KR20070082931A - Lithium secondary battery of improved overcharge safety - Google Patents

Lithium secondary battery of improved overcharge safety Download PDF

Info

Publication number
KR20070082931A
KR20070082931A KR1020060015996A KR20060015996A KR20070082931A KR 20070082931 A KR20070082931 A KR 20070082931A KR 1020060015996 A KR1020060015996 A KR 1020060015996A KR 20060015996 A KR20060015996 A KR 20060015996A KR 20070082931 A KR20070082931 A KR 20070082931A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium carbonate
separator
battery
electrolyte
Prior art date
Application number
KR1020060015996A
Other languages
Korean (ko)
Other versions
KR100950038B1 (en
Inventor
홍기주
류덕현
김정진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060015996A priority Critical patent/KR100950038B1/en
Publication of KR20070082931A publication Critical patent/KR20070082931A/en
Application granted granted Critical
Publication of KR100950038B1 publication Critical patent/KR100950038B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium secondary battery is provided to minimize the amount of lithium carbonate used and to ensure battery safety due to increased internal pressure before thermal runway by generating a large amount of gas in a short time when a battery is overcharged. A lithium secondary battery is equipped with a current interruptive device(CID) for interrupting an electric current and discharging pressurized gas when internal pressure of a battery is increased, wherein lithium carbonate that promotes decomposition of an electrolyte is applied onto the surface of a separator for electrically separating a positive electrode from a negative electrode. The lithium carbonate is spread in a density of 1-20g/m^2 based on the surface of the separator.

Description

과충전에 대한 안전성이 향상된 리튬 이차전지 {Lithium Secondary Battery of Improved Overcharge Safety}Lithium Secondary Battery of Improved Overcharge Safety

도 1 내지 3은 원통형 이차전지에서 CID의 작동에 의해 전류가 차단되고 고압 가스가 배출되는 일련의 과정에 대한 수직 단면도들이다.1 to 3 are vertical cross-sectional views of a series of processes in which current is cut off and high-pressure gas is discharged by the operation of the CID in the cylindrical secondary battery.

본 발명은 과충전시 안전성이 향상된 리튬 이차전지에 관한 것으로,더욱 상세하게는 전지의 내압 상승시 전류의 차단 및 가압 가스의 배출을 위한 CID(Current Interruptive Device)가 장착되어 있는 이차전지로서, 양극과 음극을 전기적으로 이격시키는 분리막의 표면에 과충전시 전해액의 분해를 촉진하는 탄산리튬이 코팅되어 있는 이차전지를 제공한다. The present invention relates to a lithium secondary battery with improved safety during overcharging, and more particularly, a secondary battery equipped with a CID (Current Interruptive Device) for interrupting current and discharging pressurized gas when the internal pressure of the battery increases. Provided is a secondary battery in which lithium carbonate is coated on a surface of a separator electrically separating a negative electrode to promote decomposition of an electrolyte during overcharging.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사 용되고 있다.As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is increasing rapidly. Among them, many researches have been conducted and commercialized and widely used for lithium secondary batteries with high energy density and discharge voltage. It is used.

이차전지는 양극과 음극 사이에 분리막이 개재되어 있는 전극조립체가 전해질이 함침된 상태로 케이스에 밀봉되어 있는 구조로 이루어져 있다. 전극조립체는 긴 시트형의 집전체 호일(foil) 양면에 전극 활물질을 도포한 양극과 음극을 분리막을 개재한 상태로 둥글게 권취한 젤리-롤형과 일정한 단위 크기의 집전체 호일 양면에 전극 활물질을 도포한 다수의 양극과 음극을 분리막을 개재한 생태로 순차적으로 적층한 스택형으로 구분된다. The secondary battery has a structure in which an electrode assembly having a separator interposed between a positive electrode and a negative electrode is sealed in a case in which an electrolyte is impregnated. The electrode assembly is a jelly-roll type in which the positive electrode and the negative electrode are coated on both sides of a long sheet-shaped current collector foil, and the electrode active material is coated on both sides of the current collector foil having a constant unit size. A plurality of anodes and cathodes are divided into stacks sequentially stacked in an ecological manner through a separator.

이러한 전극조립체를 전지케이스에 내장한 형태에 따라 이차전지를 분류하기도 하는데, 원통형의 금속 캔에 내장한 원통형 전지, 각형의 금속 캔에 내장한 각형 전지, 및 알루미늄 라미네이트 시트의 파우치형 케이스에 내장한 파우치형 전지가 있다. 그 중 원통형 전지는 상대적으로 용량이 크고 구조적으로 안정하다는 장점을 가진다.The secondary batteries may be classified according to the shape of the electrode assembly in the battery case. The cylindrical batteries are embedded in the cylindrical metal cans, the rectangular batteries in the rectangular metal cans, and the pouch type cases of the aluminum laminate sheets. There is a pouch type battery. Among them, the cylindrical battery has the advantage of relatively large capacity and structurally stable.

일반적으로 원통형 이차전지는, 젤리-롤형 전극조립체를 원통형 금속 캔에 장착한 상태에서 전극조립체의 음극을 캔의 하단에 용접하고, 전극조립체와 전해질이 내장된 상태에서 전지를 밀폐시키기 위해 그것의 상단에 결합되는 탑 캡의 돌출단자에 전극조립체의 양극을 용접하여 제조된다. In general, a cylindrical secondary battery is welded to the bottom of the can while the jelly-roll type electrode assembly is mounted in a cylindrical metal can, and the top of the top of the electrode assembly and the electrolyte is sealed to seal the battery in the state. It is manufactured by welding the anode of the electrode assembly to the protruding terminal of the top cap coupled to.

그러나, 이차전지의 주류를 이루고 있는 리튬 이차전지는 안전성이 낮다는 단점을 가지고 있다. 예를 들어, 전지가 대략 4.5 V 이상으로 과충전되는 경우에는 양극 활물질의 분해반응이 일어나고, 음극에서 리튬 금속의 수지상(dendrite) 성장과, 전해액의 분해반응 등이 일어난다. 이러한 과정에서 열이 수반되어 상기 와 같은 분해반응과 다수의 부반응들이 급속히 진행되며, 급기야는 전지의 발화 및 폭발이 유발되기도 한다. However, lithium secondary batteries which are the mainstream of secondary batteries have a disadvantage of low safety. For example, when the battery is overcharged to about 4.5 V or more, decomposition reaction of the positive electrode active material occurs, dendrite growth of lithium metal at the negative electrode, decomposition reaction of electrolyte solution, and the like occur. In this process, heat is accompanied, such decomposition reactions and a number of side reactions are rapidly progressed, and the air supply may cause the battery to ignite and explode.

따라서, 이러한 문제점을 해소하기 위하여, 일반적인 원통형 이차전지에는 전지의 비정상적인 작동시 전류를 차단하고 내압을 해소하기 위한 CID(Current Interruptive Device)가 전극조립체와 탑 캡 사이의 공간에 장착되어 있다. Therefore, in order to solve this problem, a general cylindrical secondary battery is equipped with a CID (Current Interruptive Device) to cut off the current during the abnormal operation of the battery and to break down the internal pressure in the space between the electrode assembly and the top cap.

도 1 내지 3에는 그러한 CID의 일련의 작동 과정이 단계적으로 도시되어 있다. 1 to 3 illustrate a step by step sequence of operation of such a CID.

이들 도면을 참조하면, 탑 캡(10)은 돌출된 형태로 양극 단자를 형성하고 배기구가 천공되어 있으며, 그것의 하부에 전지 내부의 온도 상승시 전지 저항이 크게 증가하여 전류를 차단하는 PTC 소자(positive temperature coefficient element: 20), 정상적인 상태에서는 하향 돌출된 형상으로 되어 있고 전지 내부의 압력 상승시 돌출되면서 파열되어 가스를 배기하는 안전벤트(30), 및 상단 일측 부위가 안전벤트(30)에 결합되어 있고 하단 일측이 전극조립체(40)의 양극에 연결되어 있는 접속 플레이트(50)가 순차적으로 위치되어 있다.Referring to these drawings, the top cap 10 has a positive electrode terminal formed in a protruding shape, and an exhaust port is perforated, and a PTC element for blocking current due to a large increase in battery resistance when the temperature inside the battery increases. Positive temperature coefficient element: 20), in the normal state has a downwardly protruding shape, the safety vent 30 to explode and exhaust gas when the pressure inside the battery rises, and the upper one side is coupled to the safety vent 30 The connection plate 50, which is connected to the anode of the electrode assembly 40, is positioned sequentially.

따라서, 정상적인 작동조건에서 전극조립체(40)의 양극은 리드(42), 접속 플레이트(50), 안전벤트(30) 및 PTC 소자(20)를 경유하여 탑 캡(10)에 연결되어 통전을 이룬다.Therefore, under normal operating conditions, the anode of the electrode assembly 40 is connected to the top cap 10 through the lead 42, the connection plate 50, the safety vent 30, and the PTC element 20 to conduct electricity. .

그러나, 과충전 등과 같은 원인에 의해 전극조립체(40) 쪽으로부터 가스가 발생하여 내압이 증가하면, 도 2에서와 같이, 안전벤트(30)는 그것의 형상이 역전되면서 상향 돌출되게 되고, 이때, 안전벤트(30)가 접속 플레이트(50)로부터 분리 되어 전류가 차단되게 된다. 따라서, 과충전이 더 이상 진행되지 않도록 하여 안전성을 확보한다. 그럼에도 불구하고, 계속적으로 내압이 증가하면, 도 3에서와 같이, 안전벤트(30)가 파열되고 가압 가스는 그러한 파열 부위를 경유하여 탑 캡(10)의 배기구를 통해 배기됨으로써, 전지의 폭발을 방지하게 된다. However, when gas is generated from the electrode assembly 40 due to a cause such as overcharge, and the internal pressure increases, as shown in FIG. 2, the safety vent 30 protrudes upward while its shape is reversed. The vent 30 is separated from the connection plate 50 so that the current is cut off. Therefore, overcharging does not proceed any more to ensure safety. Nevertheless, if the internal pressure continues to increase, as shown in FIG. 3, the safety vent 30 is ruptured and the pressurized gas is exhausted through the exhaust port of the top cap 10 via such a rupture portion, thereby preventing the explosion of the battery. Will be prevented.

따라서, 상기 일련의 과정이 순차적으로 진행되는 경우에는 전지의 안전성이 담보될 수 있다. 반면에, 이러한 작동 과정은 전극조립체 부위에서의 가스 발생량에 절대적으로 의존한다. 따라서, 가스 발생량이 충분히 못하거나 짧은 시간내에 소정량의 수준으로 증가하지 못하면, CID 단락이 늦어지게 되고, 전극조립체의 계속적인 통전으로 인해 열폭주 현상이 일어날 수 있다. 열폭주 현상은 전지가 계속적인 통전 상태에 놓여 있을 때 발생하거나 또는 더욱 가속화된다. 이러한 문제점을 해결하기 위하여 본 발명에서는 전해액의 분해를 위한 탄산리튬을 분리막에 포함시키는 방법을 제시하고 있다. Therefore, when the series of processes are sequentially performed, the safety of the battery can be ensured. On the other hand, this operation process is absolutely dependent on the amount of gas generated at the electrode assembly site. Therefore, if the gas generation amount is insufficient or does not increase to a predetermined level within a short time, the CID short circuit is delayed and thermal runaway may occur due to the continuous energization of the electrode assembly. Thermal runaway occurs or accelerates when the battery is in a constant energized state. In order to solve this problem, the present invention proposes a method of including lithium carbonate in a separator for decomposition of an electrolyte.

한편, 탄산리튬을 전지의 내부에 포함시키는 일부 기술들이 알려져 있다. 예를 들어, 일본 공개특허출원 제1993-0242913호 및 일본 공개특허출원 제2002-0270179호에서는 탄산리튬을 양극에 첨가하여 과충전시 탄산리튬 자체가 분해하여 탄산가스를 발생시키는 기술을 개시하고 있다. 그러나, 상기 출원들에서는 탄산가스의 발생이 탄산리튬 자체의 분해에 의존하기 때문에 가스의 발생량에 한계가 있으며, 가스 발생량을 높이기 위해서는 첨가되는 탄산리튬의 양을 증가시켜야 하지만, 이 경우에는 전지의 성능이 저하되는 문제점이 있다. On the other hand, some techniques for incorporating lithium carbonate into a battery are known. For example, Japanese Laid-Open Patent Application Nos. 1993-0242913 and Japanese Laid-Open Patent Application 2002-0270179 disclose a technique of adding lithium carbonate to a positive electrode to decompose lithium carbonate itself upon generation of overcharge to generate carbon dioxide gas. However, in the above applications, the generation of gas is limited because the generation of carbonic acid gas depends on the decomposition of lithium carbonate itself, and in order to increase the amount of gas generated, the amount of lithium carbonate added must be increased. There is a problem of this deterioration.

또한, 탄산리튬을 이용한 또다른 예로서, 일본 공개특허출원 제2001-057240 호에는 전지의 이상 작동시 전해액의 분해에 의한 내압 상승을 억제하기 위하여 전극, 전해질 등에 탄산리튬을 첨가하는 기술이 개시되어 있다. 상기 출원은 오히려 본 발명과는 반대로 탄산리튬이 전해액의 분해반응을 억제하는 것으로 설명하고 있다. 상기 출원은 정확하지는 않지만 전지와 같은 밀폐된 계에서 탄산리튬이 기타 다수의 성분들과 평행이동이 일어나서 전해액의 분해 반응을 억제하는 것으로 추측된다고 설명하고 있다.Further, as another example of using lithium carbonate, Japanese Laid-Open Patent Application No. 2001-057240 discloses a technique of adding lithium carbonate to an electrode, an electrolyte, etc. in order to suppress an increase in internal pressure due to decomposition of an electrolyte during abnormal operation of a battery. have. Rather, contrary to the present invention, the above application describes that lithium carbonate inhibits the decomposition reaction of the electrolyte solution. Although the application is inaccurate, it is assumed that lithium carbonate in a closed system such as a battery is assumed to be in parallel with other components, thereby inhibiting the decomposition reaction of the electrolyte.

결과적으로, 탄산리튬에 의한 전해액의 분해반응은 알려져 있지 않고 오히려 전해액의 분해반응을 억제하는 것으로 알려져 있으며, 탄산리튬의 첨가에 의해 내압을 증가시키는 경우도 그 자체의 분해에 의한 가스에 의존하고 있다.As a result, the decomposition reaction of the electrolyte solution by lithium carbonate is not known, but rather it is known to suppress the decomposition reaction of the electrolyte solution, and even when the internal pressure is increased by the addition of lithium carbonate, it depends on the gas by the decomposition itself. .

따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.Accordingly, an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.

본 출원의 발명자들은 다양한 실험과 심도 있는 연구를 거듭한 끝에, 분리막에 탄산리튬을 코팅하여 전지를 제조할 경우, 상기 탄산리튬과 전해액의 접촉면적을 증가시킬 수 있으므로 사용되는 탄산리튬의 양을 최소화할 수 있으며, 전지의 과충전시 상기 분리막의 탄산리튬이 전해액의 분해반응을 더욱 촉진하여 다량의 가스를 단시간내에 발생시킴으로써, 열폭주 이전에 CID의 작동이 가능할 정도로 내압을 증가시켜 전지의 안전성을 확보할 수 있음을 확인하였다. 본 발명은 이러한 발견을 기초로 완성되었으며, 이는 종래에 알려져 있는 개념과는 전혀 반대이다.After various experiments and in-depth studies, the inventors of the present application minimize the amount of lithium carbonate used because the lithium carbonate is coated on the separator to increase the contact area between the lithium carbonate and the electrolyte. When the battery is overcharged, the lithium carbonate in the separator further promotes the decomposition reaction of the electrolyte to generate a large amount of gas within a short time, thereby increasing the internal pressure to enable the operation of the CID before thermal runaway to secure battery safety. It was confirmed that it can be done. The present invention has been completed based on this finding, which is in stark contrast to conventionally known concepts.

따라서, 본 발명에 따른 이차전지는 전지의 내압 상승시 전류의 차단 및 가압 가스의 배출을 위한 CID(Current Interruptive Device)가 장착되어 있는 이차전지로서, 양극과 음극을 전기적으로 이격시키는 분리막의 표면에 과충전시 전해액의 분해를 촉진하는 탄산리튬이 코팅되어 있는 것으로 구성되어 있다.Therefore, the secondary battery according to the present invention is a secondary battery equipped with a CID (Current Interruptive Device) for blocking the current and discharge of pressurized gas when the internal pressure of the battery rises, the surface of the separator electrically separating the positive electrode and the negative electrode Lithium carbonate is coated to accelerate the decomposition of the electrolyte during overcharging.

즉, 분리막의 표면이 탄산리튬으로 코팅되어 있어서, 전지가 과충전 되었을 때, 전해액의 분해반응이 상기 분리막 표면의 탄산리튬에 의해 촉진되어 많은 가스를 단시간내에 발생시키게 된다. 예를 들어, 분리막 표면의 탄산리튬은 전해액의 분해반응에 일종의 촉매로서 작용하여 이산화탄소, 일산화탄소 등과 같은 가스의 발생량을 증가시킨다. 이러한 전해액 분해반응은 일반적인 과충전 상태에서의 분해반응과 비교하여 시간당 가스 발생량이 월등히 크므로, 열폭주가 일어나기 이전에 CID의 작동이 가능한 내압 수준에 도달할 수 있다.That is, since the surface of the separator is coated with lithium carbonate, when the battery is overcharged, the decomposition reaction of the electrolyte is promoted by the lithium carbonate on the surface of the separator to generate a large amount of gas in a short time. For example, lithium carbonate on the surface of the separator acts as a catalyst in the decomposition reaction of the electrolyte, thereby increasing the amount of gas such as carbon dioxide and carbon monoxide. Since the electrolyte decomposition reaction is much larger than the decomposition reaction in a normal overcharge state, the amount of gas generated per hour can reach the pressure resistance level at which the CID can operate before thermal runaway occurs.

상기 탄산리튬은 전해질의 분해반응을 촉진하면서 분리막 본연의 기능에 영향을 미치지 않도록 적당량 코팅되는 것이 바람직하다. 예를 들어, 너무 적은 양이 코팅되었을 시 전해질의 분해반응이 효과적으로 이루어지지 않아 목적하는 양의 가스가 발생되지 않는 문제점이 발생하고, 너무 많은 양이 코팅되었을 시 분리막의 표면에서 리튬이온의 이동을 방해하여 전지의 성능을 저하시킬 수 있다. 따라서, 상기 탄산리튬은 분리막의 전체 표면적을 기준으로 1 g/m2 내지 20 g/m2 의 밀도로 코팅되는 것이 바람직하다.The lithium carbonate is preferably coated in an appropriate amount so as not to affect the function of the separator while promoting the decomposition reaction of the electrolyte. For example, when too little is coated, the decomposition reaction of the electrolyte is not effectively performed, so that a desired amount of gas is not generated. When too much is coated, the movement of lithium ions from the surface of the separator is prevented. This can interfere with the performance of the battery. Accordingly, the lithium carbonate is preferably coated at a density of 1 g / m 2 to 20 g / m 2 based on the total surface area of the separator.

본 발명에서 상기 탄산리튬이 분리막의 표면에 코팅될 때, 상기 탄산리튬과 전해액의 접촉면적을 최대한 증가시키기 위하여, 분리막의 양면에 탄산리튬을 코팅하는 것이 바람직하고, 분리막의 표면 전체에 고르게 분포될 수 있도록 딥핑(dipping), 블렌딩(blending) 방식으로 코팅되는 것이 바람직하며, 그 중에서도 딥핑 방식으로 코팅되는 것이 더욱 바람직하다. In the present invention, when the lithium carbonate is coated on the surface of the separator, in order to increase the contact area of the lithium carbonate and the electrolyte as much as possible, it is preferable to coat lithium carbonate on both sides of the separator, and to be evenly distributed throughout the surface of the separator. It is preferable to be coated by a dipping or blending method, and more preferably, by coating a dipping method.

상기 코팅을 위한 조성물은, 예를 들어, 과충전 방지제로서의 탄산리튬과 바인더가 용매에 혼합되어 있는 슬러리일 수 있다. 여기서의 바인더는 전지의 구성요소에 영향을 주지 않으면서 탄산리튬과 분리막 사이에 결합력을 제공하고 리튬 이온이 통과할 수 있는 물질이 사용될 수 있으며, 예를 들어, PVDF와 시아노 레진(Cyano-resine)의 혼합물이 바람직하게 사용될 수 있다.The composition for the coating may be, for example, a slurry in which a lithium carbonate and a binder as an overcharge inhibitor are mixed in a solvent. The binder herein may provide a bonding force between the lithium carbonate and the separator without affecting the components of the battery, and a material capable of passing lithium ions may be used, for example, PVDF and cyano-resine. Mixtures of) may be preferably used.

본 발명에서 사용되는 상기 전해액은 리튬염을 함유하는 비수계 전해질로서, 탄산리튬에 의하여 분해반응이 활발히 진행되는 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트 등의 카보네이트계 용매를 포함하는 것이 바람직하다.The electrolytic solution used in the present invention is a non-aqueous electrolyte containing lithium salt, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di It is preferable to contain carbonate solvents, such as ethyl carbonate.

본 발명에서 사용되는 상기 분리막은 특별히 제한되는 것은 아니며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막으로, 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다.The separator used in the present invention is not particularly limited and is an insulating thin film having high ion permeability and mechanical strength. The pore diameter of the separator is generally 0.01 to 10 μm, and the thickness is generally 5 to 300 μm. . As such a separator, for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.

본 발명에서 상기 전지는 바람직하게는 원통형 이차전지로서, 양극/분리막/음극의 전극조립체를 원통형의 금속 캔 내부에 내장하고, 상기 전극조립체의 상부에 CID가 장착되어 있는 구조로 이루어져 있다.In the present invention, the battery is preferably a cylindrical secondary battery, the electrode assembly of the positive electrode / separator / negative electrode is built in a cylindrical metal can, and has a structure in which the CID is mounted on the electrode assembly.

이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are provided to illustrate the present invention, and the scope of the present invention is not limited thereto.

[실시예 1]Example 1

1-1. 양극의 제조1-1. Manufacture of anode

양극 활물질로 LiCoO2를 사용하였고, LiCoO2 95 중량%, 및 Super-P(도전제) 2.5 중량%, PVdF(결합제) 2.5 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 혼합물 슬러리를 제조한 후, 긴 시트형 알루미늄 호일 상에 코팅, 건조 및 압착하여 양극을 제조하였다.LiCoO 2 was used as the positive electrode active material, and 95% by weight of LiCoO 2 , 2.5% by weight of Super-P (conductor) and 2.5% by weight of PVdF (binder) were added to N-methyl-2-pyrrolidone (NMP) as a solvent. After preparing the positive electrode mixture slurry, the positive electrode was prepared by coating, drying and pressing on a long sheet aluminum foil.

1-2. 음극의 제조1-2. Preparation of Cathode

음극 활물질로는 인조흑연을 사용하였고, 인조흑연 95 중량%, 및 Super-P(도전제) 1 중량%, PVdF(결합제) 4 중량%를 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조한 후, 긴 시트형 구리 호일 상에 코팅, 건조 및 압착하여 음극을 제조하였다.As the negative electrode active material, artificial graphite was used, 95% by weight of artificial graphite, 1% by weight of Super-P (conductive agent), and 4% by weight of PVdF (binder) were added to NMP as a solvent to prepare a negative electrode mixture slurry. The negative electrode was prepared by coating, drying and pressing on an elongated sheet copper foil.

1-3. 전해액의 제조1-3. Preparation of Electrolyte

카보네이트계 용액에 1M LiPF6을 첨가하여 리튬염 함유 전해액을 제조하였다.1M LiPF 6 was added to the carbonate solution to prepare a lithium salt-containing electrolyte solution.

1-4. 분리막의 제조1-4. Preparation of Membrane

분리막의 베어 필름으로 다공성 폴리에틸렌(Poly ethylene)을 사용하였으며, 상기 분리막의 양면에 딥 코팅 방식으로 단위 면적(m2) 당 3 ~ 10 g 의 탄산리튬을 코팅하여 분리막을 제조하였다. Porous polyethylene (Poly ethylene) was used as a bare film of the separator, and a separator was prepared by coating 3 to 10 g of lithium carbonate per unit area (m 2 ) by a dip coating method on both surfaces of the separator.

1-5. 전지의 제조1-5. Manufacture of batteries

상기 1-4의 분리막을 상기 1-1 및 1-2의 양극과 음극 사이에 개재한 후, 권취한 다음, 원통형 알루미늄 캔에 내장하고 상기 1-3의 전해질에 함침하여 상단에 CID를 장착한 전지 10 개를 제조하였다.The separator of 1-4 was interposed between the anode and the cathode of 1-1 and 1-2, then wound up, embedded in a cylindrical aluminum can, and impregnated with the electrolyte of 1-3 to mount a CID on the top. Ten cells were prepared.

[비교예 1]Comparative Example 1

탄산리튬이 코팅되지 않은 분리막을 사용하였다는 점을 제외하고는 상기 실시예 1과 같은 방법으로 전지 10 개를 제조하였다.10 batteries were manufactured in the same manner as in Example 1, except that a separator not coated with lithium carbonate was used.

[비교예 2]Comparative Example 2

탄산리튬을 상기 1-1의 양극 혼합물에 5 중량%로 첨가하여 양극을 제조하였다는 점을 제외하고는 상기 실시예 1과 같은 방법으로 전지 10 개를 제조하였다. 10 cells were manufactured in the same manner as in Example 1, except that lithium carbonate was added to the cathode mixture of 1-1 at 5 wt% to prepare a cathode.

[비교예 3]Comparative Example 3

탄산리튬을 상기 1-3의 전해액에 5 중량%로 첨가하여 전해액을 제조하였다는 점을 제외하고는 상기 실시예 1과 같은 방법으로 전지 10 개를 제조하였다.10 batteries were manufactured in the same manner as in Example 1, except that lithium carbonate was added to the electrolyte of 1-3 in an amount of 5% by weight.

[실험예 1]Experimental Example 1

상기 실시예 1 및 비교예 1 내지 비교예 3에서 제조된 전지들을 파이버글라스로 단열하여 18.5 V/1C 조건으로 과충전 실험을 실시하였다. 그 결과, 본 발명에 따른 실시예 1의 모든 전지들은 발화 등이 유발됨이 없이 바로 CID 소자가 작동하여 단전을 이루어졌다(PASS). 반면에, 비교예 1의 전지들 중 다수와 비교예 2 및 3의 전지들 중 일부에서, CID 소자의 작동 전에 발화가 유발됨으로써(FAIL) 충분한 과충전 안전성이 확보되지 못하였음을 확인할 수 있었다.The batteries prepared in Example 1 and Comparative Examples 1 to 3 were insulated with fiberglass, and subjected to an overcharge experiment under 18.5 V / 1C conditions. As a result, all of the batteries of Example 1 according to the present invention immediately performed a CID device without causing ignition or the like, and made a power cut (PASS). On the other hand, in many of the batteries of Comparative Example 1 and some of the batteries of Comparative Examples 2 and 3, it was confirmed that sufficient overcharge safety was not secured by causing ignition before the operation of the CID device (FAIL).

이상에서 설명한 바와 같이, 본 발명에 따른 이차전지는 탄산리튬을 분리막의 양면에 코팅함으로써, 탄산리튬과 전해액의 접촉면적을 증가시켜 사용되는 탄산리튬의 첨가량을 최소화하며 전지의 과충전 시 전해액의 분해반응을 더욱 촉진하여 다량의 가스를 단시간내에 발생시키고, 이로 인하여 열폭주 이전에 CID의 작동이 가능할 정도로 내압을 증가시켜 전지의 안전성을 확보하는 효과가 있다. As described above, in the secondary battery according to the present invention, lithium carbonate is coated on both surfaces of the separator to increase the contact area of lithium carbonate and the electrolyte, thereby minimizing the amount of lithium carbonate used, and decomposing the electrolyte during overcharging of the battery. To further promote the generation of a large amount of gas in a short time, thereby increasing the internal pressure enough to enable the operation of the CID before thermal runaway has the effect of securing the safety of the battery.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

Claims (7)

전지의 내압 상승시 전류의 차단 및 가압 가스의 배출을 위한 CID(Current Interruptive Device)가 장착되어 있는 이차전지로서, 양극과 음극을 전기적으로 이격시키는 분리막의 표면에 과충전시 전해액의 분해를 촉진하는 탄산리튬이 코팅되어 있는 이차전지.A secondary battery equipped with a CID (Current Interruptive Device) for blocking current and discharging pressurized gas when the internal pressure of the battery rises. Carbonic acid promotes decomposition of electrolyte during overcharge on the surface of the separator electrically separating the positive electrode and the negative electrode. Lithium-coated secondary battery. 제 1 항에 있어서, 상기 탄산리튬은 분리막의 표면을 기준으로 1 g/m2 내지 20 g/m2의 밀도로 코팅되어 있는 것을 특징으로 하는 이차전지. The method of claim 1, wherein the lithium carbonate is 1 g / m based on the surface of the separator2 To 20 g / m2Secondary battery, characterized in that the coating at a density. 제 1 항에 있어서, 상기 탄산리튬은 딥핑(dipping) 또는 블렌딩(blending) 방식으로 분리막에 코팅되는 것을 특징으로 하는 이차전지.The secondary battery of claim 1, wherein the lithium carbonate is coated on the separator by dipping or blending. 제 1 항에 있어서, 상기 코팅을 위한 조성물은 과충전 방지제로서의 탄산리튬과 바인더가 용매에 첨가된 슬러리인 것을 특징으로 하는 이차전지.The secondary battery according to claim 1, wherein the composition for coating is a slurry in which lithium carbonate and a binder as an overcharge inhibitor are added to a solvent. 제 4 항에 있어서, 상기 바인더는 PVDF와 시아노 레진(Cyano-resine)의 혼합물인 것을 특징으로 하는 이차전지.The secondary battery of claim 4, wherein the binder is a mixture of PVDF and cyano-resine. 제 1 항에 있어서, 상기 전해액은 카보네이트계 용매를 포함하고 있는 것을 특징으로 하는 이차전지.The secondary battery according to claim 1, wherein the electrolyte solution contains a carbonate solvent. 제 1 항에 있어서, 상기 전지는 원통형의 금속 캔 내부에 양극/분리막/음극의 전극조립체가 내장되어 있고 상기 전극조립체의 상부에 CID가 장착되어 있는 구조로 이루어져 있는 것을 특징으로 하는 이차전지.The secondary battery according to claim 1, wherein the battery has a structure in which an electrode assembly of anode / separation membrane / cathode is embedded in a cylindrical metal can, and a CID is mounted on the electrode assembly.
KR1020060015996A 2006-02-20 2006-02-20 Lithium Secondary Battery of Improved Overcharge Safety KR100950038B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060015996A KR100950038B1 (en) 2006-02-20 2006-02-20 Lithium Secondary Battery of Improved Overcharge Safety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060015996A KR100950038B1 (en) 2006-02-20 2006-02-20 Lithium Secondary Battery of Improved Overcharge Safety

Publications (2)

Publication Number Publication Date
KR20070082931A true KR20070082931A (en) 2007-08-23
KR100950038B1 KR100950038B1 (en) 2010-03-29

Family

ID=38612400

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060015996A KR100950038B1 (en) 2006-02-20 2006-02-20 Lithium Secondary Battery of Improved Overcharge Safety

Country Status (1)

Country Link
KR (1) KR100950038B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112437A1 (en) * 2008-10-30 2010-05-06 Hitachi, Ltd. Lithium ion secondary battery
US8334063B2 (en) 2008-09-22 2012-12-18 Samsung Sdi Co., Ltd. Secondary battery
US20130309530A1 (en) * 2011-07-29 2013-11-21 Lg Chem, Ltd. Electrode assembly including separator for improving safety and lithium secondary battery including the same
KR101382041B1 (en) * 2010-12-07 2014-04-04 가부시키가이샤 히타치세이사쿠쇼 Lithium secondary battery
KR20150037405A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Cap assembly and secondary battery comprising the same
WO2020138751A1 (en) * 2018-12-26 2020-07-02 주식회사 엘지화학 Positive electrode slurry comprising oxalic acid, method for manufacturing same, positive electrode for secondary battery, and secondary battery
US11127943B2 (en) 2011-05-17 2021-09-21 Indiana University Research And Technology Corporation Rechargeable alkaline metal and alkaline earth electrodes having controlled dendritic growth and methods for making and using same
WO2022255673A1 (en) * 2021-06-03 2022-12-08 주식회사 엘지에너지솔루션 Secondary battery and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172587A1 (en) * 2011-06-13 2012-12-20 株式会社 日立製作所 Lithium secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232710B2 (en) * 1992-10-08 2001-11-26 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JP2000040499A (en) 1998-07-23 2000-02-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100399343B1 (en) * 1999-09-07 2003-09-26 주식회사 엘지화학 Lithium ion battery with current interrupt device
KR100467705B1 (en) * 2002-11-02 2005-01-24 삼성에스디아이 주식회사 Seperator having inorganic protective film and lithium battery using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334063B2 (en) 2008-09-22 2012-12-18 Samsung Sdi Co., Ltd. Secondary battery
US20100112437A1 (en) * 2008-10-30 2010-05-06 Hitachi, Ltd. Lithium ion secondary battery
KR101382041B1 (en) * 2010-12-07 2014-04-04 가부시키가이샤 히타치세이사쿠쇼 Lithium secondary battery
US11127943B2 (en) 2011-05-17 2021-09-21 Indiana University Research And Technology Corporation Rechargeable alkaline metal and alkaline earth electrodes having controlled dendritic growth and methods for making and using same
US20130309530A1 (en) * 2011-07-29 2013-11-21 Lg Chem, Ltd. Electrode assembly including separator for improving safety and lithium secondary battery including the same
KR101418643B1 (en) * 2011-07-29 2014-07-14 주식회사 엘지화학 Electrode assembly comprising separator for improving safety and lithium secondary batteries comprising the same
US9490505B2 (en) * 2011-07-29 2016-11-08 Lg Chem, Ltd. Electrode assembly including separator for improving safety and lithium secondary battery including the same
KR20150037405A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Cap assembly and secondary battery comprising the same
WO2020138751A1 (en) * 2018-12-26 2020-07-02 주식회사 엘지화학 Positive electrode slurry comprising oxalic acid, method for manufacturing same, positive electrode for secondary battery, and secondary battery
WO2022255673A1 (en) * 2021-06-03 2022-12-08 주식회사 엘지에너지솔루션 Secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
KR100950038B1 (en) 2010-03-29

Similar Documents

Publication Publication Date Title
KR100950038B1 (en) Lithium Secondary Battery of Improved Overcharge Safety
US9577289B2 (en) Lithium-ion electrochemical cell, components thereof, and methods of making and using same
KR101279994B1 (en) Cap Assembly of Structure Having Safety Element on Electrode Lead and Cylindrical Battery Employed with the Same
JP5010250B2 (en) Battery stack and battery pack
JP5255538B2 (en) Unit cell for secondary battery having conductive sheet layer and lithium ion secondary battery using the same
CN101248544A (en) Battery pack
KR20170053674A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
KR20130126365A (en) Manufacturing method of lithium secondary battery
KR20160037518A (en) Cylindrical Battery Including Pressuring Part and Manufacturing Method for the Same
KR102367371B1 (en) Anode and Lithium Secondary Battery Comprising the Same
KR100735486B1 (en) Electrochemical cell with two different separator
KR20190085772A (en) Method for manufacturing the lithium metal secondary battery including lithium electrode
KR100899283B1 (en) Jelly-roll Employed with Two Type Separators and Secondary Battery Having The Same
KR20190073454A (en) A battery cell having a structured active material
KR101112446B1 (en) Secondary Battery of Improved Overcharge Safety
KR20180011715A (en) Anode Comprising Mesh Type Current Collector, Lithium Secondary Battery Comprising the Same and Manufacturing Method thereof
KR101914746B1 (en) Cylindrical Battery Including Pressuring Part and Manufacturing Method for the Same
JP2009135540A (en) Nonaqueous lithium power storage element and manufacturing method
KR20180043996A (en) Cylindrical Battery Having Side Vent
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JP5896374B2 (en) Non-aqueous electrolyte battery
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
KR100968051B1 (en) Cylindrical Type Secondary Battery of Improved Stability against Overcharge
KR20130131983A (en) Secondary battery comprising apparatus for preventing overcharge
KR19980073911A (en) Lithium polymer secondary battery with short-circuit insulation layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150217

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 10