KR20070029311A - Porous material for latent heat and accumulated heat and method for producing the same - Google Patents

Porous material for latent heat and accumulated heat and method for producing the same Download PDF

Info

Publication number
KR20070029311A
KR20070029311A KR1020050083952A KR20050083952A KR20070029311A KR 20070029311 A KR20070029311 A KR 20070029311A KR 1020050083952 A KR1020050083952 A KR 1020050083952A KR 20050083952 A KR20050083952 A KR 20050083952A KR 20070029311 A KR20070029311 A KR 20070029311A
Authority
KR
South Korea
Prior art keywords
porous
pcm
latent heat
heat
porous material
Prior art date
Application number
KR1020050083952A
Other languages
Korean (ko)
Inventor
백승조
최동일
김범준
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020050083952A priority Critical patent/KR20070029311A/en
Publication of KR20070029311A publication Critical patent/KR20070029311A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Provided are a porous material for latent heat and accumulated heat, which is useful as a heat storage/supply medium with higher efficiency and prevents leakage of a phase change material by impregnating a fluid phase change material into porous clay or pearlite, and a method for producing the same. The porous material for latent heat and accumulated heat is produced by the method comprising impregnating a phase change material(PCM) into a porous material by a pressure impregnation technology. Preferably, the phase change material(PCM) is a paraffinic material and the porous material is selected from porous clay or porous pearlite. The pressure impregnation is preferably performed under a condition of heat having a temperature above a melting point of PCM and a pressure of 40-100 kPa.

Description

다공성 잠열 축열재 및 그 제조 방법{Porous material for latent heat and accumulated heat and method for producing the same}Porous latent heat storage material and method for producing the same {Porous material for latent heat and accumulated heat and method for producing the same}

도 1은 본 발명의 가압함침법이 적용되는 오토클레이브를 나타내는 도면1 is a view showing an autoclave to which the pressure impregnation method of the present invention is applied

본 발명은 유동성이 있는 파라핀계 상 변화 물질(Phase Change Material: 이하 PCM)을 다공성 점토 또는 펄라이트(perlite) 등의 다공성 물질에 함침시켜서 열저장과 열공급 매체로 사용할 수 있게한 다공성 잠열 축열재 및 그 제조방법에 관한 것이다.The present invention relates to a porous latent heat storage material which can be used as a heat storage and heat supply medium by impregnating a fluid paraffinic phase change material (PCM) into a porous material such as porous clay or perlite. It relates to a manufacturing method.

PCM이라고 하는 것은 물질이 고체상에서 액상으로 용융될 때 열이 흡수되어 물질이 액체상태로 존재하는 동안 잠열로서 저장되고 고화될 때, 즉 액상에서 고상으로 전환될 때 잠열을 방출하는 것으로서 냉난방분야, 전자제품의 방열판, 의복등의 생활산업분야, 식품산업분야 등에 사용되고 있다.PCM refers to the heat-absorption, heating, It is used in the life industry of heat sink, clothing, food industry, etc.

PCM 재료로서 가장 널리 사용되고 있는 물질은 염, 염수화물 또는 이들의 혼합물, 파라핀등의 유기화합물이 쓰이고 있다. 크게 유기물과 무기물로 나눠지며 유기물은 대체적으로 밀도가 낮고 잠열량은 작으나 무기물 PCM에 비해서 부식성이 작 고 부피팽창이 작다. 무기물은 반대로 밀도가 크고 잠열량도 크나 부식성이 크고 부피팽창이 커서 패키징이 어렵다는 단점이 있다.The most widely used materials for PCM are organic compounds such as salts, salts or mixtures thereof, and paraffin. It is largely divided into organic and inorganic materials. Organic materials are generally low in density and low in latent heat, but they are less corrosive and have smaller volume expansion than inorganic PCM. In contrast, inorganic materials have a disadvantage in that they are difficult to package due to their high density and high latent heat, but high corrosiveness and large volume expansion.

축방열 시스템을 위해서 가져야 할 PCM의 조건은 적합한 상변화 온도, 높은 잠열밀도와 열전달율, 상평형 용이, 낮은 기체압력, 작은 부피팽창률, 고밀도, 과냉각 현상이 없고 높은 결정성장률, 화학적 안정성, 적은 부식성, 물질구입이 쉽고 저렴해야한다.The conditions of PCM for axial heat dissipation system are suitable phase change temperature, high latent heat density and heat transfer rate, phase equilibrium, low gas pressure, small volume expansion rate, high density, no supercooling, high crystal growth rate, chemical stability, low corrosiveness, Material purchase should be easy and cheap.

상기 조건들을 만족하며 단가가 매우 낮은 파라핀계 PCM이 잠열 축열재로 많이 쓰이고 있으나 용융점 이상에서 파라핀이 유출하기 때문에 캡슐화 시켜서 사용하고 있다. 종래의 상 변화 물질의 캡슐화 기술은 멜라민이나 포름알데히드 수지로 마이크로 캡슐화 하는 방법인바, 이 방법은 공정이 복잡하여 제조원가를 상승시키기 때문에 실용화 되지 못하고 있는 실정이다.Paraffin-based PCM, which satisfies the above conditions and has a very low unit cost, is widely used as a latent heat storage material. Conventional encapsulation technology of a phase change material is a method of microencapsulating with melamine or formaldehyde resin, and this method has not been put to practical use because the process is complicated and increases the manufacturing cost.

따라서, 본 발명의 목적은 단가가 낮은 다공성 점토 또는 펄라이트등의 다공성 물질에 PCM을 함침시킴으로서 가격이 저렴한 잠열 축열재를 간단한 공정으로 제조할 수 있는 다공성 잠열 축열재 및 그 제조방법을 제공하는데 그 기술적 과제를 두고 있다.Accordingly, an object of the present invention is to provide a porous latent heat storage material and a method for manufacturing the same, which can be inexpensive latent heat storage material by a simple process by impregnating PCM in a porous material such as low price porous clay or perlite. I have a problem.

본 발명은 다공성 점토 또는 펄라이트 등의 다공성 물질에 PCM을 가압 함침시켜서 모세관 효과에 의해서 PCM의 유출이 억제되고 다공성 재료의 특성에 의하여 열응답성과 열전도성이 우수한 다공성 잠열 축열재 및 그 제조방법에 관한 것이다.The present invention relates to a porous latent heat storage material and a method for producing the same, which are capable of suppressing the outflow of PCM by capillary effect by pressurizing and impregnating PCM in a porous material such as porous clay or pearlite, and having excellent thermal response and thermal conductivity. will be.

이하 본 발명을 더욱 상세히 설명하면 아래와 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 파라핀계의 PCM(용융점 0℃ ~ 130℃ ) 과 다공성 점토 또는 펄라이트 등의 다공성 물질(기공율 : 30% ~ 80%)을 사용하여 파라핀계의 PCM을 다공성 물질(입경 : 1 ~ 10mm)의 미세기공(기공의 크기 : 10 ~ 100㎛)에 함침시켜서 제조한 잠열 축열재 및 그 제조방법에 관한 것이다.The present invention uses a paraffinic PCM (melting point 0 ℃ ~ 130 ℃) and a porous material (porosity: 30% to 80%), such as porous clay or pearlite, paraffin-based PCM porous material (particle diameter: 1 ~ 10mm) It relates to a latent heat storage material prepared by impregnating into the micropores of (pore size: 10 ~ 100㎛) and its manufacturing method.

상기 파라핀계 PCM은 탄소수에 따라 융점이 달라지는데 0℃ ~ 130℃의 것을 사용할 수 있고 보다 바람직하게는 30℃ ~ 50℃의 융점을 가진 PCM을 선택하는 것이 바람직하다.The paraffinic PCM may have a melting point of 0 ° C. to 130 ° C. depending on the number of carbon atoms, and it is preferable to select a PCM having a melting point of 30 ° C. to 50 ° C.

상기 다공성 물질은 점토 또는 펄라이트를 선택하는 것이 바람직하고 다공성 물질의 기공율은 30% ~ 80% 범위가 적절하다. 기공율이 30% 미만이면 PCM 함침량이 적어 축열 효과가 낮고 기공율이 80%를 초과하면 PCM의 누액이 있을 수 있다.The porous material is preferably selected from clay or pearlite, and the porosity of the porous material is suitably in the range of 30% to 80%. If the porosity is less than 30%, the PCM impregnation amount is low, so the heat storage effect is low, and if the porosity exceeds 80%, there may be leakage of PCM.

상기 다공성 물질의 기공 크기는 10 ~ 100㎛ 범위가 적절하다. 기공의 크기가 10㎛ 미만이면 함침 시간이 길어지고 기공의 크기가 100㎛를 초과하면 누액의 우려가 있다.The pore size of the porous material is preferably in the range of 10 ~ 100㎛. If the pore size is less than 10 μm, the impregnation time is long, and if the pore size exceeds 100 μm, there is a risk of leakage.

상기 다공성 물질의 입자크기는 1 ~ 10mm 범위가 적절하다. 1 ~ 10mm의 입자크기의 다공성 물질은 단면적이 크게 커져서 PCM의 낮은 열 전도율을 보완 할 수 있다. The particle size of the porous material is preferably in the range of 1 ~ 10mm. Porous materials with a particle size of 1 to 10 mm have a large cross section, which can compensate for the low thermal conductivity of PCM.

도 1은 본 발명의 가압함침법을 적용하기 위한 오토클레이브를 나타낸 도면이다. 다공성 점토나 펄라이트 등의 다공성 물질(3)이 하부플라스크의 안쪽에 놓여지며, PCM (2)이 상부플라스크의 안쪽에 채워진다. 오토클레이브(1)는 열과 압력을 주어서 PCM(2)에 유동성을 부여하여 함침시키는 역할을 하게된다. 함침시간은 대략 30분정도 걸리며 80 kPa 정도의 압력을 준다. 온도가 파라핀계 PCM재료의 용융점 이상으로 올라가기 시작하면 PCM(2)이 용융되기 시작하며 PCM 용액이 오토클레이브의 압력을 받아서 다공성물질(3)쪽으로 들어가기 시작한다. 계속 압력을 받는 PCM 용액은 다공성 물질(3)의 미세기공 사이로 침투한다. 30분간 압력을 걸어준 후 다공성 물질을 세척하고 필요에 따라서 다공성 물질 겉면에 붙어있는 PCM을 제거하기위해서 온도를 PCM 용융점 이상 올려준 후 세척을 하게 된다.1 is a view showing an autoclave for applying the pressure impregnation method of the present invention. Porous material 3 such as porous clay or pearlite is placed inside the lower flask, and the PCM 2 is filled inside the upper flask. The autoclave 1 serves to impregnate the PCM 2 by applying heat and pressure. Immersion time is about 30 minutes and pressure is about 80 kPa. When the temperature begins to rise above the melting point of the paraffinic PCM material, the PCM (2) begins to melt and the PCM solution begins to enter the porous material (3) under the pressure of the autoclave. The PCM solution under constant pressure penetrates between the micropores of the porous material 3. After pressing for 30 minutes, the porous material is washed and, if necessary, the temperature is raised above the PCM melting point to remove the PCM attached to the surface of the porous material.

이렇게 하면 다공성 점토 또는 펄라이트 등의 다공성 물질의 미세기공내에 파라핀계 PCM이 충전되어서 다공성 잠열 축열재가 완성된다.In this way, paraffin-based PCM is filled in the micropores of porous materials such as porous clay or pearlite to complete the porous latent heat storage material.

<실시예><Example>

기공율이 50%이고 입경이 8mm이며 미세기공의 크기가 80㎛인 점토 또는 펄라이트를 하부플라스크의 안쪽에 채워넣고 파라핀계 PCM을 그 위에 있는 상부플라스크에 넣어준다. PCM 재료의 유동성을 부여하기 위해서 용융점 이상의 열과 80 kPa 정도의 압력을 가하고 30분간 PCM을 함침시킨다. 그 후 다공성 물질을 세척하고 필요에 따라서 다공성 물질 겉면에 붙어있는 PCM을 제거하기 위해서 온도를 PCM 용융점 이상 올려준 후 세척을 하였다.Clay or pearlite having a porosity of 50%, a particle diameter of 8 mm and a micropore size of 80 μm is filled into the lower flask and paraffin-based PCM is placed in the upper flask. To impart fluidity of the PCM material, heat above the melting point and a pressure of about 80 kPa are applied and the PCM is impregnated for 30 minutes. Thereafter, the porous material was washed and, if necessary, the temperature was raised above the PCM melting point in order to remove the PCM attached to the surface of the porous material, and then washed.

<비교예>Comparative Example

가압을 하지 않고 상압에서 함침시킨 것을 제외하고는 <실시예>와 동일한 방법으로 실시하였다.The same process as in <Example> was carried out except that impregnation was carried out at normal pressure without pressure.

상기 실시예 및 비교예의 방법으로 다공성 점토 또는 펄라이트의 잠열 축열 재를 제조한 후 함침된 PCM의 함량을 조사하였다. 실시예는 다공성 점토의 경우에는 43%가 함침되었으며 다공성 펄라이트의 경우에는 51%가 함침되었다. 비교예에서는 다공성 점토의 경우에는 17%, 다공성 펄라이트는 38%가 함침되었다.After preparing the latent heat storage material of porous clay or pearlite by the method of Examples and Comparative Examples, the content of impregnated PCM was investigated. The examples were 43% impregnated for porous clay and 51% impregnated for porous pearlite. In the comparative example, 17% of porous clay and 38% of porous pearlite were impregnated.

(상기%는 다공성 물질의 총중량에 대한 PCM의 함침중량의 비율임.)(The above percentage is the ratio of the impregnated weight of PCM to the total weight of the porous material.)

<표 1>TABLE 1

Figure 112005050437211-PAT00001
Figure 112005050437211-PAT00001

아래의 그래프는 상기 방법으로 제조된 잠열 축열재의 흡열 및 발열 현상을 나타낸 것이다.The graph below shows the endothermic and exothermic phenomenon of the latent heat storage material produced by the above method.

<그래프 1><Graph 1>

Figure 112005050437211-PAT00002
Figure 112005050437211-PAT00002

<그래프 2><Graph 2>

Figure 112005050437211-PAT00003
Figure 112005050437211-PAT00003

<그래프 1>은 다공성 점토에 파라핀계 PCM이 함침된 잠열 축열재의 흡열, 발열 곡선이다. 위의 그래프에서 융점이 48.56℃, 잠열은 24.98 J/g이고 <그래프 2>는 다공성 펄라이트에 PCM이 함침된 잠열 축열재의 흡열, 발열 곡선인데 융점은 49.83℃, 잠열은 33.86 J/g으로 측정되었다.<Graph 1> is an endothermic and exothermic curve of latent heat storage material impregnated with paraffinic PCM in porous clay. In the graph above, melting point is 48.56 ℃, latent heat is 24.98 J / g, and <Graph 2> is endothermic and exothermic curve of latent heat storage material impregnated with PCM in porous pearlite, and melting point is 49.83 ℃ and latent heat is 33.86 J / g. .

다공성 펄라이트의 경우에는 재료의 미세기공이 점토에 비해서 더 많기 때문에 50% 가량의 PCM이 함침될 수 있으므로 점토에 비해서 더 큰 잠열을 보임을 확인할 수 있다.In the case of porous perlite, since the micropores of the material are more than that of clay, about 50% of the PCM may be impregnated, which shows that the latent heat is greater than that of the clay.

본 발명은 파라핀계 PCM을 가압 함침법을 통해 다공성 점토 또는 펄라이트에 함침시킴으로서 보온 및 난방용 잠열 축열재로서의 응용을 가능하게 하였다. 또 본 발명은 종래의 마이크로캡슐법과는 달리 공정이 간단하여 대량생산이 가능하며 다공성 구조에 의해서 열응답속도가 빠르고 열전도도가 높으며 마이크로캡슐법에 비해서 PCM의 함침량을 늘릴 수 있으므로 에너지 절약용 잠열 축열재로의 응용범위를 넓힐 수 있는 장점이 있다.The present invention enables the application as a latent heat storage material for thermal insulation and heating by impregnating paraffin-based PCM in porous clay or pearlite through a pressure impregnation method. In addition, the present invention, unlike the conventional microcapsule method, the process is simple, mass production is possible, and the thermal response speed is high and the thermal conductivity is high by the porous structure, and the impregnated amount of PCM can be increased compared to the microcapsule method, and thus the latent heat for energy saving. There is an advantage to widen the application range to the heat storage material.

Claims (6)

가압함침법을 이용하여 상 변화 물질(PCM)을 다공성 물질에 함침시켜 제조 하는 것을 특징으로 하는 다공성 잠열 축열재의 제조방법.Method for producing a porous latent heat storage material, characterized in that by impregnating a phase change material (PCM) in a porous material using a pressure impregnation method. 제 1항에 있어서, 상 변화 물질(PCM)은 파라핀계 물질임을 특징으로 하는 다공성 잠열 축열재의 제조방법.The method of claim 1, wherein the phase change material (PCM) is a paraffin-based material. 제 1항에 있어서, 다공성 물질은 다공성 점토 또는 다공성 펄라이트 중에서 선택한 것임을 특징으로 하는 다공성 잠열 축열재의 제조방법.The method of claim 1, wherein the porous material is selected from porous clay or porous pearlite. 제 1항에 있어서, 가압함침조건은 PCM의 용융점이상의 열과 40 ~ 100kPa의 압력임을 특징으로 하는 다공성 잠열 축열재의 제조방법.The method of claim 1, wherein the pressure impregnation conditions are heat above the melting point of the PCM and pressure of 40 ~ 100kPa. 청구항 1의 방법으로 제조한 다공성 잠열 축열재.Porous latent heat storage material prepared by the method of claim 1. 청구항 5에 있어서, 다공성 물질은 기공의 크기가 10 ~ 100㎛ 이고, 기공율이 30 ~ 80% 이며 입경이 1 ~ 10mm임을 특징으로 하는 다공성 잠열 축열재. The porous latent heat storage material according to claim 5, wherein the porous material has a pore size of 10 to 100 µm, a porosity of 30 to 80%, and a particle diameter of 1 to 10 mm.
KR1020050083952A 2005-09-09 2005-09-09 Porous material for latent heat and accumulated heat and method for producing the same KR20070029311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050083952A KR20070029311A (en) 2005-09-09 2005-09-09 Porous material for latent heat and accumulated heat and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050083952A KR20070029311A (en) 2005-09-09 2005-09-09 Porous material for latent heat and accumulated heat and method for producing the same

Publications (1)

Publication Number Publication Date
KR20070029311A true KR20070029311A (en) 2007-03-14

Family

ID=38101546

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050083952A KR20070029311A (en) 2005-09-09 2005-09-09 Porous material for latent heat and accumulated heat and method for producing the same

Country Status (1)

Country Link
KR (1) KR20070029311A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827583A (en) * 2012-08-03 2012-12-19 上海英硕聚合材料股份有限公司 Phase change composite material and preparation method thereof
KR101326735B1 (en) * 2011-12-06 2013-11-08 한국건설기술연구원 Porous materials having micropore capable of heat storage and heat release by the phase change matters and manufacturing the same
KR101386548B1 (en) * 2012-08-14 2014-04-18 지에스건설 주식회사 Method for Preparing Lightweight Aggregate with Fuction of Thermal Storage
KR101401426B1 (en) * 2012-11-20 2014-06-02 숭실대학교산학협력단 Phase-stabilized phase change material using vacuum impregnation and method for preparing the same
WO2016006768A1 (en) * 2014-07-08 2016-01-14 한국과학기술연구원 Heat storage material for storing hydration heat energy, and preparation method therefor
KR20160067609A (en) 2014-12-04 2016-06-14 라성에너지(주) Thermal Storage Pipe Filled with Paraffin Phase Change Materials and Temperature Management Method Thereby
US9410747B2 (en) 2011-12-06 2016-08-09 Korea Institute Of Construction Technology Porous material having micropores capable of storing and releasing heat by phase change and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326735B1 (en) * 2011-12-06 2013-11-08 한국건설기술연구원 Porous materials having micropore capable of heat storage and heat release by the phase change matters and manufacturing the same
US9410747B2 (en) 2011-12-06 2016-08-09 Korea Institute Of Construction Technology Porous material having micropores capable of storing and releasing heat by phase change and preparation method thereof
CN102827583A (en) * 2012-08-03 2012-12-19 上海英硕聚合材料股份有限公司 Phase change composite material and preparation method thereof
CN102827583B (en) * 2012-08-03 2015-06-17 上海英硕聚合材料股份有限公司 Phase change composite material and preparation method thereof
KR101386548B1 (en) * 2012-08-14 2014-04-18 지에스건설 주식회사 Method for Preparing Lightweight Aggregate with Fuction of Thermal Storage
KR101401426B1 (en) * 2012-11-20 2014-06-02 숭실대학교산학협력단 Phase-stabilized phase change material using vacuum impregnation and method for preparing the same
WO2016006768A1 (en) * 2014-07-08 2016-01-14 한국과학기술연구원 Heat storage material for storing hydration heat energy, and preparation method therefor
KR20160067609A (en) 2014-12-04 2016-06-14 라성에너지(주) Thermal Storage Pipe Filled with Paraffin Phase Change Materials and Temperature Management Method Thereby

Similar Documents

Publication Publication Date Title
KR20070029311A (en) Porous material for latent heat and accumulated heat and method for producing the same
Py et al. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material
Karaipekli et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes
Sarı et al. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material
Liu et al. Porous ceramic stabilized phase change materials for thermal energy storage
Karaipekli et al. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage
Liu et al. Stearic acid hybridizing coal–series kaolin composite phase change material for thermal energy storage
Yan et al. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes
Calabrese et al. Synthesis of SAPO-34 zeolite filled macrocellular foams for adsorption heat pump applications: A preliminary study
US10125297B2 (en) Dimensionally stable phase change material and a continuous process for making same
CN110105924A (en) A kind of preparation method of hydrated salt-porous mineral composite phase-change energy storage material
JP2010077435A (en) Phase-change substance encapsulated in natural microtubule and its preparation
Wang et al. Preparation and properties of caprylic‐nonanoic acid mixture/expanded graphite composite as phase change material for thermal energy storage
Noël et al. Freeze-cast form-stable phase change materials for thermal energy storage
Deng et al. Expanded Vermiculite: A Promising Natural Encapsulation Material of LiNO3, NaNO3, and KNO3 Phase Change Materials for Medium‐Temperature Thermal Energy Storage
Krishnan et al. Experimental investigations on thermal storage in a solar dryer
Wu et al. Moisture‐Thermal Stable, Superhydrophilic Alumina‐Based Ceramics Fabricated by a Selective Laser Sintering 3D Printing Strategy for Solar Steam Generation
CN110872490A (en) Medium-low temperature tubular carbon fiber composite phase change material and preparation method thereof
US4221259A (en) Process for storing calories
KR101326735B1 (en) Porous materials having micropore capable of heat storage and heat release by the phase change matters and manufacturing the same
Liu et al. Study of Capric–Palmitic Acid/Clay Minerals as Form-Stable Composite Phase-Change Materials for Thermal Energy Storage
US20180187059A1 (en) Heat-transport medium including latent heat storage material, mixture for heat transport, and heat transport method
Fuks et al. Crack‐free drying of ceramic foams by the use of viscous cosolvents
JPS6262164A (en) Adsorption type heat pump
Ozcelik Preparation, characterization and thermal properties of paraffin wax–expanded perlite form-stable composites for latent heat storage

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid