KR20070071427A - Method for controlling temperature of electrostatic chuck - Google Patents

Method for controlling temperature of electrostatic chuck Download PDF

Info

Publication number
KR20070071427A
KR20070071427A KR1020050134844A KR20050134844A KR20070071427A KR 20070071427 A KR20070071427 A KR 20070071427A KR 1020050134844 A KR1020050134844 A KR 1020050134844A KR 20050134844 A KR20050134844 A KR 20050134844A KR 20070071427 A KR20070071427 A KR 20070071427A
Authority
KR
South Korea
Prior art keywords
kev
wafer
seconds
electrostatic chuck
esc
Prior art date
Application number
KR1020050134844A
Other languages
Korean (ko)
Other versions
KR100788355B1 (en
Inventor
안교준
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050134844A priority Critical patent/KR100788355B1/en
Publication of KR20070071427A publication Critical patent/KR20070071427A/en
Application granted granted Critical
Publication of KR100788355B1 publication Critical patent/KR100788355B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

A method for controlling the temperature of an electrostatic chuck is provided to minimize the thermal stress applied to a wafer by applying chucking force while the initial chucking force is gradually increased. While chucking force is gradually increased in an on-step of an electrostatic chuck, the initial chucking force is applied for a predetermined interval of time. The chucking force is applied for a shorter interval of time as the applied chucking force is increased. In applying the chucking force, 0.2 keV, 0.3 keV, 0.4 keV, 0.5 keV and 0.6 keV are used for an interval of 4 seconds, 3 seconds, 3 seconds, 3 seconds and 1 second, respectively.

Description

정전척의 온도 제어 방법{Method for Controlling Temperature of ElectroStatic Chuck}Method for Controlling Temperature of ElectroStatic Chuck

도 1은 열판 앞면 패턴(정전척 패턴)을 나타낸 도면.BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows a hotplate front pattern (electrostatic chuck pattern).

도 2는 열판 뒷면 패턴(가열 패턴)을 나타낸 도면.2 is a view showing a hot plate back pattern (heating pattern).

도 3은 기존 ESC 튜닝 테이블.3 is an existing ESC tuning table.

도 4는 기존 웨이퍼가 받는 온도 영향을 나타낸 그래프.4 is a graph showing the temperature effect of the conventional wafer.

도 5는 본 발명의 일실시예에 의한 ESC 튜닝 테이블.5 is an ESC tuning table according to an embodiment of the present invention.

도 6은 본 발명을 적용한 웨이퍼가 받는 온도 영향을 나타낸 그래프.Figure 6 is a graph showing the temperature effect received by the wafer to which the present invention is applied.

본 발명은 ESC 온도 제어 방법에 관한 것으로서, 좀 더 구체적으로는 ESC에서 온 스텝(On step)을 분산화하여 웨이퍼가 받는 온도를 단계적 상승 제어하는 ESC 온도 제어 방법에 관한 것이다.The present invention relates to an ESC temperature control method. More particularly, the present invention relates to an ESC temperature control method in which an on step is dispersed in an ESC to control a step-up of a temperature received by a wafer.

반도체 웨이퍼에는 다양한 종류의 박막, 예를 들면 산화막, 질화막, 절연막, 금속막 등이 차례로 적층되며, 각 박막들은 증착 및 식각 공정에 의해 목표로 하는 패턴으로 형성된다.Various kinds of thin films, for example, an oxide film, a nitride film, an insulating film, a metal film, and the like, are sequentially stacked on the semiconductor wafer, and each thin film is formed in a target pattern by a deposition and etching process.

그리고, 상기 증착과 에칭 공정을 진행할 때에는 반도체 웨이퍼를 고정밀도로 고정할 필요가 있는데, 통상적인 기계적 고정장치는 조립과 균일성 측면에서 많은 문제들을 수반하기 때문에 최근에는 정전척(electrostatic chuck)이 주로 사용된다. 정전척을 이용한 고정 방법으로는 유니폴라(unipolar) 고정 방법과 바이폴라(bipolar) 고정 방법 및 존-라벡(John-Rahbek) 고정 방법이 있다.In addition, it is necessary to fix the semiconductor wafer with high accuracy during the deposition and etching process. In recent years, the electrostatic chuck is mainly used because the conventional mechanical fixing device involves many problems in terms of assembly and uniformity. do. As the fixing method using the electrostatic chuck, there are a unipolar fixing method, a bipolar fixing method, and a John-Rahbek fixing method.

ESC 장치를 이용한 증착 공정은 대기 단계(idle step), 전이 단계(transfer step), 고정 단계(chucking step), 안정화 단계(stable step), 프로세스 단계(process step) 및 펌핑 단계(pumping step)를 포함하는데, 고정 단계에서 백사이드 아르곤과 ESC 파워를 턴온하고, 안정화 단계에서 백사이드 아르곤과 ESC 파워의 턴온을 유지하면서 압력과 가스를 턴온하며, 프로세스 단계에서 DC 파워를 턴온하여 챔버 내에 플라즈마를 생성하여 증착 공정을 수행하고, 프로세스 단계가 끝난 후에 먼저 DC 파워, 압력 및 가스를 턴오프 하고, 바로 이어서 백사이드 아르곤과 ESC 파워를 턴오프하여 공정을 종료한다.The deposition process using an ESC device includes an idle step, a transfer step, a chucking step, a stabilization step, a process step and a pumping step. In the fixing step, the backside argon and the ESC power are turned on, and in the stabilization step, the backside argon and the ESC power are turned on, while the pressure and the gas are turned on. After the process step is completed, first turn off the DC power, pressure and gas, then immediately turn off the backside argon and ESC power to terminate the process.

도 1 및 도 2는 ESC 장치에 사용되는 열판의 앞면과 뒷면을 나타낸 도면이다.1 and 2 are views showing the front and back of the hot plate used in the ESC device.

도 1 및 도 2에 도시된 바와 같이, 열판은 금속전극(Ti,Co,Al) 증착시에 고진공의 챔버(Chamber)와, 아르곤 가스(Ar Gas) 그리고 DC 파워와 함께 어셈블리(Assembly)로 구성되어 있다. 이 열판은 웨이퍼(Wafer)가 놓이는 곳이며, 그 전면에 ESC(Electro Static Chuck)(1), 뒷면에 히팅소자(Heating element)(2)가 있어 웨이퍼 고정(Chucking)과 히팅(Heating)을 동시에 실행할 수 있는 구조로 되어 있 다.As shown in FIGS. 1 and 2, the hot plate is composed of an assembly together with a chamber of high vacuum, ar gas, and DC power during deposition of the metal electrodes Ti, Co, and Al. It is. This hot plate is where wafers are placed, and there is an electrostatic chuck (ESC) on the front and a heating element (2) on the back, so that both wafer fixing and heating can be performed simultaneously. It is a structure that can be executed.

이와 같이 구성되어, 열판의 웨이퍼 고정 파워(Wafer chucking power)는 ESC 공급전력(Power supply) 1.1kw에 의해 구동되며, 최대전력(Max. power)의 약 56.4%인 0.6keV를 이용하여 고정을 실시한다. 예를 들어 ULVAC社 스퍼터링(Sputtering) 장비인 Ceraus Z-1000 및 Entron W-200 Model들이 그 대표적인 것이다.In this manner, the wafer chucking power of the hot plate is driven by 1.1 kW of the ESC power supply and fixed using 0.6 keV, which is about 56.4% of the maximum power. do. For example, ULVAC's sputtering equipment, the Ceraus Z-1000 and Entron W-200 Models, are examples.

그런데, 기존 웨이퍼 고정의 운영 규칙(Rule)은 레서피 스텝(Recipe step ; 즉, 프로그램 단계)별로 도 3과 같은 ESC 테이블이 있어, 레서피 단계별로 고정을 세밀하게 컨트롤한다. 예를 들어 ULVAC社 시스템의 ESC 테이블은 진공챔버(Degas chamber)가 없음으로 인해 상온의 웨이퍼가 직접 프로세스챔버(Process chamber) 고온(350℃)과 고정을 수행하므로 일시에 온도 스트레스(Thermal stress)를 높게 받음으로써 열충격(Thermal shock)으로 인한 웨이퍼 손상 비율(Wafer broken rate)이 증가된다.By the way, the operation rule (Rule) of the conventional wafer fixation has an ESC table as shown in FIG. 3 for each recipe step (that is, a program step), and finely controls the fixation in the recipe step. For example, the ULSC system's ESC table has no vacuum chamber (Degas chamber), so the wafer at room temperature directly fixes the process chamber high temperature (350 ℃). Receiving high increases the wafer broken rate due to thermal shock.

도 3에 도시된 ESC 테이블에서와 같이 온 스텝(On step)에서 상온의 웨이퍼를 급격하게 강한 0.6keV라는 힘으로 일시에 고정함으로써 웨이퍼에 열충격이 유발되는 것이다.As in the ESC table shown in FIG. 3, thermal shock is induced on the wafer by temporarily fixing the wafer at room temperature with a sudden strong force of 0.6 keV in the on step.

이와 같이, 기존 ESC 테이블은 웨이퍼를 고정할 때, 상온의 웨이퍼가 350℃ 프로세스 온도에서 급격한 온도로 상승되어 웨이퍼에 열에 의한 손상을 주는 문제점을 해결하기 위해, 도 4에 도시된 바와 같이, 단계별로 고정력(Chucking Force)를 나누어 웨이퍼에 인가함으로써 웨이퍼가 열에 의한 손상을 최소화하고자 하였다. 그런데, 이 경우에도, 도 4에 도시된 바와 같이, 1초(sec) 이내에 웨이퍼가 400℃까지 오버슈팅(Overshooting)되어 웨이퍼 스트레스가 증가하는 문제점이 있었다. 도 4는 NTM(Non Contact Monitoring) 시스템을 이용한 실험 데이터이다.As described above, in order to solve the problem that the conventional ESC table is fixed to the wafer, the wafer at room temperature rises to a rapid temperature at 350 ° C. process temperature and damages the wafer to heat. By dividing the clamping force applied to the wafer to minimize the damage caused by the heat. However, even in this case, as illustrated in FIG. 4, the wafer is overshooted up to 400 ° C. within 1 second to increase the wafer stress. 4 is experimental data using a Non Contact Monitoring (NTM) system.

본 발명의 목적은 ESC에서 온 스텝(On step)을 분산화하여 웨이퍼가 받는 온도를 단계적 상승 제어함과 아울러 초기 오버슈팅의 문제를 해결하기 위해 온 스텝의 초기 전압을 일반적으로 인가하는 고정 파워보다 낮추어 인가하는 ESC 온도 제어 방법을 제공하는데 있다.An object of the present invention is to control the temperature received by the wafer by distributing the on step in the ESC stepwise, and to lower the initial power of the on step than the fixed power which is generally applied to solve the problem of initial overshooting It is to provide an ESC temperature control method applied.

본 발명에 따른 ESC 온도 제어 방법은, ESC 온 스텝(On step)에서 고정력(Chucking force)를 단계별로 상승시키며, 초기의 고정력을 설정시간동안 인가하고, 인가되는 고정력이 상승함에 따라 상기 설정시간보다 짧게 인가하는 것을 특징으로 한다. In the ESC temperature control method according to the present invention, in the ESC On step, the raising force (Chucking force) is increased in stages, an initial fixing force is applied for a set time, and the applied fixing force is increased than the set time as the applied fixing force increases. It is characterized by a short application.

이 때, 상기 고정력이 인가되는 단계는, 0.2keV를 4초동안, 0.3keV를 3초동안, 0.4keV를 3초동안, 0.5keV를 3초동안, 0.6keV를 1초동안으로 형성되는 것이 바람직하다. At this time, the step of applying the fixing force, 0.2keV for 4 seconds, 0.3keV for 3 seconds, 0.4keV for 3 seconds, 0.5keV for 3 seconds, it is preferable to form 0.6keV for 1 second. Do.

구현예Embodiment

이하 도면을 참조로 본 발명의 구현예에 대해 설명한다.Embodiments of the present invention will be described below with reference to the drawings.

도 5는 본 발명의 일실시예에 의한 ESC 튜닝 테이블이고, 도 6은 본 발명을 적용한 웨이퍼가 받는 온도 영향을 나타낸 그래프이다.FIG. 5 is an ESC tuning table according to an embodiment of the present invention, and FIG. 6 is a graph showing a temperature effect of a wafer to which the present invention is applied.

도 5 및 도 6에 도시된 바와 같이, 기본적으로 ESC 온 스텝(On step)에서 고정력(Chucking force)를 로우(Low)에서 하이(High)로 변환시켜서 웨이퍼가 받는 열충격을 최소화하고 있다. 즉, 기존 제어 방법에 비하여 온도 제어가 안정화되어 있음을 알 수 있다.As shown in FIG. 5 and FIG. 6, basically, the fixing force is changed from low to high in the ESC on step to minimize thermal shock to the wafer. That is, it can be seen that the temperature control is stabilized as compared to the existing control method.

이를 위해, 웨이퍼 척 온 스텝에서는 1초 이내에 웨이퍼로 열 전달이 일어나며, 300℃ 이내에서 오버슈팅이 이루어지고 있음을 알 수 있다. 즉, 초기의 상온에서 최초 0.2keV에서 4초(sec)동안, 0.3keV에서 3초동안, 0.4keV에서 3초동안, 0.5keV에서 3초동안, 0.6keV에서 1초동안 고정력(Chucking force)를 단계별로 인가함으로써 웨이퍼가 받는 열적 손상을 최소화하고 있다. 이는 웨이퍼에 대한 열적 에이징(Aging) 효과라 볼 수 있으며, 이후의 단계는 단계별 온도 상승효과를 창출한다. 이는 초기에 작은 고정력을 비교적 긴시간 인가하고, 고정력이 상승함에 따라 시간을 짧게 분배하여 인가함으로써 얻을 수 있다. 한편, 연속 온 스텝에 해당하는 0.6keV 고정력이 온 스텝 과정에서 이루어지게함으써 공정처리의 신속성을 기할 수 있을 것이다.To this end, in the wafer chuck on step, heat transfer occurs to the wafer within 1 second, and it can be seen that overshooting is performed within 300 ° C. In other words, the initial clamping force is applied for 4 seconds (sec) at 0.2 keV, 3 seconds at 0.3 keV, 3 seconds at 0.4 keV, 3 seconds at 0.5 keV, and 1 second at 0.6 keV at initial room temperature. Applying in stages minimizes thermal damage to the wafer. This can be seen as a thermal aging effect on the wafer, and subsequent steps create stepwise temperature rise. This can be obtained by initially applying a small fixing force for a relatively long time and applying a short distribution of time as the fixing force rises. On the other hand, the 0.6keV holding force corresponding to the continuous on step is made in the on step process will be able to ensure the speed of the process.

이와 같이, 초기의 고정력(Chucking force)가 전체적인 웨이퍼의 안정성을 유도하는데 중요한 요인으로 작용하고 있다.As such, the initial chucking force acts as an important factor in inducing overall wafer stability.

지금까지 본 발명의 구체적인 구현예를 도면을 참조로 설명하였지만 이것은 본 발명이 속하는 기술분야에서 평균적 지식을 가진 자가 쉽게 이해할 수 있도록 하기 위한 것이고 발명의 기술적 범위를 제한하기 위한 것이 아니다. 따라서 본 발명의 기술적 범위는 특허청구범위에 기재된 사항에 의하여 정하여지며, 도면을 참조로 설명한 구현예는 본 발명의 기술적 사상과 범위 내에서 얼마든지 변형하거나 수정할 수 있다.Although specific embodiments of the present invention have been described with reference to the drawings, this is intended to be easily understood by those skilled in the art and is not intended to limit the technical scope of the present invention. Therefore, the technical scope of the present invention is determined by the matters described in the claims, and the embodiments described with reference to the drawings may be modified or modified as much as possible within the technical spirit and scope of the present invention.

본 발명에 따르면 초기의 고정력(Chucking force)를 단계별로 상승시키면서 인가함으로써 웨이퍼가 초기에 받을 수 있는 열적 스트레스를 최소화할 수 있다. 또한, 단계별로 고정력을 상승시킴으로써 온도 에이징(Aging)도 기대할 수 있다. 결국, 열판 패턴 유형으로 발생하는 웨이퍼 열충격(Wafer thermal shock)을 방지할 수 있다.According to the present invention, it is possible to minimize the thermal stress that the wafer can initially receive by applying an initial chucking force while raising the stage step by step. In addition, temperature aging may also be expected by increasing the holding force in stages. As a result, it is possible to prevent wafer thermal shock that occurs in the hot plate pattern type.

Claims (2)

정전척(ElectroStatic Chuck) 온 스텝(On step)에서 고정력(Chucking force)를 단계별로 상승시키며, 초기의 고정력을 설정시간동안 인가하고, 인가되는 고정력이 상승함에 따라 상기 설정시간보다 짧게 인가하는 것을 특징으로 하는 정전척의 온도 제어 방법.The electrostatic chuck on step increases the chucking force step by step, applies an initial fixing force for a set time, and applies a shorter time than the set time as the applied fixing force increases. Temperature control method of the electrostatic chuck. 제1항에서, 상기 고정력이 인가되는 단계를, 0.2keV를 4초동안, 0.3keV를 3초동안, 0.4keV를 3초동안, 0.5keV를 3초동안, 0.6keV를 1초동안으로 하는 것을 특징으로 하는 정전척 온도 제어 방법.The method of claim 1, wherein the fixing force is applied to 0.2 keV for 4 seconds, 0.3 keV for 3 seconds, 0.4 keV for 3 seconds, 0.5 keV for 3 seconds, and 0.6 keV for 1 second. An electrostatic chuck temperature control method.
KR1020050134844A 2005-12-30 2005-12-30 Method for Controlling Temperature of ElectroStatic Chuck KR100788355B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050134844A KR100788355B1 (en) 2005-12-30 2005-12-30 Method for Controlling Temperature of ElectroStatic Chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050134844A KR100788355B1 (en) 2005-12-30 2005-12-30 Method for Controlling Temperature of ElectroStatic Chuck

Publications (2)

Publication Number Publication Date
KR20070071427A true KR20070071427A (en) 2007-07-04
KR100788355B1 KR100788355B1 (en) 2008-01-02

Family

ID=38506558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050134844A KR100788355B1 (en) 2005-12-30 2005-12-30 Method for Controlling Temperature of ElectroStatic Chuck

Country Status (1)

Country Link
KR (1) KR100788355B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148165B1 (en) * 2010-06-14 2012-05-23 (주)에스엔텍 Method of temperature control for glass substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3101954B2 (en) 1990-12-27 2000-10-23 京セラ株式会社 Control device for electrostatic chuck
KR100479766B1 (en) * 1996-03-29 2005-07-07 램 리서치 코포레이션 Dynamic feed white electrostatic wafer chuck
US6104595A (en) 1998-04-06 2000-08-15 Applied Materials, Inc. Method and apparatus for discharging an electrostatic chuck
JP2004335570A (en) 2003-05-01 2004-11-25 Renesas Technology Corp Substrate processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148165B1 (en) * 2010-06-14 2012-05-23 (주)에스엔텍 Method of temperature control for glass substrate

Also Published As

Publication number Publication date
KR100788355B1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
JP4607865B2 (en) Method and system for substrate temperature control
US20180166259A1 (en) Mounting table and plasma processing apparatus
EP2991103A1 (en) Etching method
US11830751B2 (en) Plasma processing apparatus and plasma processing method
US11664200B2 (en) Placing table, positioning method of edge ring and substrate processing apparatus
US20070227663A1 (en) Substrate processing apparatus and side wall component
JP2007067037A (en) Vacuum processing device
TW200421480A (en) Method for reducing wafer arcing
JP2015015372A (en) Electrostatic chuck system, and semiconductor manufacturing device
US8501630B2 (en) Selective etch process for silicon nitride
KR100788355B1 (en) Method for Controlling Temperature of ElectroStatic Chuck
US20240047195A1 (en) Delayed pulsing for plasma processing of wafers
US8328981B2 (en) Method for heating a focus ring in a plasma apparatus by high frequency power while no plasma being generated
US20200144090A1 (en) Placing table and substrate processing apparatus
US20060169209A1 (en) Substrate processing apparatus, substrate processing method, and storage medium storing program for implementing the method
JP2006128729A (en) Etching device
CN113594067B (en) Temperature control system, temperature control method, temperature control device and storage medium
US11380573B2 (en) Structure for automatic in-situ replacement of a part of an electrostatic chuck
JP2004339609A (en) Wafer pedestal cover
TWI437632B (en) Reducing plasma ignition pressure
JP2011124274A (en) Plasma treatment apparatus
KR20130104738A (en) Electrostatic chuck
US20220137603A1 (en) Recipe updating method
JP4327804B2 (en) Etching apparatus and etching processing method
KR100801857B1 (en) Method for ashing substrates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee