KR20070036528A - Image sensor and method for manufacturing the same - Google Patents

Image sensor and method for manufacturing the same Download PDF

Info

Publication number
KR20070036528A
KR20070036528A KR1020050091690A KR20050091690A KR20070036528A KR 20070036528 A KR20070036528 A KR 20070036528A KR 1020050091690 A KR1020050091690 A KR 1020050091690A KR 20050091690 A KR20050091690 A KR 20050091690A KR 20070036528 A KR20070036528 A KR 20070036528A
Authority
KR
South Korea
Prior art keywords
diffusion barrier
trench
image sensor
barrier layer
metal wiring
Prior art date
Application number
KR1020050091690A
Other languages
Korean (ko)
Inventor
민병승
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020050091690A priority Critical patent/KR20070036528A/en
Publication of KR20070036528A publication Critical patent/KR20070036528A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 발명은 금속배선을 포함한 이미지 센서의 노이즈를 제거하면서 금속배선을 이루는 물질의 확산을 방지할 수 있는 이미지 센서 및 그 제조방법을 제공하기 위한 것으로, 이를 위해 본 발명에서는 기판 상에 형성되고, 그 내부에 트렌치가 형성된 층간절연막과, 상기 트렌치의 내부면을 따라 형성된 제1 확산방지막과, 상기 트렌치가 매립되도록 형성된 금속배선과, 상기 금속배선과 상기 제1 확산방지막 간에 개재된 제2 확산방지막을 포함하는 이미지 센서를 제공한다.The present invention is to provide an image sensor and a method of manufacturing the same, which can prevent the diffusion of the material forming the metal wiring while removing the noise of the image sensor including the metal wiring, for this purpose is formed on the substrate, An interlayer insulating film having a trench formed therein, a first diffusion barrier film formed along the inner surface of the trench, a metal interconnection formed to fill the trench, and a second diffusion barrier interposed between the metal interconnection and the first diffusion barrier layer. It provides an image sensor that includes.

이미지센서, 금속배선, 확산방지막, 탄탈륨 옥사이드, 노이즈. Image sensor, metallization, diffusion barrier, tantalum oxide, noise.

Description

이미지 센서 및 그 제조방법{IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME}Image sensor and manufacturing method thereof {IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME}

도 1은 종래 기술의 일실시예에 따른 이미지 센서의 금속배선 형성방법을 설명하기 위한 단면도.1 is a cross-sectional view for explaining a metal wiring forming method of an image sensor according to an embodiment of the prior art.

도 2는 종래 기술의 다른 실시예에 따른 이미지 센서의 금속배선 형성방법을 설명하기 위한 단면도.Figure 2 is a cross-sectional view for explaining a metal wiring forming method of the image sensor according to another embodiment of the prior art.

도 3은 본 발명의 바람직한 실시예에 따른 금속배선을 구비한 이미지 센서를 도시한 단면도.3 is a cross-sectional view showing an image sensor having a metal wiring according to a preferred embodiment of the present invention.

도 4a 내지 도 4e는 본 발명의 바람직한 실시예에 따른 이미지 센서의 금속배선 형성방법을 도시한 공정단면도.4A through 4E are cross-sectional views illustrating a method of forming metal wirings of an image sensor according to a preferred embodiment of the present invention.

- 도면의 주요부분에 대한 부호의 설명 --Explanation of symbols for the main parts of the drawings-

210 : 기판210: substrate

211 : 제1 층간절연막211: first interlayer insulating film

213 : 제1 확산방지막213: first diffusion barrier

215 : 산소 플라즈마 공정215: oxygen plasma process

216 : 제2 확산방지막216: second diffusion barrier

217 : 물리적 스퍼터링 공정217: physical sputtering process

218 : 금속배선218: metal wiring

219 : 메탈 캐핑층219 metal capping layer

220 : 제2 층간절연막220: second interlayer insulating film

223 : 비아홀223: via hole

224 : 트렌치224 trench

본 발명은 이미지 센서 및 그 제조방법에 관한 것으로 특히, 구리 금속배선을 구비한 이미지 센서 및 이미지 센서의 금속배선 형성방법에 관한 것이다.The present invention relates to an image sensor and a method of manufacturing the same, and more particularly, to an image sensor having a copper metal wiring and a method for forming metal wiring of the image sensor.

최근들어, 이미지 센서(Image Sensor) 제조에 있어서 노이즈(Noise)를 감소시키기 위해 금속배선 간의 층간 두께를 감소시키기 위한 시도가 많이 진행되고 있다. 그 중 하나가 다마신(Damascene) 공정을 이용하여 구리(Cu) 배선을 형성하는 것이다. 이는, 구리가 알루미늄(Al)에 비하여 전기 전도도가 낮기 때문에 얇은 두께에서도 우수한 배선 특성을 유지하기 때문이다. Recently, many attempts have been made to reduce the interlayer thickness between metal wires in order to reduce noise in manufacturing an image sensor. One of them is to form copper (Cu) wiring using a damascene process. This is because copper maintains excellent wiring characteristics even at a thin thickness because copper has lower electrical conductivity than aluminum (Al).

그러나, 구리를 이용한 배선 형성은 일반적으로 다마신 공정을 이용하기 때문에 금속배선 형성시 식각정지막(Etch stop layer)을 개재시켜야 한다는 단점이 있다. 보통, 이러한 식각정지막은 층간절연막(Inter Metallic Dilectrics : IMD)과의 굴절율이 다른 물질을 이용하기 때문에, 이 또한 이미지 센서의 노이즈로 작용할 수 있다. 따라서, 최근에는 이러한 노이즈를 제거하기 위해서 식각정지막을 제거하는 방법이 제안되었다. 이와 같이, 식각정지막을 제거하는 방법은 대표적으로 두가지가 있다. 예컨대, ①식각정지막이 불필요한 부분의 식각정지막 형성을 생략하여 그 수를 최소화하는 것과, ②식각정지막을 완전히 제거하고 그 대신에 메탈 캐핑층(Metal Capping layer)을 사용하는 것이 있다. However, since the formation of the wiring using copper generally uses a damascene process, an etching stop layer must be interposed when the metal wiring is formed. Usually, since the etch stop film uses a material having a refractive index different from that of the intermetallic dielectrics (IMD), this may also act as noise of the image sensor. Therefore, recently, a method of removing an etch stop film has been proposed to remove such noise. As such, there are two methods of removing the etch stop layer. For example, (1) minimizing the number by eliminating the formation of the etch stop film where the etch stop film is unnecessary, and (2) completely removing the etch stop film and using a metal capping layer instead.

도 1은 ①의 방법에 따른 이미지 센서의 금속배선 형성방법을 설명하기 위한 단면도이고, 도 2는 ②의 방법에 따른 이미지 센서의 금속배선 형성방법을 설명하기 위한 단면도이다. 이하에서는, 도 1 및 도 2를 참조하여 종래 기술에 따른 이미지 센서의 금속배선 형성방법을 설명하기로 한다.1 is a cross-sectional view for explaining a metal wiring forming method of the image sensor according to the method of ①, Figure 2 is a cross-sectional view for explaining a metal wiring forming method of the image sensor according to the method of ②. Hereinafter, a method of forming metal wirings of an image sensor according to the related art will be described with reference to FIGS. 1 and 2.

도 1을 참조하면, 종래 기술의 일실시예에 따른 이미지 센서의 금속배선 형성방법은 다음과 같다. 먼저, 기판(10) 상에 하부 금속배선(13)을 개재한 제1 층간절연막(11)을 형성한 후, 하부 금속배선(13)을 포함한 제1 층간절연막(11) 상에 식각정지막(14)을 증착한다. 그런 다음, 식각정지막(14) 상에 제2 층간절연막(15)을 증착한 후, 듀얼 다마신 공정을 통해 형성된 비아홀(미도시)과 트렌치(미도시) 내에 상부 금속배선(19)을 매립한다. 이때, 하부 금속배선(13)은 제1 층간절연막(11)에 형성된 트렌치(미도시)의 내부면을 따라 먼저 증착된 확산방지막(12) 상에 트렌치가 매립되도록 형성된다. 또한, 상부 금속배선(19)은 제2 층간절연막(15)에 형성된 비아홀 및 트렌치의 내부면을 따라 먼저 증착된 확산방지막(18) 상에 비아홀 및 트렌치가 매립되도록 형성된다. Referring to Figure 1, the metal wire forming method of the image sensor according to an embodiment of the prior art is as follows. First, the first interlayer insulating film 11 is formed on the substrate 10 with the lower metal wiring 13 interposed therebetween, and then the etch stop film (on the first interlayer insulating film 11 including the lower metal wiring 13) is formed. 14) is deposited. Then, after the second interlayer insulating layer 15 is deposited on the etch stop layer 14, the upper metal wiring 19 is buried in via holes (not shown) and trenches (not shown) formed through a dual damascene process. do. In this case, the lower metal wiring 13 is formed so that the trench is buried on the diffusion barrier 12 that is first deposited along the inner surface of the trench (not shown) formed in the first interlayer insulating film 11. In addition, the upper metal wiring 19 is formed so that the via holes and the trenches are buried in the diffusion barrier layer 18 deposited along the inner surface of the via holes and the trenches formed in the second interlayer insulating layer 15.

그러나, 도 1에서와 같이 ①의 방법에 따르면, 식각정지막의 수를 감소시켰다고는 하나 여전히 식각정지막이 존재하므로 노이즈를 완벽하게 제거할 수는 없다는 문제점이 있다.However, according to the method of ① as shown in FIG. 1, although the number of the etch stop films is reduced, there is a problem in that the noise stop films cannot be completely removed.

도 2를 참조하면, 종래 기술의 다른 실시예에 따른 이미지 센서의 금속배선 형성방법은 다음과 같다. 먼저, 기판(20) 상에 하부 금속배선(23)을 개재한 제1 층간절연막(21)을 형성한 후, 하부 금속배선(23) 상에 메탈 캐핑층(24)을 형성한다. 그런 다음, 메탈 캐핑층(24)을 덮도록 제1 층간절연막(21) 상에 식각정지막이 개재되지 않은 제2 층간절연막(25)을 증착한 후, 듀얼 다마신 공정을 통해 형성된 비아홀(27)과 트렌치(28)를 형성한다. 이때, 하부 금속배선(23)은 제1 층간절연막(21)에 형성된 트렌치(미도시)의 내부면을 따라 먼저 증착된 확산방지막(22) 상에 트렌치가 매립되도록 형성된다.Referring to FIG. 2, a metal wire forming method of an image sensor according to another embodiment of the prior art is as follows. First, the first interlayer insulating layer 21 is formed on the substrate 20 via the lower metal interconnection 23, and then the metal capping layer 24 is formed on the lower metal interconnection 23. Thereafter, the second interlayer insulating layer 25 without the etch stop layer is deposited on the first interlayer insulating layer 21 to cover the metal capping layer 24, and then the via hole 27 formed through a dual damascene process. And to form a trench 28. In this case, the lower metal wiring 23 is formed so that the trench is buried on the diffusion barrier 22 that is first deposited along the inner surface of the trench (not shown) formed in the first interlayer insulating layer 21.

그러나, 도 2에서와 같이 ②의 방법에 따르면, 식각정지막이 존재하지 않기 때문에 비아홀(27)이 하부 금속배선(23)과 미스 얼라인(mis-align)되어 형성될 확률이 현저히 높다. 이처럼, 미스 얼라인된 부위에서는 비아홀(27) 저부의 제1 층간절연막(21)에 데미지(damage, 'A' 부위 참조)를 입힘과 동시에, 하부 금속배선(23)의 양측벽에 형성된 확산방지막(22)에도 데미지('A' 부위 참조)를 입혀 하부 금속배선(23)을 이루는 구리의 확산을 불러일으키는 원인이 된다. 특히, 종래의 확산방지막(22)은 Ta 또는 TaN으로 이루어져 층간절연막의 식각시 이용되는 불화가스에 의해 쉽게 식각되는 특성이 있어 데미지를 쉽게 입을 수 있다. However, according to the method of ② as shown in FIG. 2, since the etch stop film does not exist, the probability that the via hole 27 is misaligned with the lower metal wiring 23 is significantly formed. As such, in the misaligned portion, a damage (see 'A' portion) is applied to the first interlayer insulating layer 21 at the bottom of the via hole 27 and at the same time, the diffusion barrier layer is formed on both side walls of the lower metal wiring 23. Damage to (22) is also caused to cause diffusion of copper constituting the lower metal wiring 23. In particular, the conventional diffusion barrier 22 is made of Ta or TaN, which is easily etched by the fluoride gas used during the etching of the interlayer insulating film, thereby easily causing damage.

이와 같은 구리의 확산은 이미지 센서를 포함한 반도체 소자에 누설전류를 포함한 치명적인 문제를 불러일으키는 원인이 된다. Such diffusion of copper causes a fatal problem including leakage current in a semiconductor device including an image sensor.

상기와 같은 종래 기술의 문제점을 해결하기 위해 제안된 본 발명은, 금속배선을 포함한 이미지 센서의 노이즈를 제거하면서 금속배선을 이루는 물질의 확산을 방지할 수 있는 이미지 센서 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention proposed to solve the problems of the prior art as described above, to provide an image sensor and a method of manufacturing the same that can prevent the diffusion of the material forming the metal wiring while removing the noise of the image sensor including the metal wiring. There is a purpose.

상기한 목적을 달성하기 위한 일측면에 따른 본 발명은, 기판 상에 형성되고, 그 내부에 트렌치가 형성된 층간절연막과, 상기 트렌치의 내부면을 따라 형성된 제1 확산방지막과, 상기 트렌치가 매립되도록 형성된 금속배선과, 상기 금속배선과 상기 제1 확산방지막 간에 개재된 제2 확산방지막을 포함하는 이미지 센서를 제공한다.According to an aspect of the present invention, there is provided an interlayer insulating film formed on a substrate and having a trench formed therein, a first diffusion barrier film formed along an inner surface of the trench, and the trench embedded therein. Provided is an image sensor including a formed metal wiring, and a second diffusion blocking film interposed between the metal wiring and the first diffusion blocking film.

또한 상기한 목적을 달성하기 위한 다른 측면에 따른 본 발명은, 기판 상에 증착된 층간절연막의 일부를 식각하여 트렌치를 형성하는 단계와, 상기 트렌치를 포함한 상기 층간절연막 상부의 단차를 따라 제1 확산방지막을 증착하는 단계와, 상기 제1 확산방지막의 표면 상에 제2 확산방지막을 형성하는 단계와, 상기 제1 확산방지막의 내측벽에만 상기 제2 확산방지막이 잔류하도록 상기 트렌치의 저면에 형성된 상기 제2 확산방지막을 제거하는 단계와, 상기 트렌치가 매립되는 금속배선 을 증착하는 단계와, 상기 층간절연막과의 단차가 제거되도록 상기 금속배선을 평탄화하는 단계를 포함하는 이미지 센서 제조방법을 제공한다.According to another aspect of the present invention, a trench is formed by etching a portion of an interlayer insulating film deposited on a substrate, and a first diffusion is performed along a step of an upper portion of the interlayer insulating film including the trench. Depositing a barrier layer, forming a second diffusion barrier layer on a surface of the first diffusion barrier layer, and forming the second diffusion barrier layer on a bottom surface of the trench such that the second diffusion barrier layer remains only on an inner wall of the first diffusion barrier layer And removing a second diffusion barrier layer, depositing a metal wiring in which the trench is buried, and planarizing the metal wiring so that a step with the interlayer insulating layer is removed.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 설명한다. 또한, 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장되어진 것이며, 층이 다른 층 또는 기판 "상"에 있다고 언급되어지는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있거나, 또는 그들 사이에 제3의 층이 개재될 수도 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호는 표시된 부분은 동일한 구성요소들을 나타낸다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. In addition, in the drawings, the thicknesses of layers and regions are exaggerated for clarity, and in the case where the layers are said to be "on" another layer or substrate, they may be formed directly on another layer or substrate or Or a third layer may be interposed therebetween. Also, throughout the specification, the same reference numerals denote the same components.

실시예Example

도 3은 본 발명의 바람직한 실시예에 따른 금속배선을 구비한 이미지 센서를 도시한 단면도이다. 3 is a cross-sectional view illustrating an image sensor having a metal wiring according to a preferred embodiment of the present invention.

도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 이미지 센서는 기판(210) 상에 형성되고, 트렌치(미도시)가 형성된 층간절연막(211)과, 트렌치의 내부면을 따라 형성된 제1 확산방지막(213)과, 트렌치가 매립되도록 형성된 금속배선(218)과, 금속배선(218)과 제1 확산방지막(213) 간에 개재된 제2 확산방지막(216)을 포함한다. 또한, 금속배선(218) 상에 형성된 메탈 캐핑층(219)을 더 포함할 수 있다. 보통, 메탈 캐핑층(219)은 텅스텐(W) 또는 코발트(Co)로 형성되고, 금속배선 (218)은 구리로 형성된다.Referring to FIG. 3, an image sensor according to a preferred embodiment of the present invention is formed on a substrate 210 and has an interlayer insulating film 211 having trenches (not shown) and a first diffusion formed along an inner surface of the trench. The barrier layer 213 includes a metal line 218 formed to fill the trench, and a second diffusion barrier 216 interposed between the metal line 218 and the first diffusion barrier 213. In addition, the metal capping layer 219 may be further included on the metal wire 218. Usually, the metal capping layer 219 is formed of tungsten (W) or cobalt (Co), and the metal wiring 218 is formed of copper.

여기서, 제1 확산방지막(213)은 Ta, TaN 단일막 및 Ta/TaN 적층막 중 어느 하나로 형성되고, 제2 확산방지막(216)은 이들을 산화시켜 형성된 탄탈륨 옥사이드로 이루어진다. 바람직하게는, 제2 확산방지막(216)은 제1 확산방지막(213)의 내측벽에만 각각 형성된다. 이는, 제2 확산방지막(216)을 이루는 탄탈륨 옥사이드의 비저항 값이 매우 높으므로 제2 확산방지막(216)이 제1 확산방지막(213) 상부, 즉 트렌치 저부에 존재하게 되면 금속배선(218)의 컨택저항을 증가시키기 때문이다. 이에 따라, 트렌치 저부의 제2 확산방지막(216)은 제거된 것이다.Here, the first diffusion barrier 213 is formed of any one of Ta, TaN single layer and Ta / TaN laminated layer, and the second diffusion barrier 216 is formed of tantalum oxide formed by oxidizing them. Preferably, the second diffusion barrier 216 is formed only on the inner wall of the first diffusion barrier 213. Since the specific resistance of tantalum oxide constituting the second diffusion barrier 216 is very high, when the second diffusion barrier 216 is present on the upper portion of the first diffusion barrier 213, that is, at the bottom of the trench, the metal wiring 218 may be formed. This is because the contact resistance is increased. As a result, the second diffusion barrier 216 of the trench bottom is removed.

또한, 제2 확산방지막(216)은 1~10㎚의 두께로 형성된다.In addition, the second diffusion barrier 216 is formed to a thickness of 1 ~ 10nm.

즉, 본 발명의 바람직한 실시예에 따르면, 금속배선(218)을 이루는 물질, 바람직하게는 구리의 확산을 방지하기 위해 Ta, TaN 단일막 및 Ta/TaN 적층막 중 어느 하나로 형성된 제1 확산방지막(213)과 금속배선(218) 간에 탄탈륨 옥사이드로 이루어진 제2 확산방지막(216)을 개재시킴으로써, 금속배선(218)과 미스 얼라인된 영역의 비아홀 저부의 제1 확산방지막(213)이 데미지를 입더라도 금속배선(218) 물질의 확산을 완벽히 방지할 수 있게 된다. 이는, 탄탈륨 옥사이드로 이루어진 제2 확산방지막(216)이 Ta 또는 TaN에 비하여 식각률이 낮은 특성과 구리의 확산 방지율이 높은 특성이 있기 때문이다.That is, according to a preferred embodiment of the present invention, the first diffusion barrier layer formed of any one of Ta, TaN single layer and Ta / TaN laminated layer to prevent diffusion of the material forming the metal wiring 218, preferably copper ( By interposing the second diffusion barrier 216 made of tantalum oxide between the metal interconnection 213 and the metal interconnection 218, the first diffusion barrier 213 at the bottom of the via hole in the misaligned region with the metal interconnection 218 may be damaged. Even if it is possible to completely prevent the diffusion of the metal wiring 218 material. This is because the second diffusion barrier 216 made of tantalum oxide has a lower etching rate and a higher diffusion preventing rate of copper than Ta or TaN.

도 4a 내지 도 4e는 본 발명의 바람직한 실시예에 따른 이미지 센서의 금속배선 형성방법을 도시한 공정단면도이다.4A to 4E are cross-sectional views illustrating a method of forming metal wirings of an image sensor according to an exemplary embodiment of the present invention.

먼저, 도 4a에 도시된 바와 같이, 기판(210) 상에 층간절연막(211; 이하, 제 1 층간절연막이라 함)을 증착한다. 이때, 제1 층간절연막(211)은 산화막 계열의 물질로 형성한다. 예컨대, 제1 층간 절연막(211)은 HDP(High Density Plasma) 산화막, BPSG(Boron Phosphorus Silicate Glass)막, PSG(Phosphorus Silicate Glass)막, PETEOS(Plasma Enhanced Tetra Ethyle Ortho Silicate)막, PECVD(Plasma Enhanced Chemical Vapor Deposition)막, USG(Un-doped Silicate Glass)막, FSG(Fluorinated Silicate Glass)막, CDO(Carbon Doped Oxide)막 및 OSG(Organic Silicate Glass)막 중 어느 하나를 이용하여 단층막 또는 이들이 적층된 적층막으로 형성한다.First, as shown in FIG. 4A, an interlayer insulating film 211 (hereinafter, referred to as a first interlayer insulating film) is deposited on the substrate 210. In this case, the first interlayer insulating film 211 is formed of an oxide-based material. For example, the first interlayer insulating film 211 may be a high density plasma (HDP) oxide film, a boron phosphorus silicate glass (BPSG) film, a phosphorus silicate glass (PSG) film, a plasma enhanced tetra orthysilicate (peteos) film, or plasma enhanced PECVD. Single layer film or lamination thereof using any one of Chemical Vapor Deposition (USG) film, USG (Un-doped Silicate Glass) film, Fluorinated Silicate Glass (FSG) film, Carbon Doped Oxide (CDO) film and Organic Silicate Glass (OSG) film It is formed into a laminated film.

이어서, 마스크 공정 및 식각공정을 실시하여 제1 층간절연막(211)의 일부를 식각함으로써, 트렌치(미도시)를 형성한다. 그런 다음, 트렌치를 포함한 제1 층간절연막(211) 상부의 단차를 따라 제1 확산방지막(213)을 증착한다. 예컨대, 제1 확산방지막(213)은 Ta, TaN 단일막 및 Ta/TaN 적층막 중 어느 하나의 형태로 증착한다.Subsequently, a portion of the first interlayer insulating film 211 is etched by performing a mask process and an etching process to form a trench (not shown). Then, the first diffusion barrier layer 213 is deposited along the stepped portion of the first interlayer insulating layer 211 including the trench. For example, the first diffusion barrier 213 is deposited in the form of any one of Ta, TaN single layer, and Ta / TaN stacked layer.

이어서, 도 4b에 도시된 바와 같이, 제1 확산방지막(213)이 증착된 전체 구조 상부에 산소(O2) 플라즈마 공정(215)을 실시하여 제1 확산방지막(213)의 표면을 산화시킨다. 이로써, 제1 확산방지막(213)의 표면 상에 제2 확산방지막(216)으로 탄탈륨 옥사이드가 형성된다. 탄탈륨 옥사이드는 제1 층간절연막(211)을 이루는 물질, 예컨대 실리콘 산화물의 식각시 사용되는 불화가스에 쉽게 식각되지 않는 특성을 가지고 있다. 이에 따라, 후속 공정을 통해 미스 얼라인되어 형성된 비아홀 (223, 도 4e 참조) 저부의 제1 확산방지막(213)이 데미지를 입더라도 금속배선(218) 물질의 확산을 완벽히 방지할 수 있게 된다. Subsequently, as illustrated in FIG. 4B, an oxygen (O 2 ) plasma process 215 is performed on the entire structure on which the first diffusion barrier layer 213 is deposited to oxidize the surface of the first diffusion barrier layer 213. As a result, tantalum oxide is formed on the surface of the first diffusion barrier layer 213 as the second diffusion barrier layer 216. Tantalum oxide has a property of not being easily etched into a fluoride gas used in etching a material, for example, silicon oxide, that forms the first interlayer insulating film 211. Accordingly, even if the first diffusion barrier 213 at the bottom of the via hole 223 (see FIG. 4E) formed through misalignment is damaged, diffusion of the material of the metallization 218 can be completely prevented.

이어서, 도 4c에 도시된 바와 같이, 물리적 스퍼터링(Physical sputtering) 공정(217)을 실시하여 트렌치(미도시) 저부의 제2 확산방지막(216)을 제거한다. 이로써, 트렌치 저부에는 제1 확산방지막(213)만이 잔류한다. 이는, 후속으로 트렌치에 매립될 금속배선(218, 도 4d 참조)의 컨택저항을 감소시키기 위함이다.Subsequently, as illustrated in FIG. 4C, a physical sputtering process 217 is performed to remove the second diffusion barrier 216 at the bottom of the trench (not shown). As a result, only the first diffusion barrier 213 remains at the bottom of the trench. This is to reduce the contact resistance of the metal wiring 218 (see FIG. 4D) to be subsequently buried in the trench.

이어서, 도 4d에 도시된 바와 같이, 트렌치(미도시)가 매립되도록 금속배선(218)을 증착한다. 바람직하게는, 구리를 증착한다. Subsequently, as shown in FIG. 4D, the metal wiring 218 is deposited to fill the trench (not shown). Preferably, copper is deposited.

이어서, 제1 층간절연막(211) 상부에 돌출된 제1 및 제2 확산방지막(213, 216; 도 4c 참조)과 금속배선(218)이 제거되도록 제1 층간절연막(211)을 평탄화 정지막으로 한 평탄화공정을 실시한다. 바람직하게는, CMP(Chemical Mechanical Polishing) 공정을 실시하여 트렌치에만 매립되는 금속배선(218)을 형성한다.Subsequently, the first interlayer insulating layer 211 is formed as a planarization stop layer so that the first and second diffusion barrier layers 213 and 216 (see FIG. 4C) and the metal wiring 218 protruding from the first interlayer insulating layer 211 are removed. One planarization process is carried out. Preferably, the chemical mechanical polishing (CMP) process is performed to form the metal wiring 218 embedded only in the trench.

이어서, 도 4e에 도시된 바와 같이, 금속배선(218)을 포함한 제1 층간절연막(211) 상에 메탈을 증착한 후, 이를 패터닝하여 금속배선(218) 상부에 메탈 캐핑층(219)을 형성한다. 예컨대, 메탈 캐핑층(219)은 코발트 또는 텅스텐으로 형성한다.Subsequently, as shown in FIG. 4E, metal is deposited on the first interlayer insulating film 211 including the metal wiring 218 and then patterned to form a metal capping layer 219 on the metal wiring 218. do. For example, the metal capping layer 219 is formed of cobalt or tungsten.

이어서, 메탈 캐핑층(219)을 덮도록 제1 층간절연막(211) 상에 제2 층간절연막(220)을 증착한다. 이때, 제2 층간절연막(220) 또한 제1 층간절연막(211)과 동일한 물질로 형성한다.Next, a second interlayer insulating film 220 is deposited on the first interlayer insulating film 211 to cover the metal capping layer 219. In this case, the second interlayer insulating film 220 is also formed of the same material as the first interlayer insulating film 211.

이어서, 듀얼 다마신 공정을 실시하여 제2 층간절연막(220) 내에 비아홀(223) 및 트렌치(224)를 형성한다. Subsequently, the via hole 223 and the trench 224 are formed in the second interlayer insulating film 220 by performing a dual damascene process.

이어서, 도면에 도시되진 않았지만, 앞서 언급한 종래기술에서와 같이 비아홀(223) 및 트렌치(224)를 매립하는 금속배선을 형성한다. 이때, 금속배선을 형성하기 전에 비아홀(223) 및 트렌치(224)의 내부면을 따라 확산방지막을 증착할 수 있다.Subsequently, although not shown in the drawings, as in the above-mentioned prior art, metal wirings for filling the via holes 223 and the trenches 224 are formed. In this case, the diffusion barrier layer may be deposited along the inner surfaces of the via hole 223 and the trench 224 before the metal wiring is formed.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

이상에서 설명한 바와 같이, 본 발명에 의하면, 이미지 센서의 금속배선을 이루는 물질, 바람직하게는 구리의 확산을 방지하기 위해 Ta, TaN 단일막 및 Ta/TaN 적층막 중 어느 하나로 형성된 제1 확산방지막과 금속배선 간에 탄탈륨 옥사이드로 이루어진 제2 확산방지막을 개재시킴으로써, 금속배선과 미스 얼라인된 영역의 비아홀 저부의 제1 확산방지막이 데미지를 입더라도 금속배선 물질의 확산을 완벽히 방지할 수 있게 된다. As described above, according to the present invention, the first diffusion barrier layer formed of any one of Ta, TaN single layer and Ta / TaN laminated layer to prevent diffusion of a material forming the metal wiring of the image sensor, preferably copper; By interposing the second diffusion barrier layer of tantalum oxide between the metal interconnections, even if the first diffusion barrier layer at the bottom of the via hole in the misaligned region with the metal interconnection is damaged, diffusion of the metal interconnection material can be completely prevented.

또한, 금속배선을 포함한 이미지 센서에서 노이즈로 작용할 수 있는 식각정지막을 필요로 하지 않기 때문에 이미지 센서의 노이즈를 제거할 수 있다.In addition, since the etch stop film that may act as noise in the image sensor including the metal wiring is not required, the noise of the image sensor can be removed.

따라서, 금속배선을 포함한 이미지 센서의 노이즈를 제거하는 동시에 금속배선을 이루는 물질의 확산을 방지하는 효과가 있다.Therefore, the noise of the image sensor including the metal wiring is removed, and at the same time, the diffusion of the material forming the metal wiring is prevented.

Claims (14)

기판 상에 형성되고, 그 내부에 트렌치가 형성된 층간절연막;An interlayer insulating film formed on the substrate and having a trench formed therein; 상기 트렌치의 내부면을 따라 형성된 제1 확산방지막;A first diffusion barrier formed along the inner surface of the trench; 상기 트렌치가 매립되도록 형성된 금속배선; 및A metal wiring formed to fill the trench; And 상기 금속배선과 상기 제1 확산방지막 간에 개재된 제2 확산방지막A second diffusion barrier layer interposed between the metal wiring and the first diffusion barrier layer 을 포함하는 이미지 센서.Image sensor comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제2 확산방지막은 상기 제1 확산방지막의 내측벽에 각각 형성된 이미지 센서.The second diffusion barrier layer is formed on the inner wall of the first diffusion barrier layer, respectively. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제1 확산방지막은 Ta, TaN 단일막 및 Ta/TaN 적층막 중 어느 하나로 형성된 이미지 센서.The first diffusion barrier layer is formed of any one of Ta, TaN single layer and Ta / TaN laminated film. 제 3 항에 있어서,The method of claim 3, wherein 상기 제2 확산방지막은 탄탈륨 옥사이드로 형성된 이미지 센서.The second diffusion barrier layer is formed of tantalum oxide. 제 4 항에 있어서,The method of claim 4, wherein 상기 제2 확산방지막은 1~100㎚의 두께로 형성된 이미지 센서.The second diffusion barrier is an image sensor formed to a thickness of 1 ~ 100nm. 제 4 항에 있어서,The method of claim 4, wherein 상기 금속배선 상에 형성된 금속 캐핑층을 더 포함하는 이미지 센서.The image sensor further comprises a metal capping layer formed on the metal wiring. 기판 상에 증착된 층간절연막의 일부를 식각하여 트렌치를 형성하는 단계;Etching a portion of the interlayer insulating film deposited on the substrate to form a trench; 상기 트렌치를 포함한 상기 층간절연막 상부의 단차를 따라 제1 확산방지막을 증착하는 단계;Depositing a first diffusion barrier along a step of an upper portion of the interlayer insulating layer including the trench; 상기 제1 확산방지막의 표면 상에 제2 확산방지막을 형성하는 단계;Forming a second diffusion barrier on the surface of the first diffusion barrier; 상기 제1 확산방지막의 내측벽에만 상기 제2 확산방지막이 잔류하도록 상기 트렌치의 저면에 형성된 상기 제2 확산방지막을 제거하는 단계;Removing the second diffusion barrier layer formed on the bottom of the trench such that the second diffusion barrier layer remains only on an inner sidewall of the first diffusion barrier layer; 상기 트렌치가 매립되는 금속배선을 증착하는 단계; 및Depositing a metal wiring in which the trench is embedded; And 상기 층간절연막과의 단차가 제거되도록 상기 금속배선을 평탄화하는 단계Planarizing the metal wiring so that a step with the interlayer insulating film is removed; 를 포함하는 이미지 센서 제조방법.Image sensor manufacturing method comprising a. 제 7 항에 있어서, The method of claim 7, wherein 상기 제2 확산방지막을 형성하는 단계는 산소 플라즈마 공정을 이용하는 이미지 센서 제조방법..And forming the second diffusion barrier layer using an oxygen plasma process. 제 8 항에 있어서,The method of claim 8, 상기 산소 플라즈마 공정은 100~600℃ 온도의 O2 플라즈마 내에서 10~30초간 실시하는 이미지 센서 제조방법.The oxygen plasma process is performed for 10-30 seconds in an O 2 plasma at a temperature of 100 ~ 600 ℃. 제 7 항 또는 제 8 항에 있어서, The method according to claim 7 or 8, 상기 제1 확산방지막은 Ta, TaN 단일막 및 Ta/TaN 적층막 중 어느 하나로 형성하는 이미지 센서 제조방법.The first diffusion barrier layer is formed of any one of Ta, TaN single layer and Ta / TaN laminated film. 제 10 항에 있어서,The method of claim 10, 상기 제2 확산방지막은 탄탈륨 옥사이드로 형성하는 이미지 센서 제조방법.The second diffusion barrier layer is formed of tantalum oxide. 제 11 항에 있어서,The method of claim 11, 상기 탄탈륨 옥사이드는 1~100㎚의 두께로 형성하는 이미지 센서 제조방법.The tantalum oxide is an image sensor manufacturing method to form a thickness of 1 ~ 100nm. 제 11 항에 있어서,The method of claim 11, 상기 트렌치의 저면에 형성된 상기 제2 확산방지막을 제거하는 단계는 물리적 스퍼터링 공정을 이용하는 이미지 센서 제조방법.Removing the second diffusion barrier layer formed on the bottom of the trench using a physical sputtering process. 제 11 항에 있어서,The method of claim 11, 상기 금속배선 상에 금속 캐핑층을 형성하는 단계를 더 포함하는 이미지 센서 제조방법.And forming a metal capping layer on the metal wiring.
KR1020050091690A 2005-09-29 2005-09-29 Image sensor and method for manufacturing the same KR20070036528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050091690A KR20070036528A (en) 2005-09-29 2005-09-29 Image sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050091690A KR20070036528A (en) 2005-09-29 2005-09-29 Image sensor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20070036528A true KR20070036528A (en) 2007-04-03

Family

ID=38158693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050091690A KR20070036528A (en) 2005-09-29 2005-09-29 Image sensor and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20070036528A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10116140B2 (en) 2013-03-15 2018-10-30 Ampt, Llc Magnetically coupled solar power supply system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10326282B2 (en) 2009-04-17 2019-06-18 Ampt, Llc Safety methods and apparatus for adaptive operation of solar power systems
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10326283B2 (en) 2007-10-15 2019-06-18 Ampt, Llc Converter intuitive photovoltaic electrical energy power system
US10886746B1 (en) 2007-10-15 2021-01-05 Ampt, Llc Alternating conversion solar power system
US11289917B1 (en) 2007-10-15 2022-03-29 Ampt, Llc Optimized photovoltaic conversion system
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US10608437B2 (en) 2007-10-15 2020-03-31 Ampt, Llc Feedback based photovoltaic conversion systems
US9673630B2 (en) 2007-10-15 2017-06-06 Ampt, Llc Protected conversion solar power system
US11070062B2 (en) 2007-10-15 2021-07-20 Ampt, Llc Photovoltaic conversion systems
US11228182B2 (en) 2007-10-15 2022-01-18 Ampt, Llc Converter disabling photovoltaic electrical energy power system
US11070063B2 (en) 2007-10-15 2021-07-20 Ampt, Llc Method for alternating conversion solar power
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10326282B2 (en) 2009-04-17 2019-06-18 Ampt, Llc Safety methods and apparatus for adaptive operation of solar power systems
US10938219B2 (en) 2009-04-17 2021-03-02 Ampt, Llc Dynamic methods and apparatus for adaptive operation of solar power systems
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10714637B2 (en) 2009-10-19 2020-07-14 Ampt, Llc DC power conversion circuit
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
US11411126B2 (en) 2009-10-19 2022-08-09 Ampt, Llc DC power conversion circuit
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10116140B2 (en) 2013-03-15 2018-10-30 Ampt, Llc Magnetically coupled solar power supply system
US11121556B2 (en) 2013-03-15 2021-09-14 Ampt, Llc Magnetically coupled solar power supply system for battery based loads
US11967653B2 (en) 2013-03-15 2024-04-23 Ampt, Llc Phased solar power supply system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring

Similar Documents

Publication Publication Date Title
KR20070036528A (en) Image sensor and method for manufacturing the same
CN100470787C (en) Semiconductor device and mfg. method thereof
KR20030055135A (en) Semiconductor device and method for manufacturing the same
KR100812731B1 (en) Interconnects with harmonized stress and methods for fabricating the same
JP2006032864A (en) Multilayer wiring structure, semiconductor device having the same, and manufacturing method thereof
JP2010056156A (en) Semiconductor device, and manufacturing method thereof
US7553757B2 (en) Semiconductor device and method of manufacturing the same
US6911394B2 (en) Semiconductor devices and methods of manufacturing such semiconductor devices
US6987322B2 (en) Contact etching utilizing multi-layer hard mask
JP2002289689A (en) Semiconductor integrated circuit device and its manufacturing method
KR100815952B1 (en) Method for forming intermetal dielectric in semiconductor device
US7247565B2 (en) Methods for fabricating a copper interconnect
US20050153542A1 (en) Method for forming dual damascene pattern
KR100827498B1 (en) Method for manufacturing metal lines by using damascene
KR101153225B1 (en) Method for forming a metal line in semiconductor device
US7250364B2 (en) Semiconductor devices with composite etch stop layers and methods of fabrication thereof
KR20050114784A (en) Method for forming cu interconnection of semiconductor device
JP4211910B2 (en) Manufacturing method of semiconductor device
KR100602132B1 (en) Method for fabricating dual damascene pattern
KR100723524B1 (en) Semiconductor device where erosion of dielectric is reduced during metal cmp process and fabrication method of the same
KR100718794B1 (en) Semiconductor device and method for manufacturing the same
KR100791694B1 (en) Method for manufacturing metal line by using dual damascene
KR100729087B1 (en) Method of fabricating semiconductor devices
KR101051808B1 (en) Method of manufacturing semiconductor device using local connection wiring
KR100654038B1 (en) Image sensor and method for manufacturing the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination