KR20070069868A - Wafer cooling system of electrostatic chuck - Google Patents

Wafer cooling system of electrostatic chuck Download PDF

Info

Publication number
KR20070069868A
KR20070069868A KR1020050132453A KR20050132453A KR20070069868A KR 20070069868 A KR20070069868 A KR 20070069868A KR 1020050132453 A KR1020050132453 A KR 1020050132453A KR 20050132453 A KR20050132453 A KR 20050132453A KR 20070069868 A KR20070069868 A KR 20070069868A
Authority
KR
South Korea
Prior art keywords
electrostatic chuck
wafer
thermoelectric element
cooling
cooling system
Prior art date
Application number
KR1020050132453A
Other languages
Korean (ko)
Inventor
김민주
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050132453A priority Critical patent/KR20070069868A/en
Publication of KR20070069868A publication Critical patent/KR20070069868A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Abstract

A wafer cooling system of an electrostatic chuck is provided to solve a problem due to a wafer leak generated between electrodes of the electrostatic chuck by employing a cooling manner using a thermoelement. A wafer(10) is placed on a lift pin(40) driven by a pin shaft(30). A thermoelement member(60) is installed at a lower section of an electrostatic chuck(50). A thermal coupler(20) passes through a portion of the electrostatic chuck and the thermoelement member. A cooling operation using a thermoelement of the thermoelement member controls temperature accurately by using a DC(Direct Current) current. The thermoelement is installed at an electrode lower section of the electrostatic chuck so that the electrostatic chuck is cooled and the opposite side thereof is heated when the DC current flows.

Description

정전척의 웨이퍼 쿨링시스템{WAFER COOLING SYSTEM OF ELECTROSTATIC CHUCK}Wafer cooling system of electrostatic chuck {WAFER COOLING SYSTEM OF ELECTROSTATIC CHUCK}

도 1 은 종래의 쿨링방법으로 쿨링워터 홀 및 플래튼 내부의 워터 흐름도,1 is a water flow diagram of a cooling water hole and a platen in a conventional cooling method;

도 2 는 도 1 에서 플래튼 표면의 정착상태도,Figure 2 is a fixing state of the platen surface in Figure 1,

도 3 은 본 발명의 실시예에 관한 정전기척의 웨이퍼 쿨링시스템을 설명하기 위한 구성도,3 is a block diagram for explaining a wafer cooling system of the electrostatic chuck according to the embodiment of the present invention;

도 4 는 본 발명의 정전기척의 웨이퍼 쿨링시스템을 설명하기 위한 접합된 열전소자를 나타낸 작동도이다.4 is an operation diagram showing a bonded thermoelectric element for explaining the wafer cooling system of the electrostatic chuck of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 금속 2 : 냉각부1 metal 2 cooling part

3 : 발열부 4 : 열전소자3: heat generating portion 4: thermoelectric element

5 : 보온재5: insulation

10 : 웨이퍼 20 : 써머커플러(TC)10: wafer 20: thermocouple (TC)

30 : 핀샤프트 40 : 리프트 핀30: pin shaft 40: lift pin

50 : 정전기 척 60 : 열전소자 부재50: electrostatic chuck 60: thermoelectric element

본 발명은 열전효과(펠티에효과)를 이용한 정전척(ESC : ELECTROSTATIC CHUCK)의 클램프 쿨링시스템에 관한 것이다.The present invention relates to a clamp cooling system of an electrostatic chuck (ESC: ELECTROSTATIC CHUCK) using a thermoelectric effect (Peltier effect).

전자 및 컴퓨터 관련제품들의 라디오, 텔레비젼 및 컴퓨터등에 사용되어지는 다이오드, 트랜지스터및 사이리스터등의 반도체 소자는 실리콘등의 단결정을 성장시킨 기둥 모양의 봉을 얇게 잘라서 원판 모양으로 만든 웨이퍼로부터 만들어진다.Semiconductor devices, such as diodes, transistors, and thyristors, used in radio, television, and computers of electronic and computer related products, are made from wafers made of discs by thinly cutting columnar rods on which single crystals such as silicon are grown.

즉, 실리콘 웨이퍼가 사진공정, 식각공정및 박막 형성공정등 일련의 단위 공정들을 순차적으로 거쳐서 제조되는 것이다.That is, a silicon wafer is manufactured through a series of unit processes such as a photo process, an etching process, and a thin film forming process.

그런데, 최근 컴퓨터등과 같은 정보매체의 급속한 보급에 따라 반도체 분야도 비약적으로 발전하여, 최근의 반도체 소자를 사용한 장치들은 고속으로 동작하는 동시에 대용량의 저장능력을 가질 것이 요구된다. 이와 같은 요건을 충족시키기 위해서는 필수적으로 고집적화가 필요하다.However, with the recent rapid spread of information media such as computers, the semiconductor field is also rapidly developed, and devices using the semiconductor devices are required to operate at high speed and have a large storage capacity. In order to meet these requirements, high integration is essential.

도 1 은 종래의 쿨링방법으로 쿨링워터 홀(HOLE)및 플래튼(PLATEN)내부의 워터 흐름도이고, 도 2 는 도 1 에서 플래튼 표면의 정착상태도이다.1 is a water flow diagram of a cooling water hole (HOLE) and a platen (PLATEN) in a conventional cooling method, and FIG.

즉, 종래의 쿨링 방법은 냉각수를 플래튼 내부에 흘려 냉각하는 방식으로, 상기 플래튼의 온도를 측정하지 않고 쿨링 펌프단에서 온도를 측정하고, 다른 어셈블리를 거친 냉각수가 모이는 곳에서 온도를 측정함으로 상기 플래튼의 온도를 반영한다고 볼 수 없다.That is, the conventional cooling method is to cool the cooling water by flowing the inside of the platen, by measuring the temperature at the cooling pump stage without measuring the temperature of the platen, and by measuring the temperature at the place where the coolant passed through the other assembly It is not considered to reflect the temperature of the platen.

한편, 정전척(ESC)은 반도체 장비 내에서 정전력을 이용해 웨이퍼와 접촉하지 않고도 웨이퍼를 착탈할 수 있는 소모성 부분품을 일컫는다. 반도체 웨이퍼를 흡착하고 유지하는 방법으로는 존슨 라벡력(Johnson-Rahbek force)을 이용한 정전 척을 사용하는 방식이 유용하다. 그러나, 존슨 라벡력 효과와 관련된 힘은 전위차가 가해지는 시간에 따라 증가한다. 전위차가 전극으로부터 제거될 때에, 잔류하는 힘은 시간에 따라 점차 감소할 것이다. On the other hand, an electrostatic chuck (ESC) refers to a consumable part that can be attached to and detached from a wafer without using a constant power in contact with the wafer in semiconductor equipment. As a method of absorbing and retaining a semiconductor wafer, an electrostatic chuck using Johnson-Rahbek force is useful. However, the force associated with the Johnson Lavecque force effect increases with time when the potential difference is applied. When the potential difference is removed from the electrode, the remaining force will gradually decrease with time.

이는 존스 라벡 효과의 힘이 너무 큰 경우, 기판을 유지하거나 그것이 제거되게 하기 위해서 정전기 클램프가 즉각적으로 켜지거나 꺼질 수 없기 때문에, 리소그래피 투영장치에서 다루기 힘들 수 있다. 상기 존슨 라벡 힘이 유전부재를 통해 매우 높은 전류 누설을 허용하거나 오랜 시간 동안 전극 사이에 전위차를 인가하여 너무 커지게 된 경우, 이는 리소그래피 투영장치의 생산성에 역효과를 줄 수 있다. 기판테이블로부터 기판을 제거할 때에는, 존슨 라벡 힘이 기판이 정전기 척으로부터 제거될 수 있는 레벨까지 감소하도록 기다릴 필요가 있다.This can be difficult to handle in a lithographic projection apparatus when the force of the Jones Lavec effect is too large, since the electrostatic clamp cannot be turned on or off immediately to hold the substrate or allow it to be removed. If the Johnson Lavec force is made too large by allowing very high current leakage through the dielectric member or by applying a potential difference between the electrodes for a long time, this may adversely affect the productivity of the lithographic projection apparatus. When removing a substrate from the substrate table, it is necessary to wait for the Johnson Lavec force to decrease to a level at which the substrate can be removed from the electrostatic chuck.

그런데, 종래의 정전기 척(ESC)은 전기적으로 웨이퍼를 척킹(chucking)하는 부분으로, 워터 리크(water leak) 발생의 경우에는 웨이퍼에 손상은 물론 ESC 파워공급에 상당한 손상을 주게 된다However, the conventional electrostatic chuck (ESC) electrically chucks the wafer, and in the case of a water leak, the wafer is damaged as well as the ESC power supply.

또한, 이온 임프랜트(Ion implant)에서 웨이퍼의 쿨링은 매우 중요하다. 디바이스가 고밀도 고집적화되면서 비임 커런트(beam current)를 매우 많이 높여 쓰기 때문에 많은 열이 발생하게 되고, 열에 의한 깊이에 변화가 생기게 된다.In addition, the cooling of the wafer in ion implants is very important. The high density and high integration of the device increases the beam current so much that it generates a lot of heat and changes in depth due to heat.

본 발명은 종래의 쿨링방법이 가지고 있는 문제점을 해소하기 위해 발명한 것으로, 상기와 같은 도스(dose) 변화에 따른 안정적인 정전척(ESC)의 온도 콘트롤을 위해 열전효과로써 펠리티효과를 이용한 정전척(ESC)의 웨이퍼 쿨링시스템을 제공하고자 함에 그 목적이 있다.The present invention has been invented to solve the problems of the conventional cooling method, the electrostatic chuck using the pelt effect as a thermoelectric effect for the temperature control of the stable electrostatic chuck (ESC) according to the dose change as described above The purpose is to provide an (ESC) wafer cooling system.

상기 목적을 달성하기 위한 본 발명은, 핀샤프트(30)에 의해 구동되는 리피트 핀(40)상에 웨이퍼(10)가 놓여지고, 직류전류가 공급되어지는 열전소자 부재(60)가 정전기 척(50)의 하단에 설치되어 있으며, 상기 정전기 척(50)과 열전소자 부재(60)의 한 부분을 통과하는 써머 커플러(20)가 설치되도록 구비하여; 상기 열전소자 부재(60)의 열전소자(4)를 이용하여 냉각을 할 때 직류 전류를 통해 온도를 콘트롤할 수 있어 정확한 온도 조절을 한 것을 그 특징으로 한다. According to the present invention for achieving the above object, the thermoelectric element 60 is placed on the repeat pin 40 driven by the pin shaft 30, and a direct current is supplied to the electrostatic chuck ( It is provided at the bottom of the 50, and provided so that the thermal coupler 20 is passed through a portion of the electrostatic chuck 50 and the thermoelectric element 60; When cooling by using the thermoelectric element 4 of the thermoelectric element 60, it is possible to control the temperature through a direct current, characterized in that the precise temperature control.

이하, 본 발명의 바람직한 실시예를 예시도면에 의거하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3 은 본 발명의 실시예에 관한 정전기척의 웨이퍼 쿨링시스템을 설명하기 위한 구성도이고, 도 4 는 본 발명의 정전기척의 웨이퍼 쿨링시스템을 설명하기 위한 접합된 열전소자를 나타낸 작동도이다. 디바이스가 고밀도 고집적화되면서 비임 커런트를 매우 많이 높여 쓰기 때문에 많은 열이 발생하게 되고, 열에 의한 깊이(depth)에 변화가 생기게 된다. 본 발명은 이러한 도스(dose) 변화에 따른 안정적 인 정전기 척(ESC : 50)의 온도 콘트롤을 위해 열전효과로써 펠리티효과를 이용한 정전척(ESC)의 웨이퍼 쿨링시스템인 것이다.3 is a configuration diagram for explaining the wafer cooling system of the electrostatic chuck according to the embodiment of the present invention, Figure 4 is an operation diagram showing a bonded thermoelectric element for explaining the wafer cooling system of the electrostatic chuck of the present invention. As devices become dense and highly integrated, the beam current is very high, resulting in a lot of heat and a change in thermal depth. The present invention is a wafer cooling system of an electrostatic chuck (ESC) using a pelicity effect as a thermoelectric effect for temperature control of a stable electrostatic chuck (ESC: 50) according to the dose change.

도 3 에 도시된 웨이퍼(10)는 리프트핀(40)상에 놓여지게 되고, 이 리프트 핀(40)은 핀샤프트(30)에 의해 구동하도록 되어 있다. 그리고, 도 4 와 같이 접합된 열전소자 부재(60)가 정전기 척(50)의 하단에 설치되어 있다. 상기 열전소자 부재(60)로는 직류전류가 공급되고 있고, 상기 웨이퍼(10)가 놓여진 정전기 척(50)과 열전소자 부재(60)의 한 부분을 통과하는 써머 커플러(20)가 설치되어 외부로부터 이 써머 커플러를 콘트롤하게 한다. The wafer 10 shown in FIG. 3 is placed on the lift pin 40, which is driven by the pin shaft 30. And the thermoelectric element 60 joined as shown in FIG. 4 is provided in the lower end of the electrostatic chuck 50. As shown in FIG. Direct current is supplied to the thermoelectric element 60, and the electrostatic chuck 50 on which the wafer 10 is placed and a thermocoupler 20 passing through a portion of the thermoelectric element 60 are installed and externally provided. Lets you control this thermocouple.

상기 정전기 척(50)의 전극은 열전소자(4)에 연결되는 바, 이는 좌측으로 보온재(5)가 설치되면서 우측 상단의 냉각부(2)와 하단의 발열부(3)가 형성되며 금속(1)이 설치되어 있다. 화살표와 같이 직류전류가 흐르고, 접합배열은 npnpnp 순으로 되어 있다. 상기 열전소자(4)는 펠티에 효과를 사용하고 있다.The electrode of the electrostatic chuck 50 is connected to the thermoelectric element 4, which is formed with a heat insulating material 5 on the left side, and a cooling part 2 on the upper right side and a heat generating part 3 on the lower side are formed, and the metal ( 1) is installed. DC current flows as shown by the arrow, and the junction array is in the order of npnpnp. The thermoelectric element 4 uses the Peltier effect.

따라서, 도 4 에 도시된 바와 같이 접합된 열전소자(4)를 정전기 척(50) 전극 하단에 설치하여, 상기 열전소자(4)에 직류전류를 흘리면 정전기 척(50) 쪽은 냉각이 되며(냉각부(2)), 반대쪽에는 발열이 되게 된다(발열부(3)). 여기서 냉각 날개 또는 수냉으로 되어 있다.Therefore, as shown in FIG. 4, the bonded thermoelectric element 4 is installed at the lower end of the electrode of the electrostatic chuck 50, and when a direct current flows through the thermoelectric element 4, the electrostatic chuck 50 is cooled ( Cooling section 2), on the other side will generate heat (heating section 3). Here, it is cooling blade or water cooling.

상기 열전소자 부재(60)의 열전소자(4)를 이용하여 냉각을 할 때, 직류 전류를 통해 온도를 콘트롤 할 수 있어 정확한 온도 조절을 할 수 있다. 이것은 냉각부(2)에 써머 커플러(TC : 20)를 설치하여 온도를 검출하고, 이 써머 커플러(TC)의 온도에 의해 직류 전류를 조절할 수 있다.When cooling using the thermoelectric element 4 of the thermoelectric element 60, it is possible to control the temperature through a direct current can be precise temperature control. This is provided with a thermocoupler TC: 20 in the cooling section 2 to detect the temperature, and the direct current can be adjusted by the temperature of the thermocoupler TC.

이상과 같이 구성되는 본 발명은 열전소자를 통한 냉각 방식으로, 정전기 척(ESC)의 전극사이에서 발생하는 워터 리크에 의한 문제를 해결할 수 있으며, 직류 전류를 통한 온도 콘트롤을 통하여 정밀한 온도제어를 할 수 있다.The present invention configured as described above can solve the problem caused by the water leakage generated between the electrodes of the electrostatic chuck (ESC) by the cooling method through the thermoelectric element, and precise temperature control through the temperature control through the direct current Can be.

또한, 본 발명은 쿨링 라인의 부식에 따른 온도차이에 의한 웨이퍼 버닝(wafer burning) 현상을 방지할 수 있다. 이것은 웨이퍼의 정확한 온도 조절을 통한 균일화를 향상시킬 수 있다.In addition, the present invention can prevent the wafer burning (wafer burning) phenomenon due to the temperature difference due to the corrosion of the cooling line. This can improve uniformity through accurate temperature control of the wafer.

본 발명의 정전기척의 웨이퍼 쿨링시스템에 대한 기술사상을 예시도면에 의거하여 설명했지만, 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명의 특허청구범위를 한정하는 것은 아니다. 본 발명은 이 기술분야의 통상 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.Although the technical idea of the wafer cooling system of the electrostatic chuck of the present invention has been described based on the exemplary drawings, this is illustrative of the best embodiments of the present invention and is not intended to limit the claims of the present invention. It will be apparent to those skilled in the art that various modifications and imitations can be made without departing from the scope of the technical idea of the present invention.

이상 설명한 바와 같이 본 발명에 의하면, 펠티에 효과의 열전소자를 통한 냉각 방식을 이용하여 정전기 척(ESC)의 전극사이에서 발생하는 워터 리크에 의한 문제를 해결할 수 있으며, 직류 전류를 통한 온도 콘트롤을 통하여 정밀한 온도제어를 할 수 있는 장점이 있다.As described above, according to the present invention, a problem caused by water leakage occurring between the electrodes of the electrostatic chuck (ESC) can be solved by using a cooling method through a Peltier effect thermoelectric element. There is an advantage to precise temperature control.

Claims (4)

핀샤프트(30)에 의해 구동되는 리피트 핀(40)상에 웨이퍼(10)가 놓여지고, 직류전류가 공급되어지는 열전소자 부재(60)가 정전기 척(50)의 하단에 설치되어 있으며, 상기 정전기 척(50)과 열전소자 부재(60)의 한 부분을 통과하는 써머 커플러(20)가 설치되도록 구비하여; The wafer 10 is placed on the repeat pin 40 driven by the pin shaft 30, and a thermoelectric element 60 to which a direct current is supplied is provided at the lower end of the electrostatic chuck 50. A thermal coupler 20 passing through the electrostatic chuck 50 and a portion of the thermoelectric element 60 is installed; 상기 열전소자 부재(60)의 열전소자(4)를 이용하여 냉각을 할 때 직류 전류를 통해 온도를 콘트롤할 수 있어 정확한 온도 조절을 한 것을 특징으로 하는 정전기척의 웨이퍼 쿨링시스템.Electrostatic chuck wafer cooling system characterized in that the temperature is controlled by the direct current when the cooling by using the thermoelectric element (4) of the thermoelectric element member (60) to precise temperature control. 제 1 항에 있어서, The method of claim 1, 상기 열전소자(4)를 정전기 척(50) 전극 하단에 설치하여, 상기 열전소자(4)에 직류전류를 흘리면 정전기 척(50) 쪽은 냉각이 되며 반대쪽에는 발열이 된 것을 특징으로 하는 정전기척의 웨이퍼 쿨링시스템.The thermoelectric element 4 is installed at the lower end of the electrostatic chuck 50 electrode, and when a DC current flows in the thermoelectric element 4, the electrostatic chuck 50 is cooled and the opposite side of the electrostatic chuck is characterized in that the heat is generated. Wafer Cooling System. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 정전기 척(50)의 전극은 열전소자(4)에 연결되고, 이때 보온재(5)가 설치되면서 상단의 냉각부(2)와 하단의 발열부(3)가 형성되며 금속(1)이 설치된 것을 특징으로 하는 정전기척의 웨이퍼 쿨링시스템.The electrode of the electrostatic chuck 50 is connected to the thermoelectric element 4, and at this time, the heat insulating material 5 is installed, and the upper cooling part 2 and the lower heat generating part 3 are formed, and the metal 1 is installed. Electrostatic chuck wafer cooling system. 제 3 항에 있어서, The method of claim 3, wherein 상기 냉각부(2)에 써머 커플러를 설치하여 온도를 리딩하고, 이 써머 커플러의 온도에 의해 직류 전류를 조절한 것을 특징으로 하는 정전기척의 웨이퍼 쿨링시스템.A thermocoupler is installed in the cooling section (2) to read the temperature, and the direct current is controlled by the temperature of the thermocoupler.
KR1020050132453A 2005-12-28 2005-12-28 Wafer cooling system of electrostatic chuck KR20070069868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050132453A KR20070069868A (en) 2005-12-28 2005-12-28 Wafer cooling system of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050132453A KR20070069868A (en) 2005-12-28 2005-12-28 Wafer cooling system of electrostatic chuck

Publications (1)

Publication Number Publication Date
KR20070069868A true KR20070069868A (en) 2007-07-03

Family

ID=38505436

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050132453A KR20070069868A (en) 2005-12-28 2005-12-28 Wafer cooling system of electrostatic chuck

Country Status (1)

Country Link
KR (1) KR20070069868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242451B1 (en) * 2010-05-18 2013-03-12 가부시키가이샤 케르쿠 Temperature adjustment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242451B1 (en) * 2010-05-18 2013-03-12 가부시키가이샤 케르쿠 Temperature adjustment apparatus

Similar Documents

Publication Publication Date Title
US9824904B2 (en) Method and apparatus for controlling spatial temperature distribution
EP1391140B1 (en) Method and apparatus for controlling the spatial temperature distribution across the surface of a workpiece support
KR100880132B1 (en) Method and apparatus for controlling the spatial temperature distribution across the surface of a workpiece support
US5740016A (en) Solid state temperature controlled substrate holder
JP4825812B2 (en) Semiconductor wafer inspection method and apparatus using chuck device capable of adjusting temperature
US8580693B2 (en) Temperature enhanced electrostatic chucking in plasma processing apparatus
CN107210250A (en) Hot chuck for plasma process system
US20060113290A1 (en) Heated chuck for laser thermal processing
TW201712459A (en) Continuous fluidic thermal interface material dispensing
KR20090033247A (en) An apparatus of controlling temperature and a method of controlling the temperature of wafer
KR101310821B1 (en) Method and apparatus for chuck thermal calibration
KR20190001271A (en) Bonding head and apparatus for bonding chips having the bonding head
JP2008277831A (en) Probing apparatus and operation method therefor
KR20200008246A (en) Vacuum chuck for bonding substrates, apparatus for bonding substrates including the same, and method of bonding substrates using the same
KR101292605B1 (en) Apparatus for controlling surface temperature of electrode static chuck
KR100920399B1 (en) cooling block and substrate processing apparatus including the cooling block
KR20070069868A (en) Wafer cooling system of electrostatic chuck
JP2004025187A (en) Freeze-chucking method and device in laser cutting
CN215731640U (en) Electrostatic chuck device and semiconductor processing equipment
JPS63291423A (en) Low temperature dry-etching equipment
JP7316179B2 (en) SUBSTRATE SUPPORT AND PLASMA PROCESSING APPARATUS
CN110867397B (en) Suction table
KR20060019104A (en) Wafer cooling system

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination