KR20070073806A - Metal compound, thin film-forming material, and method for producing thin film - Google Patents

Metal compound, thin film-forming material, and method for producing thin film Download PDF

Info

Publication number
KR20070073806A
KR20070073806A KR1020077009222A KR20077009222A KR20070073806A KR 20070073806 A KR20070073806 A KR 20070073806A KR 1020077009222 A KR1020077009222 A KR 1020077009222A KR 20077009222 A KR20077009222 A KR 20077009222A KR 20070073806 A KR20070073806 A KR 20070073806A
Authority
KR
South Korea
Prior art keywords
metal compound
thin film
compound
general formula
metal
Prior art date
Application number
KR1020077009222A
Other languages
Korean (ko)
Other versions
KR101128542B1 (en
Inventor
아츠야 요시나카
아츠시 사쿠라이
Original Assignee
가부시키가이샤 아데카
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아데카 filed Critical 가부시키가이샤 아데카
Publication of KR20070073806A publication Critical patent/KR20070073806A/en
Application granted granted Critical
Publication of KR101128542B1 publication Critical patent/KR101128542B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/005Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a metal compound represented by the general formula (I) below which is preferably used as a precursor in a thin film production method comprising a vaporization step, particularly in a CVD method including ALD. (I) (In the formula, M represents tantalum or niobium, R1 represents an alkyl group having 1-4 carbon atoms, and R2 and R3 independently represent a hydrogen atom, a methyl group or a ethyl group.)

Description

금속화합물, 박막형성용 원료 및 박막의 제조방법{METAL COMPOUND, THIN FILM-FORMING MATERIAL, AND METHOD FOR PRODUCING THIN FILM}Metal compound, raw material for thin film formation and manufacturing method of thin film {METAL COMPOUND, THIN FILM-FORMING MATERIAL, AND METHOD FOR PRODUCING THIN FILM}

본 발명은 특정한 아미노알코올을 배위자로 하는 신규인 탄탈화합물 및 니오브화합물, 상기 탄탈화합물 및/또는 상기 니오브화합물을 함유해서 이루어지는 박막형성용 원료, 및 상기 박막형성용 원료를 이용한 금속함유박막의 제조방법에 관한 것이다. The present invention relates to a novel tantalum compound and niobium compound having a specific amino alcohol as a ligand, a raw material for forming a thin film containing the tantalum compound and / or the niobium compound, and a method for producing a metal-containing thin film using the thin film forming raw material. will be.

탄탈 또는 니오브를 함유하는 박막은 주로 고유전체 커패시터, 강유전체 커패시터, 게이트 절연막, 배리어막 등의 전자부품의 부재료로서 이용되고 있다. Thin films containing tantalum or niobium are mainly used as materials for electronic components such as high dielectric capacitors, ferroelectric capacitors, gate insulating films and barrier films.

상기의 박막의 제조법으로서는 화염퇴적법, 스퍼터링법, 이온플레이팅법, 도포열분해법이나 졸겔법 등의 MOD법, 화학기상성장(이하, 단순히 CVD로 기재할 수도 있음)법 등을 들 수 있는데, 조성제어성 및 단차피복성에 뛰어난 점, 양산화에 적합한 점, 하이브리드집적이 가능 한 점 등, 많은 장점을 가지고 있어 ALD(Atomic Layer Deposition)법을 포함하는 화학기상성장법이 최적의 제조 프로세스이다.Examples of the method for producing the thin film include a flame deposition method, a sputtering method, an ion plating method, a MOD method such as a coating pyrolysis method or a sol gel method, a chemical vapor growth method (hereinafter may be simply described by CVD), and the like. Chemical vapor growth method including ALD (Atomic Layer Deposition) method is an optimal manufacturing process because it has many advantages such as excellent controllability and step coverage, suitable for mass production, and hybrid integration.

MOD법을 포함하는 CVD법으로 있어서는 박막에 금속을 공급하는 프리커서로서 유기배위자를 이용한 금속화합물이 이용되고 있다. 저분자량의 탄탈알콕시드는 금속원자와 산소원자와의 사이의 전기음성도의 차이에 기인해서 전기적 극성을 낳고, 2분자 또는 이것 이상의 분자에서 회합하기 때문에 휘발성이 나쁘다. 이것에 대해, 금속원자에 배위하는 도너기인 에테르기나 아미노기를 가지는 알코올을 배위자로서 말단에 가지는 금속화합물은 회합하지 않고 단량체가 되며, 비교적 높은 증기압을 가지고, 또한 안정한 박막의 제조조건을 부여한다는 보고가 있다. 예를 들면, 특허문헌 1∼5에는 아미노기를 가지는 알코올을 이용한 금속화합물이 보고되어 있다. In the CVD method including the MOD method, a metal compound using an organic ligand is used as a precursor for supplying a metal to a thin film. Low molecular weight tantalal alkoxides generate electrical polarity due to the difference in electronegativity between metal atoms and oxygen atoms, and are poor in volatility because they associate in two or more molecules. On the other hand, it is reported that a metal compound having an ether group or an amino group which is a donor group coordinating to a metal atom as a ligand as a ligand does not associate and becomes a monomer, and has a relatively high vapor pressure and gives stable thin film production conditions. have. For example, Patent Documents 1 to 5 report metal compounds using an alcohol having an amino group.

특허문헌 1: 국제공개 제95/26355호 팜플렛Patent Document 1: International Publication No. 95/26355 Pamphlet

특허문헌 2: 특허공개 2002-252286호 공보Patent Document 2: Patent Publication No. 2002-252286

특허문헌 3: 국제공개 제01/66834호 팜플렛Patent Document 3: International Publication No. 01/66834

특허문헌 4: 국제공개 제01/78869호 팜플렛Patent Document 4: International Publication No. 01/78869 Pamphlet

특허문헌 5:국제공개 제01/79586호 팜플렛Patent Document 5: International Publication No. 01/79586

금속화합물을 기화시켜서 박막을 형성하는 CVD법 등의 박막제조방법에 있어서, 원료로서 이용되는 금속화합물에 요구되는 성질은 증기압이 높고 기화하기 쉬울 것, 열분해가 일어나지 않고 안정하게 공급될 것, 및 반응실에 이르기까지 분해하지 않을 것이다. 그러나 종래의 탄탈화합물 및 니오브화합물은 반응실에서의 양호한 분해성이야말로 얻을 수 있지만, 증기압이 낮기 때문에, 박막제조장치의 보틀 및 배관을 비교적 높은 온도까지 가열할 필요가 있었다. 그 때문에, 가해진 고열에 의해 기화실에 도달하기 전에 재료가 일부 열분해하고, 기화기 내부를 막히게 하거나, 불필요한 화합물을 생성하게 되는 문제가 발생하고 있었다. 이와 같이, 지금까지 저온으로 기화가 가능하면서 또한 열적으로 안정하게 공급할 수 있는 소망의 탄탈화합물 및 니오브화합물은 얻어지고 있지 않다. In a thin film manufacturing method such as a CVD method in which a metal compound is vaporized to form a thin film, the properties required for the metal compound used as a raw material are high vapor pressure, easy to vaporize, stable supply without pyrolysis, and reaction Will not disassemble to the thread. However, the conventional tantalum compounds and niobium compounds have good decomposability in the reaction chamber. However, since the vapor pressure is low, it is necessary to heat the bottle and the pipe of the thin film manufacturing apparatus to a relatively high temperature. Therefore, a problem arises in that the material is partially pyrolyzed before it reaches the vaporization chamber due to the applied high heat, causing the interior of the vaporizer to be clogged, or generating unnecessary compounds. As described above, the desired tantalum compound and niobium compound which can be vaporized at low temperature and can be thermally supplied stably have not been obtained.

본 발명자 등은 검토를 거듭한 결과, 3급알콕시드의 입체장애효과를 부여한 특정한 금속화합물이 상기 과제를 해결할 수 있음을 발견하였다. As a result of extensive studies, the present inventors have found that a specific metal compound provided with the steric hindrance effect of tertiary alkoxide can solve the above problems.

본 발명은 상기 지견에 근거해 행해진 것으로, 하기 일반식(I)으로 표현되는 금속화합물, 금속화합물을 함유해서 이루어지는 박막형성용 원료, 및 상기 박막형성용 원료를 기화시켜서 얻은 금속화합물을 함유하는 증기를 기체상에 도입하고, 이것을 분해 및/또는 화학반응시켜서 기체상에 금속함유박막을 형성하는 박막의 제조방법을 제공하는 것이다.The present invention has been carried out based on the above findings, and a vapor containing a metal compound represented by the following general formula (I), a thin film forming raw material containing a metal compound, and a metal compound obtained by vaporizing the thin film forming raw material A method of producing a thin film which is introduced into a phase and decomposed and / or chemically reacted to form a metal-containing thin film on a gas phase.

Figure 112007030689030-PCT00001
Figure 112007030689030-PCT00001

(식 중, M은 탄탈 또는 니오브를 나타내고, Rl은 탄소원자수 1∼4의 알킬기를 나타내고, R2 및 R3은 각각 독립으로 수소원자, 메틸기 또는 에틸기를 나타냄)(Wherein M represents tantalum or niobium, R 1 represents an alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group)

이하, 본 발명의 금속화합물, 박막형성용 원료 및 박막의 제조방법에 대해서, 그 바람직한 실시형태에 근거해서 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the metal compound of this invention, the raw material for thin film formation, and the manufacturing method of a thin film are demonstrated in detail based on the preferable embodiment.

본 발명의 상기 일반식(I)에 있어서, Rl으로 표현되는 탄소원자수 1∼4의 알킬기로서는 메틸, 에틸, 프로필, 이소프로필, 부틸, 제2부틸, 제3부틸, 이소부틸을 들 수 있다. In the general formula (I) of the present invention, examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 include methyl, ethyl, propyl, isopropyl, butyl, second butyl, third butyl and isobutyl. .

상기 일반식(I)에 있어서, 배위자 중의 말단 도너기가 금속원자에 배위해서 환구조를 형성했을 경우를 하기 일반식(I')에 나타낸다. 본 발명의 금속화합물은 상기 일반식(I)에서 대표하여 나타내고 있지만, 하기 일반식(I')으로 표현되는 것과 구별되는 것은 아니고, 양쪽을 포함하는 개념이다.In the said general formula (I), the case where the terminal donor group in a ligand coordinates with a metal atom and forms ring structure is shown to the following general formula (I '). Although the metal compound of this invention is represented by said general formula (I), it is not distinguished from what is represented by the following general formula (I '), and is a concept containing both.

Figure 112007030689030-PCT00002
Figure 112007030689030-PCT00002

(식 중, M, Rl, R2 및 R3은 상기 일반식(I)과 같음)(Wherein M, R 1 , R 2 and R 3 are the same as in the general formula (I) above)

본 발명의 금속화합물의 구체예로서는 하기 화합물 No.1∼No.16을 들 수 있다. Specific examples of the metal compound of the present invention include the following compounds Nos. 1 to 16.

Figure 112007030689030-PCT00003
Figure 112007030689030-PCT00003

Figure 112007030689030-PCT00004
Figure 112007030689030-PCT00004

화합물을 기화시키는 공정을 가지는 박막의 제조방법에 있어서 본 발명의 금속화합물을 이용할 경우는 상기의 Rl은 분자량이 작은 것이 증기압이 크므로 바람직하고, 구체적으로는 Rl은 메틸기 또는 에틸기가 바람직하다. 또한 기화공정을 수반하지 않는 MOD법에 의한 박막의 제조방법에 있어서 본 발명의 금속화합물을 이용할 경우는 상기의 Rl은 사용되는 용매에 대한 용해성, 박막형성반응에 의해 임의로 선택할 수 있다. When using the metal compound of this invention in the manufacturing method of the thin film which has the process of vaporizing a compound, said R <1> is preferable because the molecular weight is small, and since vapor pressure is large, specifically R <1> is preferable a methyl group or an ethyl group. . In addition, when using the metal compound of the present invention a method of manufacturing a thin film by MOD process that does not involve the vaporization process, R l of the above can be selected arbitrarily by the solubility and thin film forming reaction in the solvents used.

본 발명의 금속화합물은 그 제조방법에 의해 특히 제한되지 않고, 주지의 반응을 응용해서 제조할 수 있고, 예를 들면, 해당하는 3급아미노알코올을 이용한 주지 일반의 금속알콕시드의 합성방법을 응용해서 제조할 수 있다. 상기 합성방법으로서는 예를 들면, 금속의 할로겐화물, 질산염 등의 무기염 또는 그 수화물과, 해당하는 알코올화합물을, 나트륨, 수소화나트륨, 나트륨아미드, 수산화나트륨, 나트륨메틸라토, 암모니아, 아민 등의 염기의 존재하에서 반응시키는 방법, 금속할로겐 화물, 질산염 등의 무기염 또는 그 수화물과, 해당하는 알코올화합물의 나트륨알콕시드, 리튬알콕시드, 칼륨알콕시드 등의 알칼리금속알콕시드를 반응시키는 방법, 금속메톡시드, 에톡시드, 이소프로폭시드, 부톡시드 등의 저분자 알코올의 금속알콕시드와, 해당하는 알코올화합물을 알코올 교환반응시키는 방법, 금속할로겐화물, 질산염 등의 무기염과 반응성 중간체를 부여하는 유도체를 반응시켜서 반응성 중간체를 얻고나서, 이것과 알코올화합물을 반응시키는 방법을 들 수 있다. 이들의 합성방법 중에서도 금속알콕시드와 3급아미노알코올과의 알코올 교환반응이 바람직하다.The metal compound of this invention is not specifically limited by the manufacturing method, It can manufacture by applying well-known reaction, For example, the method of synthesizing the well-known general metal alkoxide using the corresponding tertiary amino alcohol is applied. Can be produced. Examples of the synthesis method include inorganic salts such as metal halides and nitrates or hydrates thereof, and corresponding alcohol compounds, such as sodium, sodium hydride, sodium amide, sodium hydroxide, sodium methylato, ammonia and amines. Reacting in the presence of a compound, a method of reacting an inorganic salt such as a metal halide, a nitrate, or a hydrate thereof with an alkali metal alkoxide such as sodium alkoxide, lithium alkoxide or potassium alkoxide of an alcohol compound, metal methoxide Metal alkoxides of low molecular alcohols such as seeds, ethoxides, isopropoxides, butoxides, alcohol exchange reactions of the corresponding alcohol compounds, derivatives which impart inorganic salts and reactive intermediates such as metal halides and nitrates And a method of reacting this with an alcohol compound after the reaction to obtain a reactive intermediate. Among these synthesis methods, the alcohol exchange reaction of metal alkoxide and tertiary amino alcohol is preferable.

본 발명의 박막형성용 원료는 본 발명의 금속화합물을 박막의 프리커서로서 함유하는 것이며, 그 형태는 상기 박막형성용 원료가 적용되는 박막의 제조방법 (예를 들면, 화염퇴적법, 스퍼터링법, 이온플레이팅법, 도포열분해법이나 졸겔법 등의 MOD법, ALD법을 포함하는 CVD법)에 따라서 다르며 적절히 선택된다. 본 발명의 금속화합물은 그 물성으로부터 박막형성용 원료 중에서도 CVD용 원료로서 특히 유용하다. The raw material for forming a thin film of the present invention contains the metal compound of the present invention as a precursor of a thin film, and its form is a method for producing a thin film to which the raw material for forming a thin film is applied (for example, a flame deposition method, a sputtering method, an ion play) CVD method including MOD method such as coating method, coating pyrolysis method, sol-gel method, ALD method) and the like and are appropriately selected. The metal compound of the present invention is particularly useful as a raw material for CVD among raw materials for thin film formation due to its physical properties.

본 발명의 박막형성용 원료가 화학기상성장(CVD)용 원료일 경우, 그 형태는 사용되는 CVD법의 수송공급방법 등의 수법에 의해 적당히 선택되는 것이다. When the raw material for thin film formation of the present invention is a chemical vapor deposition (CVD) raw material, the form is appropriately selected by a method such as a transport supply method of the CVD method used.

상기의 수송공급방법으로서는 CVD용 원료를 원료용기 중에서 가열 및/또는 감압함으로써 기화시켜, 필요에 따라서 이용되는 아르곤, 질소, 헬륨 등의 캐리어 가스와 함께 퇴적반응부로 도입하는 기체수송법, CVD용 원료를 액체 또는 용액의 상태에서 기화실까지 수송하고, 기화실에서 가열 및/또는 감압함으로써 기화시켜 서, 퇴적반응부로 도입하는 액체수송법이 있다. 기체수송법의 경우는 상기 일반식(I)으로 표현되는 본 발명의 금속화합물 그 자체가 CVD용 원료가 되며, 액체수송법의 경우는 상기 일반식(I)으로 표현되는 본 발명의 금속화합물 그 자체 또는 상기 금속화합물을 유기용제에 녹인 용액이 CVD용 원료가 된다.As the above transportation supply method, the CVD raw material is vaporized by heating and / or depressurizing the raw material container in a raw material container, and the gas transportation method and the CVD raw material which are introduced into the deposition reaction part together with a carrier gas such as argon, nitrogen and helium used as necessary. Is transported from the liquid or solution state to the vaporization chamber, vaporized by heating and / or reduced pressure in the vaporization chamber, and introduced into the deposition reaction section. In the case of the gas transportation method, the metal compound of the present invention represented by the general formula (I) itself is a raw material for CVD, and in the case of the liquid transportation method, the metal compound of the present invention represented by the general formula (I) A solution obtained by dissolving itself or the metal compound in an organic solvent becomes a raw material for CVD.

또한 다성분계의 CVD법에 있어서는 CVD용 원료를 각 성분 독립으로 기화, 공급하는 방법(이하, 싱글소스법이라 기재할 수도 있음)과, 다성분원료를 미리 소망의 조성으로 혼합한 혼합원료를 기화, 공급하는 방법(이하, 칵테일소스법이라 기재할 수도 있음)이 있다. 칵테일소스법의 경우, 본 발명의 금속화합물만에 의한 혼합물 혹은 혼합용액, 본 발명의 금속화합물과 다른 프리커서와의 혼합물 혹은 혼합용액이 CVD용 원료이다. 예를 들면, 탄탈-니오브 복합산화물의 칵테일소스로서는 M이 탄탈인 본 발명의 금속화합물과 M이 니오브인 본 발명의 금속화합물과의 혼합물 혹은 혼합용액, 보다 구체적으로는 상기에 예시한 화합물 No.1∼8에서 선택되는 적어도 1종류와 화합물 No.9∼16에서 선택되는 적어도 1종류의 혼합물 혹은 혼합용액이 바람직하다. In the multi-component CVD method, a CVD raw material is vaporized and supplied independently of each component (hereinafter, may be described as a single source method), and a mixed raw material obtained by mixing a multi-component raw material in a desired composition in advance is vaporized. And supplying method (hereinafter, may also be referred to as cocktail sauce method). In the cocktail sauce method, a mixture or mixed solution using only the metal compound of the present invention, or a mixture or mixed solution of the metal compound of the present invention with another precursor is a raw material for CVD. For example, a cocktail source of tantalum-niob complex oxide is a mixture or a mixed solution of the metal compound of the present invention in which M is tantalum and the metal compound of the present invention in which M is niobium, and more specifically, the compound No. exemplified above. At least 1 sort (s) chosen from 1-8 and at least 1 sort (s) or mixture solution chosen from compound No. 9-16 are preferable.

상기의 CVD용 원료에 사용하는 유기용제로서는 특히 제한을 받지 않고 주지 일반의 유기용제를 이용할 수 있다. 상기 유기용제로서는 예를 들면 메탄올, 에탄올, 2-프로판올, n-부탄올 등의 알코올류; 초산에틸, 초산부틸, 초산메톡시에틸 등의 초산에스테르류; 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노메틸에테르 등의 에테르알코올류; 테트라히드로푸란, 테트라히드로피란, 에틸렌글리콜디메틸에테르, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜디메틸에테르, 디부틸에테르 등의 에테르류; 메틸부틸케톤, 메틸이소부틸케톤, 에틸부틸케톤, 디프로필케톤, 디이소부틸케톤, 메틸아밀케톤, 시클로헥사논, 메틸시클로헥사논 등의 케톤류; 헥산, 시클로헥산, 메틸 시클로헥산, 디메틸시클로헥산, 에틸시클로헥산, 헥산, 옥탄, 톨루엔, 크실렌 등의 탄화수소류; 1-시아노프로판, 1-시아노부탄, 1-시아노헥산, 시아노시클로헥산, 시아노벤젠, 1,3-디시아노프로판, 1,4-디시아노부탄, 1,6-디시아노헥산, 1,4-디시아노시클로헥산, 1,4-디시아노벤젠 등의 시아노기를 가지는 탄화수소류; 피리딘, 루티딘을 들 수 있고, 이들은 용질의 용해성, 사용온도와 비점 및 인화점과의 관계 등에 의해, 단독으로 또는 2종류 이상의 혼합용매로서 이용할 수 있다. 이들의 유기용제를 사용할 경우, 상기 유기용제 중에 있어서의 본 발명의 금속화합물 및 다른 프리커서의 합계량이 0.01∼2.0몰/리터, 특히 0.05∼1.0몰/리터가 되도록 하는 것이 바람직하다. There is no restriction | limiting in particular as an organic solvent used for the said CVD raw material, A well-known general organic solvent can be used. As said organic solvent, For example, Alcohol, such as methanol, ethanol, 2-propanol, n-butanol; Acetate esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; Ether alcohols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and diethylene glycol monomethyl ether; Ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether and dibutyl ether; Ketones such as methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone and methylcyclohexanone; Hydrocarbons such as hexane, cyclohexane, methyl cyclohexane, dimethylcyclohexane, ethylcyclohexane, hexane, octane, toluene and xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane Hydrocarbons having a cyano group such as 1,4-dicyanocyclohexane and 1,4-dicyanobenzene; Pyridine and lutidine can be mentioned, and these can be used individually or as two or more types of mixed solvents by solubility of a solute, relationship with a use temperature, a boiling point, and a flash point. When using these organic solvents, it is preferable to make the total amount of the metal compound of this invention and another precursor in the said organic solvent become 0.01-2.0 mol / liter, especially 0.05-1.0 mol / liter.

또한 다성분계의 CVD법의 경우에 있어서 본 발명의 금속화합물과 함께 이용된다. 다른 프리커서로서는 특히 제한을 받지 않고, CVD용 원료에 이용되고 있는 주지 일반의 프리커서를 이용할 수 있다.In the case of the multi-component CVD method, the compound is used together with the metal compound of the present invention. There is no restriction | limiting in particular as another precursor, The well-known general precursor used for the CVD raw material can be used.

상기의 다른 프리커서로서는 알코올화합물, 글리콜 화합물, β-디케톤화합물, 시클로펜타디엔화합물 및 아민화합물 등의 유기배위자로서 이용되는 화합물군에서 선택되는 1종류 또는 2종류 이상과, 금속과의 화합물을 들 수 있다. 또한 다른 프리커서의 금속종으로서는 마그네슘, 칼슘, 스트론튬, 바륨, 티타늄, 지르코늄, 하프늄, 바나듐, 니오브, 탄탈, 망간, 철, 루테늄, 코발트, 로듐, 이리듐, 니 켈, 팔라듐, 백금, 구리, 은, 금, 아연, 갈륨, 인듐, 게르마늄, 주석, 납, 안티몬, 비스무트, 규소, 이트륨, 란탄, 세륨, 프라세오디뮴, 네오디뮴, 프로메튬, 사마륨, 유로퓸, 가돌리늄, 테르븀, 디스프로슘, 홀뮴, 에르븀, 툴륨, 이테르븀을 들 수 있다. Examples of the other precursors include one or two or more selected from the group of compounds used as organic ligands such as alcohol compounds, glycol compounds, β-diketone compounds, cyclopentadiene compounds and amine compounds, and compounds with metals. Can be mentioned. Other precursor metals include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver , Gold, zinc, gallium, indium, germanium, tin, lead, antimony, bismuth, silicon, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium Can be mentioned.

또한 본 발명의 박막형성용 원료에는 필요에 따라서, 본 발명의 금속화합물 및 다른 프리커서의 안정성을 부여하기 위해, 구핵성시약을 함유시켜도 좋다. 상기 구핵성시약으로서는 그라임, 디그라임, 트리그라임, 테트라그라임 등의 에틸렌글리콜에테르류, 18-크라운-6, 디시클로헥실-18-크라운-6,24-크라운-8, 디시클로 헥실-24-크라운-8, 디벤조-24-크라운-8 등의 크라운에테르류, 에틸렌디아민, N,N'-테트라메틸에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 1,1,4,7,7-펜타메틸디에틸렌트리아민, 1,1,4,7,10,10-헥사메틸트리에틸렌테트라민 등의 폴리아민류, 사이클람, 사이클렌 등의 환상폴리아민류, 아세토초산메틸, 아세토초산에틸, 아세토초산-2-메톡시에틸 등의 β-케토에스테르류 또는 아세틸아세톤, 2,4-헥산디온, 2,4-헵탄디온, 3,5-헵탄디온, 디피발로일메탄 등의 β-디케톤류를 들 수 있고, 안정제로서의 이들의 구핵성시약의 사용량은 프리커서 1몰에 대하여 0.1몰∼10몰, 바람직하게는 1∼4몰이다.Further, the raw material for forming a thin film of the present invention may contain a nucleophilic reagent, if necessary, in order to provide stability of the metal compound and other precursors of the present invention. Examples of the nucleophilic reagents include ethylene glycol ethers such as slime, diglyme, trilime, and tetralime, 18-crown-6, dicyclohexyl-18-crown-6,24-crown-8, and dicyclohexyl. Crown ethers such as -24-crown-8 and dibenzo-24-crown-8, ethylenediamine, N, N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, penta Polyamines such as ethylene hexamine, 1,1,4,7,7-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, cyclolam, cyclone and the like Β-ketoesters such as cyclic polyamines, methyl acetoacetate, ethyl acetoacetate and 2-methoxyethyl aceto or acetylacetone, 2,4-hexanedione, 2,4-heptanedione, 3,5- (Beta) -diketones, such as heptanedione and dipyvaloyl methane, The usage-amount of these nucleophilic reagents as a stabilizer is 0.1 mol with respect to 1 mol of precursors. It is-10 mol, Preferably it is 1-4 mol.

본 발명의 박막의 제조방법은 본 발명의 금속화합물 및 필요에 따라서 이용되는 것 외의 프리커서를 기화시킨 증기, 및 필요에 따라서 이용되는 반응성가스를 기판상에 도입한 후, 프리커서를 기판상에서 분해 및/또는 반응시켜서 박막을 기판상에 성장, 퇴적시키는 CVD법에 의한 것이다. 원료의 수송공급방법, 퇴적방법, 제 조조건, 제조장치 등에 대해서는 특히 제한을 받는 것은 아니며, 주지 일반의 조건, 방법 등을 이용할 수 있다.In the method for producing the thin film of the present invention, after introducing the metal compound of the present invention and vapors other than those used as needed, vaporized, and reactive gases used as needed, the precursors are decomposed on the substrate. And / or by CVD to grow and deposit a thin film on a substrate by reacting. The method for transporting and supplying the raw materials, the deposition method, the manufacturing conditions, the manufacturing apparatus, and the like are not particularly limited, and well-known general conditions and methods can be used.

상기의 필요에 따라서 이용되는 반응성가스로서는 예를 들면, 산화성의 것으로서는 산소, 오존, 이산화질소, 일산화질소, 수증기, 과산화수소, 개미산, 초산, 무수초산 등을 들 수 있고, 환원성의 것으로서는 수소를 들 수 있으며, 또한 질화물을 제조하는 것으로서는 모노알킬아민, 디알킬아민, 트리알킬아민, 알킬렌 디아민 등의 유기아민 화합물, 히드라진, 암모니아 등을 들 수 있다. Examples of the reactive gas used according to the above needs include oxygen, ozone, nitrogen dioxide, nitrogen monoxide, water vapor, hydrogen peroxide, formic acid, acetic acid, acetic anhydride, and the like as oxidizing substances. In addition, examples of producing the nitride include organic amine compounds such as monoalkylamine, dialkylamine, trialkylamine, alkylene diamine, hydrazine, ammonia and the like.

또한 상기의 수송공급방법으로서는 전기의 기체수송법, 액체수송법, 싱글소스법, 칵테일소스법 등을 들 수 있다. Moreover, as said transportation supply method, the electric gas transportation method, the liquid transportation method, the single source method, the cocktail sauce method, etc. are mentioned.

싱글소스법에 있어서 복수종의 금속화합물을 프리커서로서 이용할 경우는 본 발명의 금속화합물만을 프리커서로서 이용해도 좋고, 본 발명의 금속화합물과 다른 프리커서를 병용해도 좋다. 본 발명의 금속화합물과 다른 프리커서를 병용할 경우는 박막형성반응에 관한 분해거동이 유사해 있는 조합이 바람직하다. 예를 들면, 싱글소스법에 있어서 탄탈 프리커서와 니오브 프리커서를 조합시켜서 이용할 경우의 바람직한 조합으로서는 탄탈 프리커서로서, M이 탄탈인 본 발명의 금속화합물을 이용하고, 니오브 프리커서로서, M이 니오브인 본 발명의 금속화합물 및/또는 테트라알콕시드를 이용하는 조합을 들 수 있다. 탄탈 프리커서로서 M이 탄탈인 본 발명의 금속화합물, 특히 화합물 N0.1을 이용했을 경우, 니오브 프리커서로서는 M이 니오브인 본 발명의 금속화합물, 펜타키스(에톡시)니오브, 펜타키스(2-프로폭시)니오브, 펜타키스(부톡시)니오브, 펜타키스(제3부톡시)니오브, 펜타키스(제3아밀)니오 브, 펜타키스(1-메톡시-2-메틸-2-프로폭시)니오브가 바람직하다.In the case of using a plurality of metal compounds as a precursor in the single source method, only the metal compound of the present invention may be used as the precursor, or the metal compound of the present invention and another precursor may be used in combination. When using the metal compound of this invention together with another precursor, the combination which is similar in decomposition | decomposition behavior regarding thin film formation reaction is preferable. For example, in the single-source method, a preferable combination when using a combination of tantalum precursors and niobium precursors is used as the tantalum precursor and the metal compound of the present invention in which M is tantalum. The combination using the metal compound of this invention which is niobium, and / or tetraalkoxide is mentioned. When the metal compound of the present invention in which M is tantalum, in particular compound N0.1, is used as the tantalum precursor, the metal compound of the present invention in which M is niobium, pentakis (ethoxy) niob, pentakis (2) Propoxy) niobium, pentakis (butoxy) niobium, pentakis (tertbutoxy) niobium, pentakis (tertiyl amyl) niobium, pentakis (1-methoxy-2-methyl-2-propoxy Niobium is preferred.

또한 상기의 퇴적방법으로서는 원료가스 또는 원료가스와 반응성가스를 열만으로 반응시켜 박막을 퇴적시키는 열CVD, 열과 플라즈마를 사용하는 플라즈마CVD, 열과 광을 사용하는 광CVD, 열, 광 및 플라즈마를 사용하는 광플라즈마CVD, CVD의 퇴적반응을 소과정(素過程)으로 나누고, 분자수준에서 단계적으로 퇴적을 행하는 ALD(Atomic Layer Deposition)를 들 수 있다. In addition, as the deposition method, thermal CVD for depositing a thin film by reacting source gas or source gas and reactive gas with heat only, plasma CVD using heat and plasma, optical CVD using heat and light, heat, light and plasma ALD (Atomic Layer Deposition) which divides the deposition reaction of optical plasma CVD and CVD into small processes, and deposits step by step at the molecular level.

또한 상기의 제조조건으로서는 반응온도(기판온도), 반응압력, 퇴적속도 등을 들 수 있다. 반응온도에 대해서는 본 발명에 관한 전기의 화합물이 충분히 반응하는 온도인 160℃이상이 바람직하고 250∼800℃가 보다 바람직하다. 또한 반응압력은 열CVD 또는 광CVD의 경우, 대기압∼10Pa가 바람직하고, 플라즈마를 사용할 경우는 10∼2000Pa가 바람직하다. 또한 퇴적속도는 원료의 공급조건(기화온도, 기화압력), 반응온도 및 반응압력에 의해 컨트롤할 수 있다. 퇴적속도는 크면 얻어지는 박막의 특성이 악화할 경우가 있고, 작으면 생산성에 문제를 생길 경우가 있어서, 0.5∼5000nm/분이 바람직하고, 1∼1000nm/분이 보다 바람직하다. 또한 ALD의 경우는 소망의 막후가 얻어지도록 사이클의 회수로 컨트롤된다. 또한 본 발명의 박막형성용 원료에 의해 형성되는 박막의 두께는 용도에 의해 적절히 선택되지만, 바람직하게는 10∼1000nm에서 선택한다.Moreover, as said manufacturing conditions, reaction temperature (substrate temperature), reaction pressure, deposition rate, etc. are mentioned. About reaction temperature, 160 degreeC or more which is the temperature which the said compound which concerns on this invention fully reacts is preferable, and 250-800 degreeC is more preferable. The reaction pressure is preferably from atmospheric pressure to 10 Pa in the case of thermal CVD or light CVD, and from 10 to 2000 Pa in the case of using plasma. The deposition rate can also be controlled by the feed conditions of the raw materials (vaporization temperature, vaporization pressure), reaction temperature and reaction pressure. If the deposition rate is large, the characteristics of the obtained thin film may deteriorate. If the deposition rate is small, there may be a problem in productivity. 0.5 to 5000 nm / min is preferable, and 1 to 1000 nm / min is more preferable. In the case of ALD, the number of cycles is controlled so that a desired thickness is obtained. Moreover, although the thickness of the thin film formed from the raw material for thin film formation of this invention is suitably selected by a use, Preferably it selects from 10-1000 nm.

또한 본 발명의 박막의 제조방법에 있어서는 박막퇴적 후에, 보다 양호한 전기특성을 얻기 위해서 아닐처리를 행해도 좋고, 단차매입이 필요한 경우에는 리플로우 공정을 마련해도 좋다. 이 경우의 온도는 500∼1200℃이며, 600∼800℃가 바 람직하다.In the method for producing a thin film of the present invention, after thin film deposition, annealing may be performed in order to obtain better electrical characteristics, or a reflow step may be provided when stepped embedding is required. The temperature in this case is 500-1200 degreeC, and 600-800 degreeC is preferable.

본 발명의 박막형성용 원료를 이용한 본 발명의 박막의 제조방법에 의해 제조되는 박막은 다른 성분의 프리커서, 반응성가스 및 제조조건을 적당히 선택함으로써 산화물 세라믹스, 질화물 세라믹스, 유리 등의 소망의 종류의 박막으로 할 수 있다. 제조되는 박막의 종류로서는 예를 들면 탄탈 산화물, 니오브 산화물, 탄탈-니오브 복합산화물, 탄탈-티탄 복합산화물, (니오브)탄탈산(바륨)스트론튬비스무트, 질화탄탈, 질화니오브, 탄탈-니오브 복합질화물, 탄화탄탈, 탄화니오브, 탄탈-니오브 복합탄화물, 탄탈, 니오브 각각의 금속의 박막을 들 수 있다. 이들의 박막의 용도로서는 예를 들면 산화물 세라믹스를 이용하는 것으로서 고유전 커패시터막, 게이트절연막, 강유전커패시터막, 콘덴서박막을 들 수 있으며, 질화물세라믹스를 이용하는 것으로서는 배리어층을 들 수 있고, 유리를 이용하는 것으로서는 광파이버, 광도파로, 광증폭기, 광스위치 등의 광학유리를 들 수 있다.The thin film produced by the method for producing a thin film of the present invention using the raw material for thin film formation of the present invention is a thin film of a desired kind such as oxide ceramics, nitride ceramics, glass, etc. by appropriately selecting precursors, reactive gases, and manufacturing conditions of other components. You can do Examples of the thin film to be produced include tantalum oxide, niobium oxide, tantalum-niobium composite oxide, tantalum-titanium composite oxide, (niobium) tantalum acid (barium) strontium bismuth, tantalum nitride, niobium nitride, tantalum-niobium composite nitride, And a thin film of metal of tantalum carbide, niobium carbide, tantalum-niobium composite carbide, tantalum and niobium. Examples of applications of these thin films include oxide ceramics, high dielectric capacitor films, gate insulating films, ferroelectric capacitor films, and capacitor thin films, and nitride ceramics include barrier layers, and glass is used. The optical glass, such as an optical fiber, an optical waveguide, an optical amplifier, an optical switch, is mentioned.

도 1은 본 발명의 금속함유박막의 제조에 이용되는 CVD장치의 1예를 나타내는 개요도이다.1 is a schematic diagram showing an example of a CVD apparatus used for producing a metal-containing thin film of the present invention.

도 2는 본 발명의 금속함유박막의 제조에 이용되는 ALD장치의 1예를 나타내는 개요도이다. Fig. 2 is a schematic diagram showing one example of an ALD apparatus used for producing the metal-containing thin film of the present invention.

이하 실시예 및 평가예를 가지고 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 이하의 실시예 등에 의해 하등 제한을 받는 것은 아니다. Hereinafter, the present invention will be described in more detail with examples and evaluation examples. However, the present invention is not limited at all by the following examples and the like.

[실시예 1] 화합물 N0.1의 제조Example 1 Preparation of Compound N0.1

건조아르곤가스 분위기하에서, 반응플라스크에 탄탈룸(V)에톡시드 0.246mol,탈수처리를 행한 톨루엔 50g 및 1-디메틸아미노-2-메틸-2-프로판올 0.271mol을 집어넣고, 상압(常壓), 탑정온도 68℃에서 에탄올을 제거하고, 조(粗)생성물을 회수하였다(회수율100%). 얻어진 조생성물에서 13Pa, 탑정온도 103∼104℃의 프랙션을 회수해서 투명액체를 얻었다. 이 정제에 의한 회수율은 70%이었다. 얻어진 투명액체에 대해서 이하의 분석을 하고, 목적물인 화합물 N0.1임을 확인하였다.In a dry argon gas atmosphere, 0.246 mol of tantalum (V) ethoxide and 50 g of toluene subjected to dehydration and 0.271 mol of 1-dimethylamino-2-methyl-2-propanol were placed in a reaction flask, followed by atmospheric pressure and column top. Ethanol was removed at a temperature of 68 ° C., and the crude product was recovered (recovery rate 100%). From the obtained crude product, a fraction of 13 Pa and a top temperature of 103 to 104 캜 was recovered to obtain a transparent liquid. The recovery by this tablet was 70%. The following analysis was performed about the obtained transparent liquid, and it confirmed that it was compound N0.1 which is a target object.

(분석값)(Analysis value)

(1)1H-NMR(용매:중벤젠)(케미칼시프트:다중도:H수)(1) 1 H-NMR (solvent: heavy benzene) (chemical shift: multiplicity: H number)

(1.27:s:6H)(1.32:t:12H)(2.31:s:6H)(2.36:2H:s)(4.55:q:8H)(1.27: s: 6H) (1.32: t: 12H) (2.31: s: 6H) (2.36: 2H: s) (4.55: q: 8H)

(2)TG-DTA(Ar유속 100ml/min, 승온속도 10℃/min, 샘플량 11.4mg)(2) TG-DTA (Ar flow rate 100 ml / min, heating rate 10 ° C./min, sample amount 11.4 mg)

50질량%감소온도:193.8℃50 mass% reduction temperature: 193.8 degrees Celsius

(3)ICP-AES(3) ICP-AES

화합물 중의 Ta함유량 분석값:37.1%(이론값:37.9%)Analysis of Ta content in compound: 37.1% (theoretical value: 37.9%)

[평가예 1] 화합물 N0.1의 휘발성 평가Evaluation Example 1 Volatile Evaluation of Compound N0.1

실시예 1에서 얻어진 화합물 No.1 및 하기에 나타내는 비교화합물 1 및 2에 대해서, 상기 실시예 1과 동조건에서의 TG-DTA에 의해 열거동(50질량%감소온도 및 300℃에서의 잔분)을 비교하였다. 또한 화합물 No.1 및 하기 비교화합물 1 및 2에 대해서 증기압측정을 행하였다. 이들의 결과를 표 1에 나타낸다. 또한 증기압측정 은 계를 일정한 압력으로 고정해 액면부근의 증기온도를 측정하고, 계의 압력을 변화시켜 증기온도를 3∼4점 측정하고, 클라지우스-클라페이론플롯(Clausius-Clapeyron plot)에 의해, 증기압의 식을 적용해서 10Torr에 있어서의 온도를 산출하는 방법에 의해 행하였다.With respect to compound No. 1 obtained in Example 1 and comparative compounds 1 and 2 shown below, entrained copper (50 mass% reduction temperature and residue at 300 ° C) by TG-DTA under the same conditions as in Example 1 above. Was compared. In addition, vapor pressure measurement was performed about compound No. 1 and the following comparative compounds 1 and 2. These results are shown in Table 1. In addition, the steam pressure measurement measures the steam temperature near the liquid level by fixing the system to a constant pressure, and measures the steam temperature by 3 to 4 points by changing the pressure of the system, and on the Clausius-Clapeyron plot. By the formula of the vapor pressure, the temperature in 10 Torr was calculated by the method.

Figure 112007030689030-PCT00005
Figure 112007030689030-PCT00005

금속화합물Metal compound 50%질량감소온도50% mass reduction temperature 300℃잔분300 ℃ residue 증기압 10Torr에 있어서의 온도Temperature at vapor pressure 10 Torr 화합물 No.1Compound No. 1 194℃194 ℃ 0.7%0.7% 145℃145 ℃ 비교화합물 No.1Comparative Compound No.1 206℃206 ℃ 1.5%1.5% 165℃165 ℃ 비교화합물 No.2Comparative Compound No.2 198℃198 ℃ 1.1%1.1% 155℃155 ℃

[평가예 2] 화합물 N0.1의 열안정성 평가Evaluation Example 2 Evaluation of Thermal Stability of Compound N0.1

실시예 1에서 얻어진 화합물 No.1 및 상기 비교화합물 1 및 2에 대해서, 안정성 평가를 행하였다. 평가는 각각의 화합물을 밀폐용기에 넣고, 200℃, 210℃ 및 220℃ 각각으로 1시간 가열하고, TG-DTA에 의해 분해한 비율을 구함으로써 행하였다. 이들의 결과를 표 2에 나타낸다. The stability evaluation was performed about the compound No. 1 obtained in Example 1, and the said comparative compounds 1 and 2. Evaluation was carried out by placing each compound in a sealed container, heating at 200 ° C., 210 ° C. and 220 ° C. for 1 hour, and obtaining a ratio decomposed by TG-DTA. These results are shown in Table 2.

금속화합물Metal compound 200℃200 ℃ 210℃210 ℃ 220℃220 ℃ 화합물 No.1Compound No. 1 0%0% 0%0% 0%0% 비교화합물 No.1Comparative Compound No.1 1.8%1.8% 8.2%8.2% 16%16% 비교화합물 No.2Comparative Compound No.2 0.9%0.9% 2.7%2.7% 5.9%5.9%

상기 표 1 및 2에서, 본 발명의 금속화합물인 화합물 N0.1을 비교화합물과 비교하면, 화합물 N0.1은 분자량이 가장 크지만, 가장 휘발성에 뛰어나며, 열안정성에도 뛰어남을 확인할 수 있었다. 이 점에서 화합물 N0.1은 비교화합물 1 및 비교화합물 2보다도, CVD법용 탄탈프리커서로서 적합한 것이라고 말할 수 있다.In Tables 1 and 2, when the compound N0.1 of the metal compound of the present invention is compared with the comparative compound, the compound N0.1 has the largest molecular weight, but the most volatile and excellent thermal stability. In this regard, compound N0.1 can be said to be more suitable as tantalum precursor for the CVD method than Comparative Compound 1 and Comparative Compound 2.

[실시예 2] 화합물 N0.9의 제조Example 2 Preparation of Compound N0.9

건조아르곤가스 분위기하에서, 반응플라스크에 니오브(V)에톡시드 0.051mol, 탈수처리를 행한 톨루엔 20g 및 1-디메틸아미노-2-메틸-2-프로판올 0.051mol을 집어넣고, 상압, 탑정온도 140℃에서 에탄올을 제거하고, 조생성물을 회수하였다(회수율 100%). 얻어진 조생성물에서 60∼70Pa, 탑정온도 105∼115℃의 프랙션을 회수해서 담황색 투명액체를 얻었다. 이 정제에 의한 회수율은 55%이었다. 얻어진 담황색 투명액체에 대해서 이하의 분석을 행하고, 목적물인 화합물 N0.9임을 확인하였다.In a dry argon gas atmosphere, 0.051 mol of niobium (V) ethoxide, 20 g of toluene subjected to dehydration and 0.051 mol of 1-dimethylamino-2-methyl-2-propanol were placed in a reaction flask at a normal pressure and a top temperature of 140 ° C. Ethanol was removed and the crude product was recovered (100% recovery). A fraction of 60 to 70 Pa and a top temperature of 105 to 115 ° C was recovered from the obtained crude product to obtain a pale yellow transparent liquid. The recovery by this tablet was 55%. The following analysis was performed about the obtained pale yellow transparent liquid, and it confirmed that it was compound N0.9 which is a target object.

(분석값)(Analysis value)

(1)1H-NMR(용매:중벤젠)(케미칼시프트:다중도:H수)(1) 1 H-NMR (solvent: heavy benzene) (chemical shift: multiplicity: H number)

(1.27:s:6H)(1.32:t:12H)(2.28:s:6H)(2.35:s:2H)(4.49:q:8H)(1.27: s: 6H) (1.32: t: 12H) (2.28: s: 6H) (2.35: s: 2H) (4.49: q: 8H)

(2)TG-DTA(Ar유속 100ml/min, 승온속도 10℃/min, 샘플량 11.4mg)(2) TG-DTA (Ar flow rate 100 ml / min, heating rate 10 ° C./min, sample amount 11.4 mg)

50질량%감소온도: 194.4℃50% by mass reduction temperature: 194.4 ℃

(3)ICP-AES(3) ICP-AES

화합물 중의 Nb함유량분석값: 23.2%(이론값:23.8%)Nb content analysis value in the compound: 23.2% (Theoretical value: 23.8%)

[평가예 3] 화합물 N0.9의 휘발성 평가Evaluation Example 3 Volatile Evaluation of Compound N0.9

실시예 2에서 얻어진 화합물 No.9 및 비교화합물 3로서의 Nb(OC2H5)5에 대해서, 상기 실시예 2와 동조건에서의 TG-DTA에 의해 열거동(50질량%감소온도 및 300℃에서의 잔분)을 비교하였다. 또한 화합물 No.9 및 비교화합물 3에 대해서 증기압측정을 행하였다. 이들의 결과를 표 3에 나타낸다. 또한 증기압측정은 계를 일정한 압력으로 고정해서 액면부근의 증기온도를 측정하고, 계의 압력을 바꾸어서 증기온도를 3∼4점 측정하고, 클라지우스-클라페이론플롯 의해, 증기압의 식을 적용해서, 10Torr에 있어서의 온도를 산출하는 방법에 의해 실시하였다.For compound No. 9 obtained in Example 2 and Nb (OC 2 H 5 ) 5 as Comparative Compound 3, entrained copper (50% by mass reduction temperature and 300 ° C.) was determined by TG-DTA under the same conditions as in Example 2. Residue at)). Furthermore, vapor pressure measurement was performed about compound No. 9 and comparative compound 3. These results are shown in Table 3. In addition, the steam pressure measurement measures the steam temperature near the liquid level by fixing the system to a constant pressure, and measures the steam temperature by 3 to 4 points by changing the pressure of the system. And the method of calculating the temperature in 10 Torr.

금속화합물Metal compound 50%질량감소온도50% mass reduction temperature 300℃잔분300 ℃ residue 증기압 10Torr에 있어서의 온도Temperature at vapor pressure 10 Torr 화합물 No.9Compound No. 9 194℃194 ℃ 0.2%0.2% 169℃169 ℃ 비교화합물 No.3Comparative Compound No.3 234℃234 ℃ 0.2%0.2% 169℃169 ℃

상기 표 3에서 본 발명의 금속화합물인 화합물 N0.9를 비교화합물 3과 비교하면, 비교화합물 N0.9는 분자량이 크지만, 휘발성에 뛰어남을 확인할 수 있었다. 이 점에서 화합물 N0.9는 비교화합물 3보다도, CVD법용 니오브프리커서로서 적합한 것이라고 말할 수 있다.Comparing compound N0.9 which is a metal compound of the present invention in Table 3 with Comparative Compound 3, Comparative Compound N0.9 has a large molecular weight, but it was confirmed that it is excellent in volatility. In this regard, compound N0.9 can be said to be more suitable as a niobium precursor for the CVD method than Comparative compound 3.

[실시예 3] 탄탈박막의 제조Example 3 Preparation of Tantalum Thin Film

도 1에 나타내는 CVD장치를 이용해서, Pt상에 이하의 조건으로 탄탈박막을 제조하였다. 제조한 박막에 대해서, 막후 및 결정구조의 측정을 형광X선으로 측정하였다. 측정결과를 이하에 나타낸다.Using the CVD apparatus shown in FIG. 1, a tantalum thin film was manufactured on Pt on condition of the following. For the prepared thin film, the measurement of the film thickness and the crystal structure was measured by fluorescence X-rays. The measurement results are shown below.

(제조조건)(Manufacturing conditions)

탄탈원료:화합물 No.1(원료온도;145℃, 압력;1300Pa, 캐리어가스;아르곤 200sccm), 산화가스:산소 300sccm, 반응압력:1300Pa, 반응온도(기판온도):500℃, 성막시간:25분, 결정화아닐:730℃/2min.Tantalum raw material: Compound No. 1 (raw material temperature; 145 ° C, pressure; 1300 Pa, carrier gas; argon 200 sccm), oxidizing gas: oxygen 300 sccm, reaction pressure: 1300 Pa, reaction temperature (substrate temperature): 500 ° C, film formation time: 25 Min, annealing crystals: 730 ° C./2 min.

(결과)(result)

막후;120nm, 결정구조;육방정 Ta2O5 Film thickness; 120 nm, crystal structure; hexagonal Ta 2 O 5

[실시예 4] 탄탈박막의 제조(ALD법)Example 4 Preparation of Tantalum Thin Film (ALD Method)

ALD용 원료로서, 화합물 N0.1의 에틸시클로헥산용액(0.2mol/L)을 조정하고, 도 2에 나타내는 ALD장치에 의해, 이하의 조건·공정으로 박막을 제조하였다. 얻어진 박막의 막후 및 결정구조를, 상기 실시예 2과 동일하게 해서 측정하였다. 측정 결과를 이하에 나타낸다.As a raw material for ALD, the ethylcyclohexane solution (0.2 mol / L) of compound N0.1 was adjusted, and the thin film was manufactured by the following conditions and processes by the ALD apparatus shown in FIG. The film thickness and crystal structure of the obtained thin film were measured in the same manner as in Example 2. The measurement results are shown below.

(조건)(Condition)

반응온도(기판온도);350℃, 반응성가스;수증기Reaction temperature (substrate temperature); 350 ° C., reactive gas; water vapor

(공정)(fair)

하기(1)∼(4)로 이루어지는 일련의 공정을 1사이클로서, 300사이클 반복하고, 최후에 700℃에서 3분간 아닐처리를 행하였다.The series of processes which consist of following (1)-(4) was repeated 300 cycles as 1 cycle, and the annealing process was performed at 700 degreeC for 3 minutes last.

(1) 기화실온도:150℃, 기화실압력 1300∼1400Pa의 조건으로 기화시킨 ALD용 원료의 증기를 도입하고, 계압 1300∼1400Pa로 1초간 퇴적시킨다. (1) Vaporization chamber temperature: The vapor of the ALD raw material vaporized on the conditions of 150 degreeC and vaporization chamber pressure 1300-1400 Pa is introduce | transduced, and it deposits for 1 second at the system pressure of 1300-1400 Pa.

(2) 2초간의 아르곤퍼지에 의해, 미반응 원료를 제거한다.(2) Unreacted raw material is removed by argon purge for 2 seconds.

(3) 수증기를 도입하고, 계압력 1300Pa로 1초간 반응시킨다.(3) Water vapor is introduced and reacted for 1 second at a system pressure of 1300 Pa.

(4) 2초간의 아르곤퍼지에 의해, 미반응 원료를 제거한다.(4) Unreacted raw material is removed by argon purge for 2 seconds.

(결과)(result)

막후:30nm, 결정구조:육방정 Ta2O5 Film thickness: 30 nm, crystal structure: hexagonal Ta 2 O 5

본 발명에 의하면, 특히 ALD법을 포함하는 CVD법 등의 기화공정을 가지는 박막제조방법의 프리커서로서 호적한 금속화합물을 제공할 수 있다. 상기 일반식(I)으로 표현되는 본 발명의 금속화합물은 배위자 말단에 강한 도너효과 및 큰 입체장애를 가지는 디알킬아미노기를 도입하는 것에 부가해서, 3급알코올로서 산소원자의 이웃에 입체장애를 도입함으로써, 금속원자와 산소원자와의 사이의 전기적 극성을 완화 및/또는 차폐하고, 금속화합물의 분자회합억제에 따른 고휘발화 및 불필요한 화학반응억제를 가능하게 한 것이다.According to the present invention, a metal compound suitable as a precursor of a thin film manufacturing method having a vaporization step such as a CVD method including an ALD method can be provided. The metal compound of the present invention represented by the above general formula (I) introduces a steric hindrance to a neighboring oxygen atom as a tertiary alcohol in addition to introducing a dialkylamino group having a strong donor effect and a large steric hindrance at the ligand end. As a result, the electrical polarity between metal atoms and oxygen atoms can be alleviated and / or shielded, and high volatilization and unnecessary chemical reactions can be suppressed due to molecular association inhibition of metal compounds.

Claims (11)

하기 일반식(I)으로 표현되는 것을 특징으로 하는 금속화합물.A metal compound represented by the following general formula (I). [화학식 1][Formula 1]
Figure 112007030689030-PCT00006
Figure 112007030689030-PCT00006
(식 중, M은 탄탈 또는 니오브를 나타내고, Rl은 탄소원자수 1∼4의 알킬기를 나타내고, R2 및 R3은 각각 독립으로 수소원자, 메틸기 또는 에틸기를 나타냄)(Wherein M represents tantalum or niobium, R 1 represents an alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group)
제1항에 있어서, 하기 일반식(II)으로 표현되는 것을 특징으로 하는 금속화합물. The metal compound according to claim 1, wherein the metal compound is represented by the following general formula (II). [화학식 2][Formula 2]
Figure 112007030689030-PCT00007
Figure 112007030689030-PCT00007
(식 중, R1 및 R2 및 R3은 상기 일반식(I)과 동일함)Wherein R 1 and R 2 And R 3 is the same as the general formula (I))
제1항에 있어서, 하기 일반식(III)으로 표현되는 것을 특징으로 하는 금속화합물.The metal compound according to claim 1, wherein the metal compound is represented by the following general formula (III). [화학식 3][Formula 3]
Figure 112007030689030-PCT00008
Figure 112007030689030-PCT00008
(식 중, R1 및 R2 및 R3은 상기 일반식(I)과 동일함)Wherein R 1 and R 2 And R 3 is the same as the general formula (I))
제1항에 있어서, 상기 일반식(I)에 있어서, R2 및 R3이 메틸기인 것을 특징으로 하는 금속화합물.The metal compound according to claim 1, wherein in General Formula (I), R 2 and R 3 are methyl groups. 제1항 또는 제4항에 있어서, 상기 일반식(I)에 있어서, Rl이 에틸기인 것을 특징으로 하는 금속화합물.The metal compound according to claim 1 or 4, wherein in Formula (I), R 1 is an ethyl group. 제2항에 있어서, 상기 일반식(II)에 있어서, R2 및 R3이 메틸기인 것을 특징으로 하는 금속화합물.The metal compound according to claim 2, wherein in General Formula (II), R 2 and R 3 are methyl groups. 제2항 또는 제6항에 있어서, 상기 일반식(II)에 있어서, R1이 에틸기인 것을 특징으로 하는 금속화합물.The metal compound according to claim 2 or 6, wherein in General Formula (II), R 1 is an ethyl group. 제3항에 있어서, 상기 일반식(III)에 있어서, R2 및 R3이 메틸기인 것을 특징으로 하는 금속화합물.The metal compound according to claim 3, wherein in General Formula (III), R 2 and R 3 are methyl groups. 제3항 또는 제8항에 있어서, 상기 일반식(III)에 있어서, R1이 에틸기인 것을 특징으로 하는 금속화합물. The metal compound according to claim 3 or 8, wherein in Formula (III), R 1 is an ethyl group. 제1항 내지 제9항 중 어느 한 항에 기재의 금속화합물을 함유해 이루어지는 것을 특징으로 하는 박막형성용 원료.The raw material for thin film formation containing the metal compound of any one of Claims 1-9. 제10항에 기재의 박막형성용 원료를 기화시켜서 얻은 금속화합물을 함유하는 증기를 기체상에 도입하고, 이것을 분해 및/또는 화학반응시켜서 기체상에 금속함유박막을 형성하는 것을 특징으로 하는 박막의 제조방법.A film containing a metal compound obtained by evaporating the raw material for forming a thin film according to claim 10 in a gas phase, and decomposing and / or chemically reacting to form a metal-containing thin film on the gas. Way.
KR1020077009222A 2004-11-02 2005-10-26 Metal compound, thin film-forming material, and method for producing thin film KR101128542B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00318858 2004-11-02
JP2004318858 2004-11-02
PCT/JP2005/019690 WO2006049059A1 (en) 2004-11-02 2005-10-26 Metal compound, thin film-forming material, and method for producing thin film

Publications (2)

Publication Number Publication Date
KR20070073806A true KR20070073806A (en) 2007-07-10
KR101128542B1 KR101128542B1 (en) 2012-03-23

Family

ID=36319071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077009222A KR101128542B1 (en) 2004-11-02 2005-10-26 Metal compound, thin film-forming material, and method for producing thin film

Country Status (5)

Country Link
JP (1) JP4823069B2 (en)
KR (1) KR101128542B1 (en)
CN (1) CN101052615B (en)
TW (1) TW200619413A (en)
WO (1) WO2006049059A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632765B2 (en) * 2004-10-21 2011-02-16 株式会社Adeka Alkoxide compound, raw material for thin film formation, and method for producing thin film
JP4775996B2 (en) * 2005-03-29 2011-09-21 日本碍子株式会社 Method for producing metal oxide film
JP5148186B2 (en) 2006-08-28 2013-02-20 東ソー株式会社 Imido complex, method for producing the same, metal-containing thin film, and method for producing the same
JP5214191B2 (en) * 2007-08-08 2013-06-19 株式会社Adeka Thin film forming raw material and thin film manufacturing method
WO2022220153A1 (en) * 2021-04-16 2022-10-20 株式会社Adeka Thin film-forming feedstock for use in atomic layer deposition, thin film, method for producing thin film, and ruthenium compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227593A (en) * 1987-03-17 1988-09-21 Hakusui Kagaku Kogyo Kk Production of metal alkoxide solution
AU1955395A (en) 1994-03-26 1995-10-17 Drake, Simone Robert Tantalum compounds
US6015917A (en) * 1998-01-23 2000-01-18 Advanced Technology Materials, Inc. Tantalum amide precursors for deposition of tantalum nitride on a substrate
US6562678B1 (en) * 2000-03-07 2003-05-13 Symetrix Corporation Chemical vapor deposition process for fabricating layered superlattice materials
KR100385952B1 (en) 2001-01-19 2003-06-02 삼성전자주식회사 A semiconductor capacitor having tantalum oxide as dielctric film and formation method thereof
KR100425463B1 (en) * 2001-09-10 2004-03-30 삼성전자주식회사 Method for forming tantalum pentoxide film and dielectric film under activated vapor containing oxygen
JP4632765B2 (en) * 2004-10-21 2011-02-16 株式会社Adeka Alkoxide compound, raw material for thin film formation, and method for producing thin film

Also Published As

Publication number Publication date
TW200619413A (en) 2006-06-16
JP4823069B2 (en) 2011-11-24
JPWO2006049059A1 (en) 2008-05-29
CN101052615B (en) 2010-07-14
CN101052615A (en) 2007-10-10
TWI379017B (en) 2012-12-11
KR101128542B1 (en) 2012-03-23
WO2006049059A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
KR101138130B1 (en) Metal compound, material for forming thin film and method for preparing thin film
JP4565897B2 (en) Thin film forming raw material and thin film manufacturing method
KR101145070B1 (en) Alkoxide compound, raw material for thin film formation and process for producing thin film
KR20070067214A (en) Alkoxide compound, thin film-forming material and method for forming thin film
KR101953721B1 (en) Alkoxide compound and raw material for forming thin film
KR20060058710A (en) Rare earth metal complex, material for thin-film formation, and process for producing thin film
KR101128542B1 (en) Metal compound, thin film-forming material, and method for producing thin film
US8003814B2 (en) Metal alkoxide compound, material for forming thin film, and method for producing thin film
EP3476827B1 (en) Vanadium compound, starting material for thin film formation, and method for producing thin film
KR102600214B1 (en) Metal alkoxide compounds, raw materials for forming thin films, and methods for producing thin films
JP4781012B2 (en) Metal compound having alcohol compound as ligand, raw material for forming thin film, and method for producing thin film
KR102634502B1 (en) Ruthenium compounds, raw materials for forming thin films, and methods for producing thin films
JP2018076550A (en) Compound, raw material for thin film formation, raw material for thin film formation for atomic layer deposition method, and production method of thin film
KR100876777B1 (en) Process of forming thin film and precursor for chemical vapor deposition
JP2020076114A (en) Raw material for thin film formation and manufacturing method of thin film
EP3539973A1 (en) Compound, starting material for thin film formation, thin film production method, and amidine compound
JP2008088511A (en) Raw material for depositing thin film, method for producing thin film, and zinc compound
JP4107923B2 (en) Method for producing yttrium-containing composite oxide thin film
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
KR20230117368A (en) Indium compound, raw material for thin film formation, thin film and manufacturing method thereof
JP2007254298A (en) Raw material for forming thin film and method for producing thin film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160311

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 8