KR20070071190A - High tenacity polyethylene-2 ,6-naphthalate fiber - Google Patents

High tenacity polyethylene-2 ,6-naphthalate fiber Download PDF

Info

Publication number
KR20070071190A
KR20070071190A KR1020050134420A KR20050134420A KR20070071190A KR 20070071190 A KR20070071190 A KR 20070071190A KR 1020050134420 A KR1020050134420 A KR 1020050134420A KR 20050134420 A KR20050134420 A KR 20050134420A KR 20070071190 A KR20070071190 A KR 20070071190A
Authority
KR
South Korea
Prior art keywords
naphthalate
content
polyethylene
catalyst
antimony
Prior art date
Application number
KR1020050134420A
Other languages
Korean (ko)
Inventor
김우성
최수명
방윤혁
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020050134420A priority Critical patent/KR20070071190A/en
Publication of KR20070071190A publication Critical patent/KR20070071190A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/046Shape recovering or form memory
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/062Load-responsive characteristics stiff, shape retention
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Abstract

A polyethylene naphthalate fiber, a method for manufacturing the same, and a method for manufacturing a polyethylene naphthalate polymer are provided to improve heat stability, dimension stability, and high tenacity of the polyethylene naphthalate fiber, by using a cocatalyst composed of an antimony catalyst, a titanium catalyst, and a heat stabilizer. In polymerizing polyethylene-2,6-naphthalate containing ethylene-2,6-naphthalate units of more than 85 mol%, antimony catalyst has a content of 40-150 ppm based on antimony metal and titanium has a content of 5-50 ppm based on the titanium metal. The polyethylene-2,6-naphthalate is melt-polymerized to have an intrinsic viscosity of 0.4-0.75 dl/g by using co-catalyst where a heat stabilizer has a content of 5-50 ppm based on a content of phosphorous. The melt-polymerized compound is solid-state polymerized to have an intrinsic viscosity of 0.7-1.20 dl/g. The solid-state polymerized compound is melt-spun to produce a melt release yarn. The melt release yarn passes through a delay cooling section and a cooling section to solidify an undrawn yarn. The solidified undrawn yarn is wound. The wound yarn is multistage-drawn.

Description

고강력 폴리에틸렌-2, 6-나프탈레이트 섬유{High tenacity polyethylene-2 ,6-naphthalate fiber}High tenacity polyethylene-2, 6-naphthalate fiber

본 발명은 새로운 공촉매계를 사용한 반응성 및 열안정성이 우수한 폴리에틸렌-2,6-나프탈레이트 중합체 및 이로부터 제조된 고강력 폴리에틸렌-2,6-나프탈레이트 섬유의 제조방법에 관한 것으로, 본 발명에 의해 제조된 폴리에틸렌 나프탈레이트 섬유는 우수한 내열안정성과 치수안정성, 고강력, 고강도를 발현하여 타이어, 벨트, 호스 등의 산업용사 및 고무보강재용사로 적합하다.The present invention relates to a polyethylene-2,6-naphthalate polymer having excellent reactivity and thermal stability using a novel cocatalyst system and a method for preparing a high strength polyethylene-2,6-naphthalate fiber prepared therefrom. The polyethylene naphthalate fiber produced is excellent in thermal stability, dimensional stability, high strength, high strength, and is suitable for industrial use of tires, belts, hoses, and rubber reinforcing materials.

폴리에틸렌-2,6-나프탈레이트의 중합 촉매는 통상적으로 안티몬이 주로 사용되는데 안티몬 촉매는 방사구금 하에서 응집을 일으켜 방사시의 연신성을 저하시키는 단점이 있다. 이러한 단점을 극복하기 위하여 일본공개특허 소58-38,722호에서는 티타늄촉매를 사용하고 티타늄 촉매의 단점인 열안정성을 보완하기위해 인계 화합물인 포스파이트를 사용하였으나 티타늄 고유의 착색을 개선하지 못하였다. Antimony is mainly used as a polymerization catalyst of polyethylene-2,6-naphthalate, but antimony catalyst has a disadvantage of causing cohesion under spinneret to reduce elongation at spinning. In order to overcome these disadvantages, Japanese Laid-Open Patent Publication No. 58-38,722 used a titanium catalyst and phosphite, a phosphorus-based compound, was used to compensate for the thermal stability, which is a disadvantage of the titanium catalyst, but did not improve the inherent color of titanium.

또한, WO 01-0070호6에서는 티타늄촉매에 인계화합물을 반응시켜 콤플렉스를 만들고 트리멜리틱 애시드 등의 첨가물과 넣어 티타늄 촉매의 착색문제를 개선하였 다. In addition, WO 01-0070 No. 6 was prepared by reacting a phosphorus compound with a titanium catalyst to form a complex, and added with additives such as trimellitic acid to improve the coloring problem of the titanium catalyst.

또한, WO 01-14448호에서는 알루미늄과 인계 화합물을 이용하여 안티몬 촉매 보다 연신성이 좋은 섬유를 제조하였다. In addition, WO 01-14448 uses aluminum and phosphorus compounds to produce fibers having better stretchability than antimony catalysts.

하지만 각각의 방법은 제조공정이 복잡해지고 많은 비용이 드는 단점이 있다. However, each method has a disadvantage in that the manufacturing process is complicated and expensive.

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 폴리에틸렌 나프탈레이트 용융중합 단계에서 안티몬 촉매와 티타늄 촉매를 동시에 사용하여 상승작용을 일으켜 두 촉매의 단점을 상호 보완하고 티타늄 촉매의 열안정성을 보완해 줄 수 있는 구조식(1)의 열안정제를 투입하서 열안정성을 부여하여 압출기 등에서의 열분해를 방지함으로써 압출시 생성된 분해생성물이 고무 접착성 부여를 위한 열처리, 타이어 내에서의 가류 등 공정에서 섬유의 물성이 저하하는 것을 방지하는 것에 그 목적이 있다. The present invention has been made to solve the problems of the prior art as described above, by synergistically using the antimony catalyst and titanium catalyst in the polyethylene naphthalate melt polymerization step to complement the disadvantages of both catalysts and By adding thermal stabilizer of formula (1) which can complement the thermal stability, it gives thermal stability and prevents thermal decomposition in extruder etc. The purpose is to prevent the physical properties of the fiber from deteriorating.

구조식 (1)Structural Formula (1)

Figure 112005078089056-PAT00001
Figure 112005078089056-PAT00001

(R1 : -OH, R2 ~ R5 : CnH2n +1, 단, n = 0 내지 5, R1 ~ R3 은 Ph의 치환기임.)(R 1 : -OH, R 2 to R 5 : C n H 2n +1 , provided that n = 0 to 5 and R 1 to R 3 Is a substituent of Ph.)

본 발명은 (A) 에틸렌-2,6-나프탈레이트 단위를 85 몰% 이상 함유하는 폴리에틸렌-2,6-나프탈레이트의 중합단계에서 안티몬과 티타늄 및 열안정제로 구성된 공촉매계를 사용하여 고유점도가 0.40 dl/g 내지 0.75 dl/g범위로 용융중합하는 단계; (B) 0.70 dl/g 내지 1.20 dl/g 범위의 고유점도로 폴리에틸렌-2,6-나프탈레이트를 고상중합 하는 단계; (C) 상기 고상중합 칩을 용융방사하여 제조된 용융방출사를 지연냉각 및 냉각구역을 통과시켜 고화된 미연신사를 권취하는 단계; 및 (D) 상기 권취된 미연신사를 다단연신시키는 단계를 포함하는 것을 특징으로 하는 강력 폴리에틸렌-2,6-나프탈레이트 섬유의 제조방법을 제공한다.(A) Intrinsic viscosity using a cocatalyst system composed of antimony, titanium and a heat stabilizer in the polymerization step of polyethylene-2,6-naphthalate containing 85 mol% or more of ethylene-2,6-naphthalate units Melt polymerizing in the range of 0.40 dl / g to 0.75 dl / g; (B) solid-phase polymerization of polyethylene-2,6-naphthalate with an intrinsic viscosity in the range of 0.70 dl / g to 1.20 dl / g; (C) winding the solidified unstretched yarn by passing the molten yarn produced by melt spinning the solid-state polymerized chip through a delay cooling and cooling zone; And (D) provides a method for producing a strong polyethylene-2,6-naphthalate fiber comprising the step of multi-stretching the wound undrawn yarn.

본 발명은 상기 (A) 단계의 새로운 공촉매계가 안티몬과 티타늄 및 열안정제로 구성되는 것을 특징으로 한다.The present invention is characterized in that the new cocatalyst of step (A) is composed of antimony, titanium, and a heat stabilizer.

또한, 본 발명은 상기 안티몬 촉매의 함량이 안티몬 금속을 기준으로 폴리에틸렌 나프탈레이트 중합물내에 40 내지 150ppm인 것을 특징으로 한다.In addition, the present invention is characterized in that the content of the antimony catalyst is 40 to 150ppm in the polyethylene naphthalate polymer based on the antimony metal.

또한, 본 발명은 상기 티타늄 촉매의 함량이 티타늄 금속을 기준으로 폴리에틸렌 나프탈레이트 중합물내에 5 내지 50ppm인 것을 특징으로 한다.In addition, the present invention is characterized in that the content of the titanium catalyst is 5 to 50ppm in the polyethylene naphthalate polymer based on the titanium metal.

또한, 본 발명은 상기 열안정제의 화학구조식이 구조식(1)과 같고, 함량이 인의 함량을 기준으로 폴리에틸렌 나프탈레이트 중합물내에 5 내지 50ppm 인 것을 특징으로 한다.In addition, the present invention is characterized in that the chemical structural formula of the thermal stabilizer is the same as the formula (1), the content is 5 to 50ppm in the polyethylene naphthalate polymer based on the content of phosphorus.

또한, 본 발명은 에틸렌-2,6-나프탈레이트 단위를 85몰% 이상 함유하는 폴리에틸렌-2,6-나프탈레이트의 중합단계에서 안티몬과 티타늄 및 상기 구조식(1)의 열 안정제로 구성된 공촉매계를 사용하여 고유점도가 0.4 내지 0.75 dl/g 범위로 용융중합하는 것을 특징으로 하는 폴리에틸렌 나프탈레이트 중합체의 제조방법을 제공한다.In addition, the present invention provides a cocatalyst system composed of antimony and titanium in the polymerization step of polyethylene-2,6-naphthalate containing 85 mol% or more of ethylene-2,6-naphthalate units and the heat stabilizer of formula (1). It provides a method of producing a polyethylene naphthalate polymer, characterized in that the melt viscosity in the range of 0.4 to 0.75 dl / g using.

이하 본 발명에 대하여 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에 사용되는 폴리에틸렌 나프탈레이트 칩은 최소한 85 몰%의 에틸렌-2,6-나프탈레이트 단위를 함유하며, 바람직하게는 에틸렌-2,6-나프탈레이트 단위만으로 구성된다. 선택적으로, 상기 폴리에틸렌-2,6-나프탈레이트는 에틸렌글리콜 및 2,6-나프탈렌 디카르복시산 혹은 이들의 유도체이외의 하나 또는 그 이상의 에스테르-형성 성분으로부터 유도된 소량의 유니트를 공중합체 유니트로서 편입할 수 있다. 폴리에틸렌 나프탈레이트 유니트와 공중합가능한 다른 에스테르 형성 성분의 예로는 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올등과 같은 글리콜과, 테레프탈산, 이소프탈산, 헥사하이드로테레프탈산, 디벤조산, 아디프산, 세바스산, 아젤라산과 같은 디카르복실산을 포함한다.The polyethylene naphthalate chip used in the present invention contains at least 85 mol% of ethylene-2,6-naphthalate units and preferably consists only of ethylene-2,6-naphthalate units. Optionally, the polyethylene-2,6-naphthalate may incorporate as a copolymer unit small amounts of units derived from one or more ester-forming components other than ethylene glycol and 2,6-naphthalene dicarboxylic acid or derivatives thereof. Can be. Examples of other ester forming components copolymerizable with polyethylene naphthalate units include glycols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and the like, terephthalic acid, isophthalic acid, hexahydroterephthalic acid and dibenzoic acid. Dicarboxylic acids such as adipic acid, sebacic acid, and azelaic acid.

본 발명에 따른 폴리에틸렌 나프탈레이트 칩은, 바람직하게는 나프탈렌-2,6-디메틸카르복실레이트 또는 그의 카르복시산 유도체의 고형물 또는 용융물과 에틸렌글리콜 원료를 1.6 내지 2.2의 비율로 190℃에서 혼합 또는 혼합 후 가열 용해하고, 나프탈렌 2,6-디카르복실레이트의 몰수에 대한 10 내지 100ppm의 Zn, Mn, Mg, Pb, Ca, Co 등의 에스테르 교환 촉매의 존재하에서, 나프탈렌 디카르복실레이트와 에틸렌글리콜을 상압, 180 내지 240℃ 온도에서 반응시켜 비스히드록시 에틸나프탈레이트 혹은 그의 중합도 10 이하의 올리고머를 생성하는 에스테르 교환반응을 실 시하고, 이차로 중합촉매로서 안티몬 촉매를 안티몬 금속을 기준으로 40 내지 150 ppm, 티타늄 촉매를 티타늄 기준으로 5 내지 50 ppm 사용하고, 인기준으로 5 내지 50ppm의 함량이 되도록 하기 구조식(1)의 열안정성 화합물을 단독 또는 통상의 열안정제와 혼합하여 첨가한다 The polyethylene naphthalate chip according to the present invention is preferably a mixture of solids or melts of naphthalene-2,6-dimethylcarboxylate or carboxylic acid derivatives thereof and ethylene glycol raw materials at 190 ° C in a ratio of 1.6 to 2.2, followed by heating Naphthalene dicarboxylate and ethylene glycol at atmospheric pressure in the presence of a transesterification catalyst of 10 to 100 ppm of Zn, Mn, Mg, Pb, Ca, Co and the like with respect to the number of moles of naphthalene 2,6-dicarboxylate And a transesterification reaction to produce bishydroxy ethyl naphthalate or an oligomer having a degree of polymerization of 10 or less by reacting at a temperature of 180 to 240 ° C. Secondly, an antimony catalyst is 40 to 150 ppm based on antimony metal as a polymerization catalyst. 5 to 50 ppm of titanium catalyst is used on the basis of titanium, and the content of 5 to 50 ppm on the basis of phosphorus Stable compound is added alone or in combination with a conventional heat stabilizer

구조식 (1)Structural Formula (1)

Figure 112005078089056-PAT00002
Figure 112005078089056-PAT00002

(R1 : -OH, R2 ~ R5 : CnH2n+1, 단, n = 0 내지 5, R1 ~ R3 은 Ph의 치환기임.)(R 1 : —OH, R 2 to R 5 : C n H 2n + 1 , provided that n = 0 to 5 and R 1 to R 3 are substituents of Ph.)

이후 진공 중 250 내지 300℃에서 약 2 내지 3시간 동안의 축중합반응시켜 고유점도 0.40 dl/g내지 0.75 dl/g 수준의 로우 칩(raw chip)을 만든 후, 225 내지 260℃의 온도 및 진공하에서 0.70 dl/g 내지 1.20 dl/g의 고유점도 및 30 ppm 이하의 수분율을 갖도록 고상중합된다. 로우 칩의 고유점도가 0.40 dl/g이하일 경우 고상중합시간이 과도하게 길어져 물성이 저하되며 고유점도가 0.75 dl/g이상이 되면 열분해가 발생한다. 고상중합칩의 고유점도가 0.7 dl/g 미만일 경우에는 원하는 강도를 발현하지 못하며 1.20 dl/g을 초과할 경우에는 가공성이 나빠지게 된다.After the condensation polymerization at 250 to 300 ℃ in vacuum for about 2 to 3 hours to produce a raw chip of the intrinsic viscosity 0.40 dl / g to 0.75 dl / g, and then the temperature and vacuum of 225 to 260 ℃ Solid phase polymerized to have an intrinsic viscosity of 0.70 dl / g to 1.20 dl / g and a moisture content of 30 ppm or less. If the intrinsic viscosity of the low chip is 0.40 dl / g or less, the solid-state polymerization time is excessively long, and the physical properties are deteriorated. When the intrinsic viscosity is 0.75 dl / g or more, pyrolysis occurs. If the intrinsic viscosity of the solid-state polymerization chip is less than 0.7 dl / g does not express the desired strength, if it exceeds 1.20 dl / g, the workability is worse.

상기 공촉매계에서 안티몬 촉매는 안티몬 금속을 기준으로 40 내지 150 ppm이 바람직하며, 안티몬 촉매의 함량이 40ppm 미만일 경우에는 반응성의 효과가 없고 티타늄의 함량이 증가하여 열분해와 황색의 착색이 발생하고, 150ppm를 초과할 경우에는 열곡사가 발생하고 연신성 저하된다. 티타늄 촉매는 티타늄 기준으로 5 ~ 50 ppm이 바람직하며, 티타늄 촉매의 함량이 40ppm 미만일 경우에는 반응성의 효과가 없고 안티몬 함량이 증가하여 열곡사가 발생하고 연신성 저하되고, 150ppm를 초과할 경우에는 열분해와 황색의 착색이 발생한다. 열안정제는 구조식(1)의 열안정성 화합물을 단독 또는 통상의 열안정제와 혼합하여 사용하는 것이 바람직하다. 또한 상기 열안정제의 함량은 인의 함량 기준으로 5 내지 50ppm가 바람직하며, 열안정제 함량이 5 ppm 미만인 경우에는 열안정성의 효과가 떨어지고, 50 ppm를 초과할 경우에는 이물질로 작용해서 물성 및 방사성이 저하된다.In the cocatalyst system, the antimony catalyst is preferably 40 to 150 ppm based on the antimony metal. When the content of the antimony catalyst is less than 40 ppm, there is no effect of reactivity, and the content of titanium increases to cause pyrolysis and yellow coloration, and 150 ppm. If it exceeds, thermal curvature occurs and elongation deteriorates. The titanium catalyst is preferably 5 to 50 ppm based on titanium, and when the content of the titanium catalyst is less than 40 ppm, there is no reactivity effect and the antimony content increases to cause thermal degradation, deterioration in ductility, and pyrolysis when exceeding 150 ppm. And yellow coloration occur. The heat stabilizer is preferably used alone or in combination with a conventional heat stabilizer of the thermal stability compound of formula (1). In addition, the content of the thermal stabilizer is preferably 5 to 50 ppm based on the content of phosphorus, and when the thermal stabilizer content is less than 5 ppm, the effect of thermal stability is lowered, and when it exceeds 50 ppm, it acts as a foreign substance, thereby deteriorating physical properties and radioactivity. do.

또한, 상기 통상의 열안정제의 예로는 포스포릭 액시드, 트리메틸 포스페이트, 트리에틸 포스페이트 등이 있다. In addition, examples of the conventional thermal stabilizer include phosphoric acid, trimethyl phosphate, triethyl phosphate, and the like.

폴리에틸렌 나프탈레이트 중합물 제조함에 있어 안티몬 촉매를 단독으로 사용할 경우 촉매의 응집물이 점차 방사구금하에 축적되게 되며 이 축적된 응집물은 구금 표면의 온도 구배를 균일하지 않게 하여 곡사가 발생하고 이는 섬유의 연신성 저하로 나타나게 된다. 티타늄 촉매를 단독으로 사용할 경우 반응성은 우수하나 특유의 열분해성으로 인해 심한 황색 착색이 나타나며 가공시의 점도 저하가 커지는 단점이 있다. 본 발명에서와 같이 적정량의 안티몬 촉매와 티타늄 촉매를 같이 사용할 경우 두 촉매의 단점이 보완된 상승작용을 일으키게 되는데, 이 때 안티몬 촉 매의 함량은 장시간의 방사공정에도 응집물의 축적이 매우 적은 임계 양을 넣어주게 되며 안티몬의 투입으로 티타튬 촉매의 투입 필요양도 적어져서 착색과 점도 저하가 현저히 감소하게 된다. 인산, 아인산계 등의 일반적인 인계 열안정제는 티타늄의 활성을 저하 시키는 작용을 하지만 상기 구조식(1)의 열안정제는 이 공촉매계에서 특별히 효과를 발현할수 있는 안정제로서 티타늄의 활성을 전혀 저해하지 않고 열안정성을 부여하는 역할을 한다. In the production of polyethylene naphthalate polymers, when antimony catalysts are used alone, aggregates of catalysts gradually accumulate under spinneret, and the accumulated aggregates cause unevenness in the temperature gradient on the surface of the caps, resulting in deterioration of the ductility of the fibers. Will appear. When the titanium catalyst is used alone, the reactivity is excellent, but due to its unique thermal decomposition, severe yellow coloration occurs, and there is a disadvantage in that the viscosity decreases during processing. When using an appropriate amount of antimony catalyst and titanium catalyst as in the present invention, the disadvantages of the two catalysts are complied with, and at this time, the content of the antimony catalyst has a critical amount of very small accumulation of aggregates even in a long spinning process. The addition of antimony will reduce the amount of titanium titanium catalyst required, and the coloring and viscosity decrease will be significantly reduced. General phosphorus thermal stabilizers such as phosphoric acid and phosphorous acid act to reduce the activity of titanium, but the thermal stabilizer of the formula (1) is a stabilizer that can express special effects in this cocatalyst system and does not inhibit titanium activity at all. It serves to give stability.

이와 같이 제조된 폴리에틸렌 나프탈레이트 칩을 통상의 방법에 따라 섬유화 한다.The polyethylene naphthalate chip thus produced is fiberized according to a conventional method.

상기에 설명한 바와 같이 본 발명은 폴리에틸렌 나프탈레이트 용융중합 단계에서 안티몬과 티타늄의 공촉매를 사용하고 구조식(1)의 열안정성 화합물를 첨가하여, 용융방사시 300℃ 이상의 고온에서도 방사성이 우수하고 또한 이러한 우수한 방사성을 바탕으로 방사 드래프트비 및 연신온도를 적정화함으로써 물성을 개선할 수 있음을 발견하고 본 발명을 완성하게 되었다. 특히 본 발명의 고강력 폴리에틸렌 나프탈레이트 섬유로부터 형성된 딥 코드는 치수안정성 및 강도가 우수하여 타이어 및 벨트 등의 고무제품의 보강재로서 또는 기타 산업적 용도로서 유용하게 사용될 수 있다.As described above, the present invention uses the co-catalyst of antimony and titanium in the polyethylene naphthalate melt polymerization step and adds the thermostable compound of Structural Formula (1). Based on the radioactivity, the present inventors have found that physical properties can be improved by optimizing the spinning draft ratio and the stretching temperature, thereby completing the present invention. In particular, the deep cord formed from the high strength polyethylene naphthalate fiber of the present invention has excellent dimensional stability and strength, and can be usefully used as a reinforcement material for rubber products such as tires and belts or for other industrial uses.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 사의 각종 물성 평가는 다음과 같은 방법으로 실시하였 다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the present invention, but are not limited thereto. Various physical property evaluations of the yarns manufactured in Examples and Comparative Examples of the present invention were performed by the following method.

(1) 고유점도(I.V.)(1) Intrinsic viscosity (I.V.)

페놀과 1,1,2,3-테트라클로로에탄올을 6:4의 무게비로 혼합한 시약(90℃)에 시료 0.1g을 농도가 0.4g/100ml 되도록 90분간 용해시킨 후 우베로데(Ubbelohde) 점도계에 옮겨담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 하기 수학식 1 및 2에 의해 R.V.값 및 I.V.값을 계산하였다.After dissolving 0.1 g of the sample in a reagent (90 ° C.) mixed with phenol and 1,1,2,3-tetrachloroethanol at a weight ratio of 6: 4 for 90 minutes to give a concentration of 0.4g / 100ml, Ubbelohde Transfer to a viscometer was carried out for 30 minutes in a 30 degreeC thermostat, and the drop number of seconds of the solution was calculated | required using a viscometer and an aspirator. The falling seconds of the solvent was also determined in the same manner, and then the R.V.value and the I.V.value were calculated by the following equations (1) and (2).

Figure 112005078089056-PAT00003
Figure 112005078089056-PAT00003

Figure 112005078089056-PAT00004
Figure 112005078089056-PAT00004

상기 식에서, C는 용액 중의 시료의 농도(g/100ml)를 나타낸다.Where C represents the concentration of the sample in solution (g / 100ml).

(2) 강신도(2) strength

인스트론(Instron) 5565(인스트론사제, 미국)를 이용하여, ASTM D 885의 규정에 따라 표준 상태(20℃, 65% 상대습도)하에서 250mm의 시료 길이, 300mm/분의 인장속도 및 80turns/m의 조건으로 강신도를 측정하였다.Using Instron 5565 (manufactured by Instron, USA), 250 mm sample length, 300 mm / min tensile speed and 80 turns / s under standard conditions (20 ° C., 65% relative humidity) according to ASTM D 885 Elongation was measured under conditions of m.

(3) Color b(3) Color b

Garder사의 Color-view Spectrophotometer 9000을 이용하여 Hunter Lab 값을 측정하였다. Hunter Lab values were measured using Garder's Color-view Spectrophotometer 9000.

[실시예 1]Example 1

에스테르교환 반응시 나프탈렌 2, 6-디카르복실레이트의 몰수에 대하여 0.2몰%의 에스테르 교환반응 촉매 Mn을 사용하였고, 반응온도는 190 내지 240℃에서 실시하였으며, 중축합시 나프탈렌 2, 6-디카르복실레이트의 몰수에 대하여, 60 ppm의 Sb를 중합촉매로, 20 ppm의 티타늄 촉매를 중합촉매로 사용하고 상기 구조식 1의 치환기중 R2, 3는 tertiary butyl, R4, 5는 ethyl인 열안정제를 300 ppm 투입하여 반응온도 240 내지 290℃에서 중합을 실시하였다. 상기 제조된 중합물을 고상중합하여 고유점도(I.V.) 1.0, 수분율 20 ppm의 고상중합 폴리에틸렌 나프탈레이트 칩을 제조하였다. 제조된 칩을 압출기를 사용하여 310℃의 온도에서 515g/분의 토출량 및 40의 방사 드래프트비로 용융방사하였다. 이 미연신사를 470m/분의 방사속도로 권취하고, 2% 프리드로우를 준 다음 2단 연신시켰다. 제1단계 연신은 158℃에서 6.0배로, 제2단계 연신은 163℃에서 1.1배로 수행하고, 230℃에서 열고정하고 1% 이완시킨 다음 권취하여 1500데니어의 최종 연신사(원사)를 제조하였다.In the transesterification reaction, 0.2 mol% of transesterification catalyst Mn based on the number of moles of naphthalene 2 and 6-dicarboxylate was used, the reaction temperature was carried out at 190 to 240 ° C, and the naphthalene 2, 6-dicar during polycondensation. Regarding the number of moles of carboxylate, a thermal stabilizer using 60 ppm Sb as a polymerization catalyst and 20 ppm titanium catalyst as a polymerization catalyst, wherein R 2 and 3 are tertiary butyl and R 4 and 5 are ethyl in the substituents of the formula (1). 300 ppm was added and polymerization was carried out at a reaction temperature of 240 to 290 ° C. The prepared polymer was subjected to solid phase polymerization to prepare a solid phase polymerized polyethylene naphthalate chip having an intrinsic viscosity (IV) of 1.0 and a moisture content of 20 ppm. The prepared chips were melt spun using an extruder at a discharge rate of 515 g / min and a spinning draft ratio of 40 at a temperature of 310 ° C. This undrawn yarn was wound at a spinning speed of 470 m / min, given 2% free throw, and stretched in two stages. The first stage stretching was carried out 6.0 times at 158 ℃, the second stage stretching was performed 1.1 times at 163 ℃, heat-fixed at 230 ℃, relaxed 1% and then wound to prepare a final stretched yarn (yarn) of 1500 denier.

압출기를 사용하여 310℃의 온도 용융방사한 물성을 하기 표 1에 나타내었다.Physical properties of the melt melt temperature at 310 ℃ using an extruder are shown in Table 1 below.

[실시예 2 및 비교예 1 내지 6][Example 2 and Comparative Examples 1 to 6]

촉매의 함량과 열안정제의 종류 등을 표 1에 나타낸 바와 같이 변화시키면서 상기 실시예 1과 동일한 방법으로 실험을 수행하여 연신사를 제조하였다. 이와 같이 제조된 물성을 평가하여 하기 표 1에 나타내었다.A stretched yarn was prepared by performing experiments in the same manner as in Example 1 while changing the content of the catalyst and the kind of heat stabilizer as shown in Table 1. The physical properties thus prepared were evaluated and shown in Table 1 below.

비고Remarks 촉매 (ppm)Catalyst (ppm) 열안정제Heat stabilizer Raw ChipRaw chip YarnYarn 압출기내 변화Change in Extruder IV (dl/g)IV (dl / g) Color bColor b 반응시간(min)Reaction time (min) Tenacity (g/den)Tenacity (g / den) IV 변화 (dl/g)IV change (dl / g) 실시예 1Example 1 Sb : 60 Ti : 30Sb: 60 Ti: 30 상기구조식 (1) 300 ppmFormula (1) 300 ppm 0.550.55 3.33.3 165165 9.99.9 0.170.17 실시예 2Example 2 Sb : 40 Ti : 26Sb: 40 Ti: 26 상기구조식 (1) 300 ppmFormula (1) 300 ppm 0.550.55 3.13.1 170170 9.99.9 0.160.16 비교예 1Comparative Example 1 Sb : 240Sb: 240 상기구조식 (1) 300 ppmFormula (1) 300 ppm 0.550.55 3.13.1 181181 9.69.6 0.150.15 비교예 2Comparative Example 2 Ti : 40Ti: 40 상기구조식 (1) 300 ppmFormula (1) 300 ppm 0.550.55 6.76.7 168168 9.59.5 0.210.21 비교예 3Comparative Example 3 Sb : 180 Ti : 10Sb: 180 Ti: 10 상기구조식 (1) 300 ppmFormula (1) 300 ppm 0.550.55 3.13.1 175175 9.69.6 0.160.16 비교예 4Comparative Example 4 Sb : 20 Ti : 37Sb: 20 Ti: 37 상기구조식 (1) 300 ppmFormula (1) 300 ppm 0.550.55 6.56.5 180180 9.69.6 0.190.19 비교예 5Comparative Example 5 Sb : 40 Ti : 26Sb: 40 Ti: 26 투입 안함No input 0.550.55 5.55.5 178178 9.49.4 0.190.19 비교예 6Comparative Example 6 Sb : 40 Ti : 26Sb: 40 Ti: 26 TMPTMP 0.550.55 5.45.4 220220 9.49.4 0.200.20

* IV : 고유점도* IV: intrinsic viscosity

표 1에서 나타난 바와 같이 상기의 식1의 열안정제를 적절히 사용하고 공촉매를 사용한 섬유의 강도가 가장 우수했으며 점도 저하, 색, 반응시간 등 모든 부문에서 우수한 결과를 얻을 수 있었다. 동일조건하에서 촉매의 종류 및 함량이 본 발명의 범위가 아닌 경우 (비교예 1-4), 열안정제를 사용하지 않거나(비교예 5) 열안정제를 트리메틸포스페이트로 사용한 경우(비교예 6) 등은 실시예에 비해 열세임을 알 수 있었다.As shown in Table 1, the heat stabilizer of Equation 1 above was used properly, and the strength of the fiber using the cocatalyst was the best, and excellent results were obtained in all sectors such as viscosity reduction, color, and reaction time. When the type and content of the catalyst are not within the scope of the present invention under the same conditions (Comparative Example 1-4), or when the thermal stabilizer is not used (Comparative Example 5) or when the thermal stabilizer is used as the trimethyl phosphate (Comparative Example 6), etc. It was found that thirteen compared with the example.

본 발명은 폴리에틸렌 나프탈레이트 용융중합 단계에서 안티몬 촉매, 티타늄 촉매 및 구조식(1)의 열안정제로 구성된 새로운 공촉매계를 투입하여 안티몬 촉매와 티타늄 촉매를 동시에 사용하여 단점을 상호 보완하여 상승작용을 유발하고, 열안정제를 통해서 티타늄 촉매의 열안정성을 보완해 우수한 내열안정성, 치수안정성, 고강력, 고강도의 개선된 물성을 갖는 폴리에틸렌 나프탈레이트 섬유를 제조할 수 있었고, 이로부터 형성된 딥코드는 고무제품의 보강재로서 유용하게 사용된다.In the present invention, a new cocatalyst system composed of an antimony catalyst, a titanium catalyst, and a thermal stabilizer of Structural Formula (1) is used in a polyethylene naphthalate melt polymerization step to simultaneously use an antimony catalyst and a titanium catalyst to complement the disadvantages, thereby causing synergy. The heat stabilizer supplemented the thermal stability of the titanium catalyst to produce polyethylene naphthalate fiber with improved thermal stability, dimensional stability, high strength, and high strength, and the deep cord formed from the reinforcement of rubber products It is usefully used as.

Claims (3)

(A) 에틸렌-2,6-나프탈레이트 단위를 85몰% 이상 함유하는 폴리에틸렌-2,6-나프탈레이트의 중합단계에서 안티몬 촉매의 함량이 안티몬 금속을 기준으로 40 내지 150 ppm이고, 티타늄 촉매의 함량이 티타늄 금속을 기준으로 5 내지 50 ppm이며, 하기구조식(1)의 열안정제 함량이 인의 함량을 기준으로 5 내지 50 ppm인 공촉매계를 사용하여 고유점도가 0.4 내지 0.75 dl/g 범위로 용융중합하는 단계; (B) 0.70 내지 1.20 dl/g 범위로 고유점도로 고상중합하는 단계; (C) 상기 고상중합 칩을 용융방사하여 제조된 용융방출사를 지연냉각 및 냉각구역을 통과시켜 고화된 미연신사를 권취하는 단계; (D) 권취된 사를 다단연신시키는 단계를 포함하는 것을 특징으로 하는 폴리에틸렌 나프탈레이트 섬유의 제조방법.(A) The content of the antimony catalyst in the polymerization step of polyethylene-2,6-naphthalate containing 85 mol% or more of ethylene-2,6-naphthalate units is 40 to 150 ppm based on the antimony metal, The content is 5 to 50 ppm based on titanium metal, and the heat stabilizer content of the following structural formula (1) is melted in the range of 0.4 to 0.75 dl / g using a cocatalyst system having 5 to 50 ppm based on the content of phosphorus. Polymerizing; (B) solid phase polymerization at an intrinsic viscosity in the range of 0.70 to 1.20 dl / g; (C) winding the solidified unstretched yarn by passing the molten yarn produced by melt spinning the solid-state polymerized chip through a delay cooling and cooling zone; (D) a method for producing polyethylene naphthalate fiber, comprising the step of stretching the wound yarn in multiple stages. 구조식 (1)Structural Formula (1)
Figure 112005078089056-PAT00005
Figure 112005078089056-PAT00005
(R1 : -OH, R2 ~ R5 : CnH2n+1 단, n = 0 내지 5, R1 ~ R3 은 Ph의 치환기임.)(R 1 : -OH, R 2 ~ R 5 : C n H 2n + 1 wherein n = 0 to 5, R 1 ~ R 3 is a substituent of Ph.)
에틸렌-2,6-나프탈레이트 단위를 85몰% 이상 함유하는 폴리에틸렌-2,6-나프탈레이트의 중합단계에서 안티몬 촉매의 함량이 안티몬 금속을 기준으로 40 내지 150 ppm이고, 티타늄 촉매의 함량이 티타늄 금속을 기준으로 5 내지 50 ppm이며, 하기구조식(1)의 열안정제 함량이 인의 함량을 기준으로 5내지 50ppm인 공촉매계를 사용하여 고유점도가 0.4 내지 0.75 dl/g 범위로 용융중합하는 것을 특징으로 하는 폴리에틸렌 나프탈레이트 중합체의 제조방법.      In the polymerization step of polyethylene-2,6-naphthalate containing 85 mol% or more of ethylene-2,6-naphthalate units, the antimony catalyst is 40 to 150 ppm based on the antimony metal, and the titanium catalyst is titanium It is 5 to 50 ppm based on the metal, the thermal stabilizer content of the following structural formula (1) using a co-catalyst system of 5 to 50ppm based on the content of phosphorus, characterized in that the melt viscosity in the range of 0.4 to 0.75 dl / g The manufacturing method of the polyethylene naphthalate polymer made into. 제 1항의 제조방법으로 제조된 폴리에틸렌-2,6-나프탈레이트 섬유.Polyethylene-2,6-naphthalate fiber prepared by the method of claim 1.
KR1020050134420A 2005-12-29 2005-12-29 High tenacity polyethylene-2 ,6-naphthalate fiber KR20070071190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050134420A KR20070071190A (en) 2005-12-29 2005-12-29 High tenacity polyethylene-2 ,6-naphthalate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050134420A KR20070071190A (en) 2005-12-29 2005-12-29 High tenacity polyethylene-2 ,6-naphthalate fiber

Publications (1)

Publication Number Publication Date
KR20070071190A true KR20070071190A (en) 2007-07-04

Family

ID=38506365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050134420A KR20070071190A (en) 2005-12-29 2005-12-29 High tenacity polyethylene-2 ,6-naphthalate fiber

Country Status (1)

Country Link
KR (1) KR20070071190A (en)

Similar Documents

Publication Publication Date Title
KR20070039494A (en) Polytrimethylene terephthalate
KR100808803B1 (en) Method for preparing polyester multifilament yarn for reinforcement of rubber and polyester multifilament yarn prepared by the same method
KR100668571B1 (en) Polytrimethylene Terephthalate Composition Particles and Process for Producing the Same
KR100499220B1 (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR20070071190A (en) High tenacity polyethylene-2 ,6-naphthalate fiber
KR20080062463A (en) High tenacity polyethylene terephthalate fiber
KR101225583B1 (en) Process for preparing hollow polyester multifilament
KR20200027274A (en) Polyester composition for thermally adhesive fiber and thermally adhesive composite fiber containing the same
KR101798267B1 (en) Wholly aromatic liquid crystalline polyester fiber and method for manufacturing the same
KR20170085880A (en) Manufacturing method of polyethylene terephthalate having high strength and low shrinkage
JP3717447B2 (en) Polytrimethylene terephthalate composition
KR20160073474A (en) Method for Preparing Polyester Polymer Having Heat Resistance and High Modulus and Polyester Fiber Made Thereof
US6794462B2 (en) High-molecular weight polymers and methods of manufacture
KR102642537B1 (en) Antimony non elution tricot fabric filtration and Manufaturing method thereof
KR20060078409A (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent heat stability
KR101227550B1 (en) Biaxially oriented polyester film having improved color property
KR102570661B1 (en) Organic solvent soluble polyester resin, coating agent for supporting layer of water treatment membrane and water treatment membrane comprising the same
KR101456547B1 (en) Preparing method of high tenacity polyethylene naphthalate fibers
KR930007827B1 (en) Low shrinkage polyester yarn and method of manufacture thereof
KR20060078408A (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent toughness
KR20050003118A (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
SU791251A3 (en) Method of producing polymers
KR100505016B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and process for preparing the same
KR20070071191A (en) High tenacity polyethylene-2,6-naphthalate fibers containing inorganic additives
KR101501469B1 (en) Preparation method of polyethylene naphthalate

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination