membrane for water treatment and manufacturing method thereof
KR100950931B1 (en) Manufacturing method of polyethersulfone membrane with highly asymmetric structure and its product
KR20110079140A (en) Method for manufacturing porous membrane and asymmetric porous membrane thereby
KR101394416B1 (en) Method for Manufacturing Polyvinylidene fluoride Hollow fiber membrane and Hollow fiber membrane
KR100850116B1 (en) Method for manufacturing Polyethersulfone membrane by air coagulation
KR20120059755A (en) Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
KR20130060737A (en) Porous separation membrane and preparation method thereof
KR20160001142A (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR101096536B1 (en) Microfilter and method for preparing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
KR100851342B1 (en) Microfiltration manufacturing method
KR101779889B1 (en) Composite membrane comprising polyamide coating layer and preparation method thereof
KR101002597B1 (en) Method for Manufacturing Porous membrane
KR100446211B1 (en) Process for preparing of a proton-conducting polyvinylidene fluoride membrane
KR101230842B1 (en) Manufacturing method of porous asymmetric membrane with various pore size and its product manufactured thereby
KR102525810B1 (en) Porous fluorine resin membrane and method for preparing the same
KR100850167B1 (en) PVDF membrane with high porosity and permeation and method for manufacturing the same
KR20180015797A (en) Inner coagulant for producing polysulfone-based hollow fiber membrange and method of producing polysulfone-based hollow fiber membrane by using the same
KR101780012B1 (en) Preparation method of polymer filter membrane, and polymer filter membrane
KR102139208B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR101198646B1 (en) Manufacturing method of asymmetric porous membrane and asymmetric porous membrane thereby
KR101331066B1 (en) Polyethersulfone hollow fiber membrane and method of manufacturing the same
JP6959329B2 (en) Methods for the production of positively charged membranes
KR20140031627A (en) A manufacturing method of polysulfone membrane improved internal pressure stability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120719

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130703

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140725

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150728

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170706

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180724

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190724

Year of fee payment: 12