KR20070013802A - Recombinant adeno-associated virus comprising antisense cdnas of vegf-a, vegf-b and vegf-c and gene therapeutic agent specific to large intestine cancer, bladder cancer and/or lung cancer comprising the same - Google Patents

Recombinant adeno-associated virus comprising antisense cdnas of vegf-a, vegf-b and vegf-c and gene therapeutic agent specific to large intestine cancer, bladder cancer and/or lung cancer comprising the same Download PDF

Info

Publication number
KR20070013802A
KR20070013802A KR1020050068427A KR20050068427A KR20070013802A KR 20070013802 A KR20070013802 A KR 20070013802A KR 1020050068427 A KR1020050068427 A KR 1020050068427A KR 20050068427 A KR20050068427 A KR 20050068427A KR 20070013802 A KR20070013802 A KR 20070013802A
Authority
KR
South Korea
Prior art keywords
vegf
cancer
seq
raav
antisense cdna
Prior art date
Application number
KR1020050068427A
Other languages
Korean (ko)
Other versions
KR100697321B1 (en
Inventor
박기랑
안미영
황석연
조영화
이희란
김원재
Original Assignee
주성대학산학협력단
김원재
박기랑
안미영
황석연
이희란
조영화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성대학산학협력단, 김원재, 박기랑, 안미영, 황석연, 이희란, 조영화 filed Critical 주성대학산학협력단
Priority to KR1020050068427A priority Critical patent/KR100697321B1/en
Publication of KR20070013802A publication Critical patent/KR20070013802A/en
Application granted granted Critical
Publication of KR100697321B1 publication Critical patent/KR100697321B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Endocrinology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A recombinant adeno-associated virus comprising antisense cDNAs of VEGF-A(vascular endothelial growth factor-A), VEGF-B and VEGF-C and a gene therapeutic agent specific to large intestine cancer, bladder cancer and/or lung cancer comprising the same virus are provided to reduce proliferation of tumor cells by inhibiting expression of VEGF associated with angiogenesis which is necessary for proliferation and transition of tumor cells. The recombinant adeno-associated virus(rAAV) vector comprises an antisense cDNA of VEGF-A of SEQ ID NO:1, an antisense cDNA of VEGF-B of SEQ ID NO:4 and an antisense cDNA of VEGF-C of SEQ ID NO:7, wherein the rAAV vector is prepared by (a) transfecting an animal cell line with pAAV vector containing the antisense cDNA of VEGF-A of SEQ ID NO:1, the antisense cDNA of VEGF-B of SEQ ID NO:4 and the antisense cDNA of VEGF-C of SEQ ID NO:7, an AAV rep-cap plasmid DNA and an adenovirus helper plasmid, (b) culturing the transfected animal cell line, and (c) destroying the cultured animal cell line, and isolating and purifying the rAAV particle. The gene therapeutic agent specific to large intestine cancer, bladder cancer and/or lung cancer comprises the recombinant adeno-associated virus(rAAV) vector.

Description

VEGF-A, VEGF-B 및 VEGF-C의 안티센스 cDNA를 함유하는 재조합 아데노-연관 바이러스(rAAV) 및 이를 함유하는 대장암, 방광암 및/또는 폐암 특이적 유전자 치료제{Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A, VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer, Bladder Cancer and/or Lung Cancer Comprising the Same}Recombinant Adeno-associated Virus Comprising Antisense cDNAs containing antisense cDNA of anti-F, A, VF-C and VF-C of VEGF-A, VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer, Bladder Cancer and / or Lung Cancer Comprising the Same}

도 1은 본 발명에 따른 pAAV-AShVEGF-ABC-IRES-EGFP의 유전자 지도이다.1 is a genetic map of pAAV-AShVEGF-ABC-IRES-EGFP according to the present invention.

도 2는 본 발명에 따른 pAAV-AShVEGF-ABC의 유전자 지도이다.2 is a genetic map of pAAV-AShVEGF-ABC according to the present invention.

도 3은 rAAV 벡터를 복강주사한 누드마우스에서 종양체적의 변화를 나타낸 그래프이다.3 is a graph showing changes in tumor volume in nude mice intraperitoneally injected with rAAV vectors.

도 4a 및 4b는 rAAV 벡터를 복강주사한 누드마우스의 각 조직을 H&E 염색한 결과를 나타낸 사진으로, 각 조직의 좌측 사진은 HEPES 버퍼를 주입한 대조군을 나타낸 것이고, 오른쪽 사진은 본 발명에 따른 rAAV 벡터(1.5 X 1011 )를 주입한 실험군을 나타낸 것이다.4A and 4B are photographs showing the results of H & E staining of each tissue of nude mice intraperitoneally injected with the rAAV vector. The left photograph of each tissue shows the control group injected with HEPES buffer, and the right photograph shows the rAAV according to the present invention. The experimental group injected with the vector (1.5 X 10 11 ) is shown.

본 발명은 VEGF-A, VEGF-B 및 VEGF-C의 안티센스 cDNA와 아데노-연관 바이러스(AAV) 시스템을 이용한 유전자 치료제에 관한 것으로, 더욱 상세하게는, VEGF-A 안티센스 cDNA, VEGF-B 안티센스 cDNA 및 VEGF-C 안티센스 cDNA를 함유하는 rAAV 벡터 및 상기 rAAV 벡터를 포함하는 대장암, 방광암 및/또는 폐암-특이적 유전자 치료제에 관한 것이다. The present invention relates to gene therapy using antisense cDNA and adeno-associated virus (AAV) systems of VEGF-A, VEGF-B and VEGF-C, and more particularly, VEGF-A antisense cDNA, VEGF-B antisense cDNA. And a rAAV vector containing VEGF-C antisense cDNA and a colorectal cancer, bladder cancer and / or lung cancer-specific gene therapy comprising the rAAV vector.

암으로 인한 사망률은 국내·외를 막론하고 해마다 증가하는 추세이다. 암은 세계적으로 감염성 질환 및 심혈관계 질환과 더불어 주요한 사망원인 중 하나로 손꼽히고 있다. 세계보건기구(WHO)의 세계 보건 보고서(World Health Report)에 따르면, 2004년 총 사망자의 12.5%인 7,121,000명이 암으로 사망하였으며, 식습관, 환경의 변화 및 수명연장으로 인하여 향후 25년 내에 암 발생인구가 매년 약 3천만 명으로 늘어나고, 이중 2천만 명의 인구가 암으로 사망할 것으로 예상하고 있다.The mortality rate from cancer is increasing year by year, both at home and abroad. Cancer is one of the leading causes of death in the world, along with infectious and cardiovascular diseases. According to the World Health Report of the World Health Organization (WHO), 7,121,000 people, 12.5% of all deaths in 2004, died of cancer and cancer populations in the next 25 years due to changes in eating habits, the environment and life expectancy. Is expected to increase to about 30 million people annually, with 20 million people dying from cancer.

현재 암치료에 사용되는 방법은 크게 외과적 수술, 방사선 치료 및 약물치료가 있는데, 이들 방법은 암치료를 위해 독자적으로 사용되거나 두 가지 이상의 방법이 병용된다. Currently, the methods used for the treatment of cancer are largely surgical surgery, radiation treatment and drug treatment, these methods are used independently for the treatment of cancer or two or more methods are used in combination.

일반적으로, 외과적 수술은 다양한 암의 단계에서 적용될 수 있다. 초기단계의 암들은 대체적으로 외과적 수술로 치료가 가능하지만, 암이 많이 진전되었거나 전이가 일어난 경우에는 외과적 수술만으로 어렵기 때문에 방사선 치료 또는 약물 치료를 같이 사용한다. In general, surgical procedures can be applied at various stages of cancer. Early stage cancers can usually be treated by surgical surgery, but if the cancer is advanced or metastasized, the surgery is difficult because of surgery alone.

방사선 치료는 외부에서 방사선을 조사하거나, 체내로 투여한 방사성 물질에서부터 나온 X-선 또는 γ-선을 암세포에 조사하여 암을 치료한다. Radiation therapy treats cancer by irradiating the cancer cells with X-rays or γ-rays from external radiation or radioactive substances administered into the body.

약물치료는 항암제를 경구나 주사로 투여하여 암세포의 증식에 필요한 DNA나 관련 효소를 파괴하거나 억제하는 방법이다. 다른 방법에 비하여, 약물치료가 가지는 장점은 몸의 어떤 부위에 생긴 암이라도 약물이 도달할 수 있고, 전이된 암을 치료한다는 것이다. 현재 약물치료는 전이성 암 치료의 표준요법으로 사용되고 있다. 물론 전이된 암을 약물요법으로 완치할 수 있는 것은 아니지만, 증상을 완화시킴으로써 수명을 연장시키는 중요한 역할을 한다. 하지만, 이러한 약물요법의 주류를 이루고 있는 화학요법제는 부작용, 항암제 내성 등의 문제점을 가지고 있다. Drug therapy is a method of destroying or inhibiting DNA or related enzymes necessary for the proliferation of cancer cells by administering oral or injection anticancer drugs. The advantage of pharmacotherapy over other methods is that the drug can reach any cancer in any part of the body and treat the metastasized cancer. Drug therapy is currently used as a standard therapy for the treatment of metastatic cancer. Of course, metastatic cancer cannot be cured by pharmacotherapy, but it plays an important role in prolonging lifespan by alleviating symptoms. However, chemotherapeutic agents that are the mainstay of such drug therapy have problems such as side effects and anticancer drug resistance.

그러나, 생명과학분야의 눈부신 발전에 힘입어 생물요법제가 급성장하고 있다. 생물요법제는 신체 본연의 면역 기능을 회복시키거나 증가시킴으로써 암세포의 활동력을 약화시켜 암의 진행을 막는 것을 치료적 근거로 삼고 있다. 신체의 면역 체계가 제 기능을 발휘할 때 암세포들을 효과적으로 사멸시킬 수 있으나, 그렇지 않은 경우 암세포가 쉽게 증식하거나, 또는 다른 병원균들이 쉽게 공격을 가할 수 있게 된다. 생물요법제의 상기 단점을 보완하기 위해 외과적 수술요법, 방사선요법, 화학요법 등과 같은 다른 치료법들과 같이 사용되기도 한다. However, thanks to remarkable developments in the life sciences, biotherapeutics are growing rapidly. Biotherapeutics are the therapeutic basis for preventing cancer progression by weakening the activity of cancer cells by restoring or increasing the body's natural immune function. Cancer cells can be effectively killed when the body's immune system is functioning, but otherwise cancer cells can easily proliferate or other pathogens can easily attack. It may be used with other therapies such as surgical surgery, radiotherapy, chemotherapy and the like to compensate for the above disadvantages of biotherapeutics.

현재 생명과학분야에서 관심을 받고 있는 생물요법제로는 안티센스 항암제 및 혈관생성 억제제를 들 수 있다. 안티센스 항암제는 암세포의 특이적 mRNA에 상보적으로 결합할 수 있는 DNA단편을 사용하여, mRNA의 프로세싱 또는 단백질의 발 현을 저해하는 방법으로, 암세포의 사멸을 유도하는 것이다. 인간게놈 프로젝트의 결과로 인하여 30,000여개의 유전자 서열이 판독되고, 100,000여개의 mRNA서열을 알 수 있게 되었다. 이로써 암세포와 연관된 mRNA 후보군에 대한 정보가 대량 확보되면서, 신호전달 체계와 관련된 유전자, 세포사멸(apoptosis) 및 세포 증식에 관련된 유전자들에 대한 안티센스 항암제를 스크리닝하여 임상 실험중에 있다.Biotherapeutics currently of interest in the life sciences include antisense anticancer agents and angiogenesis inhibitors. Antisense anticancer agents induce cancer cell death by inhibiting the processing of mRNA or the expression of proteins using DNA fragments that can bind complementarily to the specific mRNA of cancer cells. As a result of the Human Genome Project, over 30,000 gene sequences were read and over 100,000 mRNA sequences were available. As a result, a large amount of information about mRNA candidate groups associated with cancer cells is secured, and antisense anticancer agents for genes related to signaling systems, apoptosis and cell proliferation are screened for clinical trials.

종양의 성장은 이에 필요한 산소 및 영양분을 공급해주는 새로운 혈관의 생성(angiogenesis)이 있어야 가능하다. 일반적으로 암세포가 증식함에 따라 종양 내부는 저산소 상태가 되고, 조직이 괴사하게 된다. 또한, 종양 자체의 압력에 의해 혈관이 파괴됨으로써 저산소 상태는 더욱 악화된다. 이러한 저산소 상태를 극복하기 위하여 종양은 신혈관 생성과 관련된 인자들(VEGF, bFGF, IL-8, PDGF, PD-EGF 등)을 발현하게 되어 신혈관 생성을 촉진하게 된다. 즉, 신혈관 생성은 종양의 성장에 있어서 필수적인 과정인 것이다.Tumor growth is only possible with the creation of new blood vessels that provide the oxygen and nutrients needed for this. In general, as cancer cells proliferate, the inside of the tumor becomes hypoxic and the tissues become necrotic. In addition, the hypoxia worsens because blood vessels are destroyed by the pressure of the tumor itself. To overcome this hypoxic state, the tumor expresses factors related to neovascularization (VEGF, bFGF, IL-8, PDGF, PD-EGF, etc.) to promote neovascular production. In other words, neovascularization is an essential process for tumor growth.

신혈관 생성 억제제는 이러한 종양의 신혈관 생성을 방해하여 종양의 성장을 저해함으로써, 암을 치료하는 것을 목적으로 한다. 직접적인 신혈관 생성 억제제는 혈관 내피세포의 증식 및 이동을 방해하거나, 신혈관 생성인자에 대한 반응을 억제함으로써 신혈관 생성을 방해한다. 직접적인 신혈관 생성 억제제는 후천내성(acquired drug resistance)을 보다 적게 유발한다는 장점을 지니고 있다.Neovascularization inhibitors aim to treat cancer by interfering with neovascularization of such tumors and inhibiting tumor growth. Direct neovascularization inhibitors interfere with the proliferation and migration of vascular endothelial cells or inhibit neovascular production by inhibiting the response to neovascular generating factors. Direct neovascularization inhibitors have the advantage of less inducing acquired drug resistance.

간접적인 신혈관 생성 억제제는 신혈관 생성을 활성화시키는 종양내의 단백질 발현을 억제하거나, 상기 종양 단백질과 혈관 내피 세포표면 수용체 사이의 결합을 차단함으로써 신혈관 생성을 억제한다. Indirect neovascularization inhibitors inhibit neovascularization by inhibiting protein expression in tumors that activate neovascularization or by blocking binding between the tumor protein and vascular endothelial cell surface receptors.

상기 기술한 바와 같이, 치료분야의 변화양상을 살펴보면, 인공적인 화학물질에서 천연 생체내 물질을 이용하는 방향으로 변화하고 있음을 알 수 있다. 특히, 다양한 분야의 유전체 연구 사업들이 진행되면서 각종 질병의 병인으로 작용하는 유전자들이 발견되고 있다. 이러한 연구 결과들을 임상적인 치료나 예방효과와 연결짓기 위하여, 기능이 소실되거나 변형된 유전자를 교정하기 위한 유전자를 체내에 도입하여 기능을 정상화시키거나 치료기능을 활성화 시켜주는 유전자 전달 기술에 대한 연구, 즉 유전자 치료(gene therapy) 분야에 대한 연구가 활발히 진행되고 있다. 상기 유전자 치료분야는 최근 수년간 관심과 연구가 집중되면서 그에 따른 결과들도 급증하고 있다.As described above, looking at the changes in the field of treatment, it can be seen that the change from the artificial chemicals to using the natural in vivo material. In particular, as genome research projects in various fields progress, genes that act as etiologies for various diseases are being discovered. In order to link these findings with clinical treatment or preventive effects, researches on gene transfer technology that normalizes function or activates therapeutic function by introducing genes for correcting lost or modified genes in the body, In other words, research is being actively conducted in the field of gene therapy. The field of gene therapy has been rapidly increasing in recent years with a lot of attention and research.

유전자 치료법은 유전자 전달 및 발현에 의하여 질병을 치료하는 방법으로서, 약물치료와는 달리 장애가 있는 특정 유전자를 목표로 유전적 결함을 교정하는 치료법이다. 유전자 치료의 궁극적인 목표는 살아있는 세포를 유전적으로 변형하여 유익한 치료 효과를 얻는 것이다. 상기 치료법은 질환부위로 유전인자의 정확한 전달, 생체 내에서의 완전한 분해, 독성 및 면역 항원성 부재(不在) 및 유전인자의 장기간 안정적인 발현이라는 장점을 지니고 있어서, 질병치료에 있어 더할 나위없는 최선의 치료법으로 각광받고 있다.Gene therapy is a method of treating diseases by gene transfer and expression. Unlike drug therapy, gene therapy is a method of correcting genetic defects targeting a specific gene with a disorder. The ultimate goal of gene therapy is to genetically modify living cells to obtain a beneficial therapeutic effect. These therapies have the advantages of accurate delivery of the gene to the disease site, complete degradation in vivo, absence of toxic and immunogenic antigens, and long-term stable expression of the gene, thus providing the best possible treatment for the disease. It is in the spotlight as a treatment.

유전자 치료의 주 연구분야는 특정 질병에 치료효과를 나타내는 유전자를 도입하거나, 항암제 등에 저항성을 나타내도록 정상세포의 저항기능을 증강시키거나, 각종 유전성 질환자에 있어서 변형되거나 소실된 유전자를 대체하는 분야로 요약할 수 있다.The main research field of gene therapy is to introduce genes that have a therapeutic effect on specific diseases, enhance resistance of normal cells to show resistance to anticancer drugs, or replace modified or missing genes in various genetic diseases. Can be summarized.

유전자 치료법은 크게 생체내(in vivo)와 생체외(in vitro) 두 가지로 구분된다. in vivo 유전자 치료법은 치료 유전자를 직접 체내에 주입하는 것이고, in vitro 유전자 치료법은 일차적으로 목적 세포(target cell)를 시험관내에서 배양하고, 이들 세포에 유전자를 도입시킨 다음, 유전자 변형된 세포를 다시 체내로 주입하는 것이다. 현재 유전자 치료 연구 분야에서는 in vivo 유전자 치료법보다는 in vitro 유전자 치료법을 많이 사용하고 있다.Gene therapy is largely divided into in vivo and in vitro . in vivo Gene therapy involves injecting therapeutic genes directly into the body, and in vitro gene therapy involves primarily culturing the target cells in vitro, introducing the genes into these cells, and then introducing the genetically modified cells back into the body. To inject. In vivo in current gene therapy research In vitro gene therapy is used more than gene therapy.

유전자 전달 기술은 크게 바이러스를 수송체로 사용하는 방법(viral vector-based transfer method), 합성 인지질이나 합성 양이온성 고분자 등을 사용하는 비바이러스성 방법(non-viral delivery method) 및 세포막에 일시적인 전기자극을 가하여 유전자를 도입하는 전기 투과법(electroporation) 등의 물리적 방법으로 구분할 수 있다.Gene delivery techniques are largely based on viral vector-based transfer methods, non-viral delivery methods using synthetic phospholipids or synthetic cationic polymers, and transient electrical stimulation on cell membranes. The present invention can be classified into physical methods such as electroporation to introduce genes.

상기 전달 기술 중에서, 바이러스 수송체를 사용하는 방법은 치료유전자로 대체된 유전자를 지니는 일부 또는 전체의 복제능력이 결손된 벡터로서 유전인자의 전달이 효율적으로 이루어질 수 있기 때문에 유전자치료를 위해 선호하는 방법이다. 바이러스 수송체 또는 바이러스 벡터로 사용되는 바이러스로는 RNA 바이러스 벡터(레트로바이러스 벡터, 렌티바이러스 벡터 등)와 DNA 바이러스 벡터(아데노바이러스 벡터, 아데노-연관 바이러스 벡터 등)가 있으며, 이 외에도 단순포진 바이러스 벡터(herpes simplex viral vector), 알파 바이러스 벡터(alpha viral vector) 등이 있다. 이중에서도 특히 연구가 활발히 진행되고 있는 것은 레트로바이러스와 아데노바이러스이다.Among the delivery techniques, the method of using a viral transporter is a preferred method for gene therapy because the transfer of genes can be efficiently carried out as a vector lacking the replication ability of some or all of the genes replaced with the therapeutic genes. to be. Viruses used as viral transporters or viral vectors include RNA viral vectors (retroviral vectors, lentivirus vectors, etc.) and DNA viral vectors (adenovirus vectors, adeno-associated virus vectors, etc.), as well as herpes simplex virus vectors. (herpes simplex viral vector) and alpha viral vector. Particularly active studies are retroviruses and adenoviruses.

숙주세포의 게놈에 통합기능이 있는 레트로바이러스(Retrovirus)의 특징은 인체에 해가 없지만 통합 시 정상세포의 기능을 억제할 수 있고, 다양한 세포에 감염되고, 증식이 쉬우며, 1~7 kb 정도의 외부 유전자를 수용할 수 있고, 복제결핍 바이러스를 생성할 수 있는 능력이 있다는 것이다. 그러나, 유사분열 이후의 세포에 감염되기 힘들며, in vivo 상태에서 유전자 전달이 어렵고, 체세포 조직을 항시 in vitro에서 증식하여야만 한다는 단점도 지니고 있다. 또한, 레트로바이러스는 원형암유전자(proto-oncogene)에 통합될 수 있어 돌연변이의 위험성이 있고 세포를 괴사시킬 수도 있다.The characteristics of retroviruses that integrate into the genome of host cells are harmless to the human body, but they can inhibit the function of normal cells during integration, infect various cells, easily proliferate, and range from 1 to 7 kb. Is able to accept the external genes of the genes and to generate replication-deficient viruses. However, it is difficult to infect cells after mitosis, it is difficult to transfer genes in vivo , and somatic cell tissues must be proliferated in vitro at all times. Retroviruses can also be integrated into the proto-oncogene, which is a risk of mutations and can also kill cells.

한편, 아데노바이러스(Adenovirus)는 클로닝 벡터(cloning vector)로 여러 가지 장점을 가지는데, 중간정도의 크기로 세포 핵 속에서 복제될 수 있으며, 임상적으로 무독성이고, 외부 유전자를 삽입하여도 안정적이며, 유전자의 재배열이나 손실이 일어나지 않고, 진핵생물을 형질전환시킬 수 있으며, 숙주세포 염색체에 통합되어도 안정적이면서도 높은 수준으로 발현된다. 아데노바이러스의 좋은 숙주세포는 인간의 조혈, 림프, 골수종의 원인이 되는 세포이다. 그러나, 선상 DNA라서 증식이 어렵고, 감염된 바이러스를 회복시키는 것이 쉽지 않으며, 바이러스의 감염율이 낮다. 또한 전달된 유전자의 발현이 1~2주 후에 가장 많이 되고, 일부 세포에서는 3~4주정도만 발현이 유지된다. 또한, 문제가 되는 것은 높은 면역 항원성을 갖는다는 것이다.Adenoviruses, on the other hand, have a number of advantages as cloning vectors, which can be replicated in the nucleus of a medium size, are clinically non-toxic, and stable even when external genes are inserted. Eukaryotes can be transformed without rearrangement or loss of genes, and are expressed at stable and high levels even when integrated into host cell chromosomes. Good host cells for adenoviruses are the cells responsible for human hematopoiesis, lymph, and myeloma. However, because it is linear DNA, it is difficult to proliferate, it is not easy to recover the infected virus, and the infection rate of the virus is low. In addition, the expression of the delivered gene is greatest after 1 to 2 weeks, and in some cells, expression is maintained for only 3 to 4 weeks. Also problematic is the high immunogenicity.

아데노-연관 바이러스(Adeno-associated virus, AAV)는 상기와 같은 문제점들을 보완할 수 있으면서, 유전자 치료제로의 많은 장점을 가지고 있어 최근에 선 호되고 있다. AAV는 단일가닥의 원바이러스(Provirus)로서, 복제하기 위하여 보조바이러스를 필요로 하고, AAV 게놈(genome)은 4,680 bp로서 감염세포의 염색체 19번 특정부위에 삽입이 가능하다. 트랜스 유전자(trans-gene)는 각각 145bp의 두 개의 역위말단반복(inverted terminal repeat, ITR) 서열부분과 시그날 서열(signal sequence)부분에 의해 연결된 플라스미드 DNA(plasmid DNA)에 삽입된다. AAV rep 부분과 cap 부분을 발현시키는 다른 플라스미드 DNA와 함께 트랜스펙션(transfection)시키고 아데노바이러스는 보조바이러스로서 첨가한다. AAV는 유전자를 전달하는 숙주세포의 범위가 넓고, 반복투여 시 면역 부작용이 적으며, 유전자 발현 기간이 긴 장점을 지니고 있다. 더구나, AAV 게놈이 숙주세포의 염색체에 통합되어도 안전하고, 숙주의 유전자발현을 변형시키거나 재배열시키지 않는다.Adeno-associated virus (AAV) has recently been preferred because it can complement the above problems, and has many advantages as a gene therapy agent. AAV is a single-stranded provirus, which requires an auxiliary virus to replicate, and the AAV genome is 4,680 bp and can be inserted into a specific region of chromosome 19 of an infected cell. Transgene (trans -gene) is inserted in the plasmid DNA (plasmid DNA) is connected by two inverted terminal repeats of 145bp (inverted terminal repeat, ITR) sequence and partial signal sequence (signal sequence) part, respectively. Transfection with other plasmid DNA expressing the AAV rep portion and the cap portion is added and adenovirus is added as a co-virus. AAV has a wide range of host cells that deliver genes, fewer immune side effects when repeated administration, and long gene expression periods. Moreover, it is safe for the AAV genome to integrate into the chromosome of the host cell and does not modify or rearrange the gene expression of the host.

1994년 CFTR 유전인자를 포함한 AAV 벡터가 섬유아세포증(cystic fibrosis) 치료를 위하여 NIH에 승인된 이래, 다양한 질병의 임상치료에 이용되고 있다. 혈액응고인자인 인자 IX 유전자(factor IX gene)를 포함한 AAV벡터는 B형 혈우병(hemophilia B)을 치료에 이용되고 있고, AAV 벡터를 이용한 A형 혈우병 (hemophilia A) 치료제 개발이 진행되고 있다. 또한, 여러 가지 종류의 항암유전자를 함유한 AAV 벡터는 종양 백신으로 사용하는 경우가 인증되었다.Since 1994, AAV vectors containing CFTR genes have been approved by the NIH for the treatment of cystic fibrosis, and have been used for clinical treatment of various diseases. AAV vectors containing a factor IX gene, which is a coagulation factor, are used for the treatment of hemophilia B (hemophilia B), and development of a hemophilia A (hemophilia A) therapeutic agent using the AAV vector is in progress. In addition, AAV vectors containing various types of anticancer genes have been certified for use as tumor vaccines.

VEGF를 사용한 유전자 치료로는 폐순환승압을 치료하기 위해 맥관형성 인자를 암호화하는 핵산을 포함하는 재조합 결손 아데노바이러스(대한민국 특허출원: 10-2001-7013633)를 예로 들 수 있지만, 상기 치료법은 VEGF 센스 염기서열을 사용하였기 때문에 허혈성 질환 치료에 한해서만 사용이 가능하고, 신혈관생성에 의한 질병, 특히, 암의 치료에는 사용이 불가하다. 더욱이, 아데노바이러스는 면역 항원성이 높고, 숙주세포로의 감염성이 낮을 뿐 아니라, 발현 기간이 짧은 단점을 지니고 있어 치료용으로 사용하기에는 부적절하다.Gene therapy with VEGF can be exemplified by the recombinant defective adenovirus (Korean patent application: 10-2001-7013633) comprising a nucleic acid encoding an angiogenic factor to treat pulmonary circulatory boost, but the therapy is a VEGF sense base. Because the sequence is used, it can be used only for the treatment of ischemic diseases, and cannot be used for the treatment of neovascularization diseases, especially cancer. Moreover, adenoviruses are not suitable for therapeutic use because they have high immunogenicity, low infectivity to host cells, and short duration of expression.

암을 치료용 폴리펩타이드에 대한 연구는 기존에 많이 진행되어 왔지만, 상기 물질들의 대부분은 화학요법제에 속한다. 그리고, 폴리뉴클레오티드에 대한 연구도 지속적으로 진행되어 왔지만, 바이러스 벡터 등을 통하여 효율적으로 생체내에 이동시키는 방법과 연계해서는 그 결과가 미흡하다.Although there have been many studies on polypeptides for treating cancer, most of the substances belong to chemotherapeutic agents. In addition, although researches on polynucleotides have been continuously conducted, the results are insufficient in connection with a method of efficiently moving in vivo through a viral vector or the like.

이에, 본 발명자들은 항암효과가 높은 rAAV 벡터에 VEGF-A, VEGF-B 및 VEGF-C의 안티센스 cDNA가 삽입되도록 제작된 rAAV-AShVEGF-ABC를 제작하여, 상기 rAAV-AShVEGF-ABC가 in vivo 상에서 종양억제효과가 있음을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have prepared rAAV-AShVEGF-ABC which is designed to insert the antisense cDNA of VEGF-A, VEGF-B and VEGF-C into the rAAV vector having high anticancer effect, so that the rAAV-AShVEGF-ABC is in vivo . Confirmed that the tumor suppression effect has been completed the present invention.

본 발명의 주된 목적은 유전자치료용 VEGF-A 안티센스 cDNA, VEGF-B 안티센스 cDNA 및 VEGF-C 안티센스 cDNA를 함유하는 rAAV 벡터를 제공하는데 있다.It is a main object of the present invention to provide an rAAV vector containing VEGF-A antisense cDNA, VEGF-B antisense cDNA and VEGF-C antisense cDNA for gene therapy.

본 발명의 다른 목적은 상기 rAAV 벡터를 함유하는 대장암, 방광암 및/또는 폐암 특이적 유전자치료제를 제공하는데 있다.Another object of the present invention is to provide a colorectal cancer, bladder cancer and / or lung cancer specific gene therapy containing the rAAV vector.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1의 VEGF-A 안티센스 cDNA, 서열번호 4의 VEGF-B 안티센스 cDNA 및 서열번호 7의 VEGF-C 안티센스 cDNA를 함유하는 rAAV 벡터를 제공한다. In order to achieve the above object, the present invention provides an rAAV vector containing a VEGF-A antisense cDNA of SEQ ID NO: 1, a VEGF-B antisense cDNA of SEQ ID NO: 4 and a VEGF-C antisense cDNA of SEQ ID NO: 7.

본 발명에 있어서, 상기 rAAV 벡터는 (a) 서열번호 1의 VEGF-A 안티센스 cDNA, 서열번호 4의 VEGF-B 안티센스 cDNA 및 서열번호 7의 VEGF-C 안티센스 cDNA를 함유하는 pAAV 벡터, AAV rep-cap 플라스미드 DNA 및 아데노바이러스 헬퍼 플라스미드를 동물세포주에 트랜스펙션하는 단계; (b) 상기 트랜스펙션된 동물세포주를 배양하는 단계; 및 (c) 상기 배양된 세포주를 파쇄한 다음, 재조합 rAAV 입자를 분리·정제하는 단계를 거쳐 제조되는 것을 특징으로 할 수 있다.In the present invention, the rAAV vector is (a) a pAAV vector containing a VEGF-A antisense cDNA of SEQ ID NO: 1, a VEGF-B antisense cDNA of SEQ ID NO: 4 and a VEGF-C antisense cDNA of SEQ ID NO: 7, AAV rep- transfecting cap plasmid DNA and adenovirus helper plasmids into animal cell lines; (b) culturing the transfected animal cell line; And (c) crushing the cultured cell line, and then separating and purifying the recombinant rAAV particles.

본 발명은 또한, 상기 rAAV 벡터를 포함하는 대장암, 방광암 및/또는 폐암-특이적 유전자 치료제를 제공한다.The present invention also provides a colorectal cancer, bladder cancer and / or lung cancer-specific gene therapy comprising the rAAV vector.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. pAAV-AShVEGF-ABC의 제작Example 1. Preparation of pAAV-AShVEGF-ABC

VEGF-A, VEGF-B, 및 VEGF-C의 안티센스 cDNA가 삽입된 rAAV 벡터를 제조하기 위하여, 먼저 상기 안티센스 cDNA가 삽입된 pAAV벡터, pAAV-AShVEGF-ABC-IRES-EGFP를 제작하였다. pAAV-AShVEGF-ABC-IRES-EGFP를 제조하기 위하여 먼저 pAAV- AShVEGF-B-IRES-EGFP를 제작하였으며, 여기에 AShVEGF-A와 AShVEGF-C의 cDNA를 결합시켰다. 트랜스-유전자(trans-gene)는 각각 145bp의 두 개의 역위말단반복서열부분 (ITR)과 CMV(human cytomegalovirus) immediate early promoter, SV40 early mRNA polyadenylation signal 서열부분에 의해 연결된 pAAV 플라스미드 DNA에 삽입시켰다. In order to prepare rAAV vectors into which the antisense cDNAs of VEGF-A, VEGF-B, and VEGF-C were inserted, a pAAV vector into which the antisense cDNA was inserted, pAAV-AShVEGF-ABC-IRES-EGFP, was prepared. To prepare pAAV-AShVEGF-ABC-IRES-EGFP, first, pAAV-AShVEGF-B-IRES-EGFP was prepared, and the cDNAs of AShVEGF-A and AShVEGF-C were combined. The trans-gene was inserted into pAAV plasmid DNA linked by two inverted terminal repeat sequences (ITRs) of 145 bp, a human cytomegalovirus (CMV) immediate early promoter, and an SV40 early mRNA polyadenylation signal sequence.

(1) pAAV-AShVEGF-A의 제작(1) Construction of pAAV-AShVEGF-A

HUVEC(Cambrex Bio Science Walkersville, Inc., USA) 세포로부터 RNA를 추출하여 cDNA를 합성하였으며, 하기의 AShVEGF-A 프라이머를 이용하여 RT-PCR 방법으로 429bp의 인간 VEGF-A isoform 안티센스 cDNA(서열번호 1)(1025-1453 위치)를 증폭하였다. 증폭 단편을 제한효소 KpnI 및 XhoI으로 처리하여, 동일한 제한효소로 절단된 pAAV-FIX cis 플라스미드 DNA(US 6,093,292)와 라이게이션시켜, pAAV-AShVEGF-A를 제작하였다.RNA was extracted from HUVEC (Cambrex Bio Science Walkersville, Inc., USA) cells to synthesize cDNA, and 429 bp human VEGF-A isoform antisense cDNA (SEQ ID NO: 1) by RT-PCR method using the following AShVEGF-A primer. ) (Positions 1025-1453). The amplification fragment was restriction enzyme Kpn I and Treatment with Xho I and ligation with pAAV-FIX cis plasmid DNA (US 6,093,292) digested with the same restriction enzymes yielded pAAV-AShVEGF-A.

AShVEGF-A F2 : GG GGTACC GTCTTGCTCTATCTTTC(서열번호 2)AShVEGF-A F2: GG GGTACC GTCTTGCTCTATCTTTC (SEQ ID NO: 2)

KpnI Kpn I

AShVEGF-A R1 : CC CTCGAG GGCCTCCGAAACCATGAACT(서열번호 3)AShVEGF-A R1: CC CTCGAG GGCCTCCGAAACCATGAACT (SEQ ID NO: 3)

XhoI Xho I

(2) pAAV-AShVEGF-B의 제작 (2) Construction of pAAV-AShVEGF-B

HUVEC(Cambrex Bio Science Walkersville, Inc., USA) 세포로부터 RNA를 추출하여 cDNA를 합성하였으며, 하기 AShVEGF-B 프라이머를 이용하여 RT-PCR 방법으로 466bp의 인간 VEGF-B isoform 안티센스 cDNA(서열번호 4)(41-506위치)를 증폭하였다. 증폭 단편을 제한효소 EcoRV 및 XhoI으로 처리하여, 동일한 제한효소로 절단된 pAAV-FIX cis 플라스미드 DNA와 라이게이션시켜, pAAV-AShVEGF-B를 제작하였다. RNA was extracted from HUVEC (Cambrex Bio Science Walkersville, Inc., USA) cells to synthesize cDNA, and 466bp of human VEGF-B isoform antisense cDNA (SEQ ID NO: 4) by RT-PCR method using the following AShVEGF-B primer. (Positions 41-506) were amplified. Amplification fragments restriction enzyme Eco RV and Treatment with Xho I ligated with pAAV-FIX cis plasmid DNA digested with the same restriction enzyme to prepare pAAV-AShVEGF-B.

AShVEGF-B F2 : A GATATC CAGAGTCCCAGCCCGGAACAGA (서열번호 5) AShVEGF-B F2: A GATATC CAGAGTCCCAGCCCGGAACAGA (SEQ ID NO: 5)

EcoRV Eco RV

AShVEGF-B R2 : CC CTCGAG ATGAGCCCTCTGCTCCG (서열번호 6) AShVEGF-B R2: CC CTCGAG ATGAGCCCTCTGCTCCG (SEQ ID NO: 6)

XhoI Xho I

(3) pAAV-AShVEGF-C의 제작 (3) Construction of pAAV-AShVEGF-C

HUVEC 세포로부터 RNA를 추출하여 cDNA를 합성하였으며, 하기 AShVEGF-C 프라이머를 이용하여 RT-PCR 방법으로 383bp의 인간 VEGF-C isoform 안티센스 cDNA(서열번호 7)(536-918 위치)를 증폭하였다. 증폭 단편을 제한효소 KpnI 및 XhoI으로 처리하여, 동일한 제한효소로 절단된 pAAV-FIX cis 플라스미드 DNA와 라이게이션시켜, pAAV-AShVEGF-C를 제작하였다.RNA was extracted from HUVEC cells to synthesize cDNA, and 383bp of human VEGF-C isoform antisense cDNA (SEQ ID NO: 7) (positions 536-918) was amplified by RT-PCR method using the following AShVEGF-C primers. The amplified fragment with restriction enzymes Kpn I and Xho I by treatment with, to the ligated DNA and plasmid pAAV-FIX cis Lai cut with the same restriction enzymes, to prepare the pAAV-AShVEGF-C.

AShVEGF-C F1 : GG GGTACC ACATCTGTAGACGGACACACA (서열번호 8)AShVEGF-C F1: GG GGTACC ACATCTGTAGACGGACACACA (SEQ ID NO: 8)

KpnI Kpn I

AShVEGF-C R3 : CC CTCGAG CTCGACCTCTCGGACGC (서열번호 9)AShVEGF-C R3: CC CTCGAG CTCGACCTCTCGGACGC (SEQ ID NO: 9)

XhoI Xho I

(4) pAAV-AShVEGF-B-IRES-EGFP의 제작(4) Construction of pAAV-AShVEGF-B-IRES-EGFP

pIRES2-EGFP 플라스미드 DNA(Clontech, Cat#6029-1, USA)를 제한효소 XhoI NotI과 klenow 단편으로 처리하여 IRES-EGFP cDNA insert를 준비하였다. 상기 (2)에서 제작된 pAAV-AShVEGF-B 플라스미드 DNA를 제한효소 XhoI 및 BamHI과 klenow 단편으로 처리하여 linearized vector를 준비하였다. 상기 insert DNA와 상기 linearized vector를 혼합하고, T4 DNA ligase를 첨가하여 서브클로닝을 수행하여 pAAV-AShVEGF-B-IRES-EGFP를 제작하였다.pIRES2-EGFP plasmid DNA (Clontech, Cat # 6029-1, USA) restriction enzyme Xho I And IRES-EGFP cDNA insert was prepared by treating with Not I and klenow fragments. PAAV-AShVEGF-B plasmid DNA prepared in the above (2) restriction enzyme Xho I and Linearized vectors were prepared by treatment with Bam HI and klenow fragments. PAAV-AShVEGF-B-IRES-EGFP was prepared by mixing the insert DNA with the linearized vector and subcloning by adding T4 DNA ligase.

(5) pAAV-AShVEGF-AB-IRES-EGFP construct 제작 (5) Construction of pAAV-AShVEGF-AB-IRES-EGFP construct

상기 (1)에서 제작된 pAAV-AShVEGF-A plasmid DNA를 제한효소 KpnI 및 XhoI과 klenow 단편으로 처리하여 AShVEGF-A cDNA insert를 준비하였으며, 상기 (4)에서 제작된 pAAV-AShVEGF-B-IRES-EGFP 플라스미드 DNA를 제한효소 EcoRV로 처리하여 linearized vector를 준비하였다. 상기 insert DNA와 상기 linearized vector를 혼합하고, T4 DNA ligase를 첨가하여 subcloning을 수행하여, pAAV-AShVEGF-AB-IRES-EGFP를 제작하였다.The pAAV-AShVEGF-A plasmid DNA produced in the above (1) restriction enzyme Kpn I and AShVEGF-A cDNA insert was prepared by treating with Xho I and klenow fragments, and a linearized vector was prepared by treating pAAV-AShVEGF-B-IRES-EGFP plasmid DNA prepared in (4) with restriction enzyme Eco RV. PAAV-AShVEGF-AB-IRES-EGFP was prepared by mixing the insert DNA with the linearized vector, subcloning by adding T4 DNA ligase.

상기 제작된 pAAV-AShVEGF-AB-IRES-EGFP의 insert DNA의 방향성을 확인하기 위하여, antisense A의 cDNA의 서열을 이용하여 디자인된 하기 AShVEGF-A F2 프라 이머(서열번호 10)와 antisense B의 cDAN의 서열을 이용하여 디자인된 하기 AShVEGF-B R2 프라이머(서열번호 11)를 이용하여 PCR을 실시하였다.In order to confirm the orientation of the prepared DNA of pAAV-AShVEGF-AB-IRES-EGFP, the following AShVEGF-A F2 primer (SEQ ID NO: 10) designed using the sequence of cDNA of antisense A and cDAN of antisense B PCR was performed using the following AShVEGF-B R2 primer (SEQ ID NO: 11) designed using the sequence of.

AShVEGF-A F2 : GGGGTACCGTCTTGCTCTATCTTTC (서열번호 10)AShVEGF-A F2: GGGGTACCGTCTTGCTCTATCTTTC (SEQ ID NO: 10)

AShVEGF-B R2 ; CCCTCGAGATGAGCCCTCTGCTCCG (서열번호 11)AShVEGF-B R2; CCCTCGAGATGAGCCCTCTGCTCCG (SEQ ID NO: 11)

(6) pAAV-AShVEGF-ABC-IRES-EGFP의 제작(6) Construction of pAAV-AShVEGF-ABC-IRES-EGFP

상기 (3)에서 제작된 pAAV-AShVEGF-C 플라스미드 DNA를 제한효소 KpnI 및 BamHI과 klenow 단편으로 처리하여 AShVEGF-C cDNA insert DNA를 준비하였다. 상기 (5)에서 구축한 pAAV-AShVEGF-AB-IRES-EGFP plasmid DNA를 제한효소 XhoI과 klenow 단편으로 처리하여 linearized vector를 준비하였다. 상기 insert DNA와 상기 linearized vector를 혼합하고, T4 DNA ligase를 첨가하여 subcloning을 수행하여 pAAV-AShVEGF-ABC-IRES-EGFP를 제작하였다 (도 1). The pAAV-AShVEGF-C plasmid DNA prepared in (3) above was treated with restriction enzymes Kpn I and Bam HI and klenow fragments to prepare AShVEGF-C cDNA insert DNA. PAAV-AShVEGF-AB-IRES-EGFP plasmid DNA constructed in (5) above Linearized vectors were prepared by treatment with restriction enzymes Xho I and klenow fragments. The insert DNA was mixed with the linearized vector, and subcloning was performed by adding T4 DNA ligase to prepare pAAV-AShVEGF-ABC-IRES-EGFP (FIG. 1).

(7) pAAV-AShVEGF-ABC의 제작(7) Construction of pAAV-AShVEGF-ABC

상기 (6)에서 제작된 pAAV-AShVEGF-ABC-IRES-EGFP을 제한효소 XbaI 및 XhoI로 처리하여 AShVEGF-ABC 단편을 얻었으며, 상기 AShVEGF-ABC 단편과 동일한 제한효소 XbaI 및 XhoI로 처리한 pAAV-FIX cis 플라스미드를 혼합하고, 라이게이션하여, pAAV-AShVEGF-ABC를 제작하였다 (도 2).PAAV-AShVEGF-ABC-IRES-EGFP prepared in (6) was treated with restriction enzymes Xba I and Xho I to obtain AShVEGF-ABC fragments, and the same restriction enzymes Xba I and Xho I as the AShVEGF-ABC fragments were obtained. The treated pAAV-FIX cis plasmids were mixed and ligated to prepare pAAV-AShVEGF-ABC (FIG. 2).

실시예 2. 유전자치료제로 이용하기 위한 rAAV-AShVEGF-ABC 벡터 구축Example 2 Construction of rAAV-AShVEGF-ABC Vectors for Use as Gene Therapeutics

유전자 치료에 이용되는 재조합 AAV (rAAV) 벡터를 제작하기 위해서는 실시예 1에서 제작된 pAAV 플라스미드 DNA 이외에 AAV rep 부분과 cap 부분을 발현시키는 AAV rep-cap 플라스미드 DNA (pAAV-RC 플라스미드, Stratagene Co., USA)와 아데노바이러스 헬퍼 플라스미드 (pHelper 플라스미드, Stratagene Co., USA)가 필요하다. 상기 세 가지 종류의 플라스미드 DNA를 HEK293 (human embryonic kidney 293; ATCC CRL-1573) 세포에 모두 트랜스팩션시킨 다음, 96시간 배양한 후, HEK293 세포를 모아서 초음파 파쇄하고, 재조합 AAV (rAAV) particle을 CsCl 밀도구배 원심분리를 3번 반복하여, RI (Refractive Index)가 1.37~1.41 g/ml인 부분을 모아 순수하게 분리하여, rAAV-AShVEGF-ABC를 수득하였다.To produce recombinant AAV (rAAV) vector for use in gene therapy of plasmid DNA in addition to Example 1, the pAAV AAV rep-cap plasmid DNA rep AAV (pAAV-RC plasmid expressing part and the cap portion, produced by Stratagene Co., USA) and adenovirus helper plasmids (pHelper plasmid, Stratagene Co., USA). All three kinds of plasmid DNA were transfected into HEK293 (human embryonic kidney 293; ATCC CRL-1573) cells, and then cultured for 96 hours, HEK293 cells were collected and sonicated, and recombinant AAV (rAAV) particles were transformed into CsCl. The density gradient centrifugation was repeated three times, and the portions having RI (Refractive Index) of 1.37 to 1.41 g / ml were collected and separated to obtain rAAV-AShVEGF-ABC.

실시예 3. rAAV-AShVEGF-ABC를 이용한 항암효과 분석(Xenograft 분석)Example 3. Analysis of anticancer effect using rAAV-AShVEGF-ABC (Xenograft analysis)

(1) 실험동물 및 환경조건(1) Experimental animals and environmental conditions

16 ± 0.2 g 체중을 가지는 4주령 수컷 BABL/c nu/nu 마우스(중앙실험동물주식회사, Japan SLC, Inc.)에 인간 폐암세포주 NCI-H460(Human lung cell) (ATCC HTB-177)를 도입하여 고형암 유발모델을 제작한 다음, 이를 이용하여 rAAV-CMV-AShVEGF-ABC의 유전자치료제 효능을 확인하였다. Human lung cancer cell line NCI-H460 (Human lung cell) (ATCC HTB-177) was introduced into four-week-old male BABL / c nu / nu mice (Central Laboratory Animals, Japan SLC, Inc.) weighing 16 ± 0.2 g. After making a solid cancer induction model, the efficacy of rAAV-CMV-AShVEGF-ABC gene therapy was confirmed.

본 실시예에서 사용된 누드마우스는 입수시 일반건강상태에 대해 수의학적 검역을 실시하여, 시험을 실시하는데 적합하고 건강한 개체를 선별하기 위하여 1주일간의 순화기간을 두었다. 본 실험은 온도 23 ± 2℃, 상대습도 55 ± 5%, 환기 횟수 10~12회/hr, 조명시간 12시간(07:00~19:00), 조도 150~ 300Lux로 설정된 동물실험 전용 실험실에서 실시하였다. 사료는 실험동물용 멸균고형사료((주)샘타코바이오코리아)를 자유 섭취시켰으며, 음용수는 멸균 정제된 물을 자유 섭취시켰다.Nude mice used in this example were subjected to veterinary quarantine for general health at the time of acquisition, with a period of 1 week of acclimation to screen healthy individuals suitable for conducting the test. This experiment was conducted in a laboratory dedicated to animal experiments with temperature 23 ± 2 ℃, relative humidity 55 ± 5%, ventilation times 10-12 times / hr, lighting time 12 hours (07: 00 ~ 19: 00), and illuminance 150-300 Lux. Was carried out. Feed was freely ingested sterile solid feed (Samtaco Bio Korea Co., Ltd.) for experimental animals, drinking water was freely ingested sterile purified water.

음용수에 대하여서는 충청북도 보건환경연구소(충북 청주시 송정동 140-50)에 의뢰하여 검사한 결과 시험에 영양을 미치는 요인인 중금속은 수은, 카드늄, 비소 등이 불 검출 되었고 미생물에 있어서는 일반세균, 대장균, 분원성 대장균, 대장균 군 등이 검출되지 않았다 The drinking water was tested by the Chungcheongbuk-do Institute of Health and Environment (140-50 Songjeong-dong, Cheongju-si, Chungcheongbuk-do). Original E. coli, E. coli group was not detected

(2) 실험조건(2) experimental conditions

본 실험에 사용된 BABL/c nu/nu 마우스의 암화과정은 다음과 같다. NCI-H460 cell를 10% FBS와 항생제가 첨가된 RPMI-1640 배지에서 3계대이상 배양한 후 5 x 108 cells/ml의 NCI-H460 cell을 상기 누드마우스의 견부 아래쪽 피하에 주사기(26게이지)를 이용하여 0.2 ml를 주입한 다음, 20일 후에 종양을 적출하여 새로운 개체에 가장자리의 단단한 종양조직을 이용하여 2차 계대를 실시하였다. 14∼16일 후에 종양을 2차 계대와 같은 방법으로 최종 실험에 쓰일 마우스에게 일정크기의 종양절편(3 x 3 x 3 mm)을 잘라서 trocha를 이용하여 3차 이식한 후 종양체적이 200 ∼ 300 mm3이 된 개체를 선별하고 군 분리하여 시험물질을 복강투여하였다.The darkening process of BABL / c nu / nu mice used in this experiment is as follows. After incubating NCI-H460 cells in 10% FBS and antibiotic-added RPMI-1640 medium for 3 passages or more, 5 x 10 8 cells / ml of NCI-H460 cells were injected into the subcutaneous subcutaneous subcutaneous syringe (26 gauge). After 0.2 ml injection, the tumors were extracted 20 days later and subjected to second passage using new solid tumor tissue at the edge. After 14 to 16 days, tumors were cut into 3x3x3 mm tumors (3 x 3 x 3 mm) in the mouse for the final experiment in the same way as the secondary passage. Individuals up to 3 mm in diameter were selected and grouped to test intraperitoneally.

본 실시예에서는 실시예 2에서 제작된 rAAV-AShVEGF-ABC를 1.5 x 1011 virus particles/mouse의 양으로 복강투여방법(intraperitoneal injection)으로 마우스에 투여하였다. 또한 rAAV2 혈청형 벡터 자체에 의한 항암효과가 있다는 보고가 있으므로 rAAV-EGFP를 대조군에 포함시켰다. 본 발명에 따른 rAAV-AShVEGF-ABC 벡터는 5 × 1011 virus particles/ml을 6주령의 수컷 마우스에 0.3 ml(1.5 × 1011 virus particles/mouse)씩 복강투여방법으로 투여하였다. 한편 대조군에서 vehicle로 사용된 HEPES buffer도 복강투여방법으로 투여하였다 (표 1).In this example, rAAV-AShVEGF-ABC prepared in Example 2 was administered to mice by an intraperitoneal injection in the amount of 1.5 x 10 11 virus particles / mouse. In addition, rAAV-EGFP was included in the control group because it has been reported to have anticancer effects by the rAAV2 serotype vector itself. In the rAAV-AShVEGF-ABC vector according to the present invention, 5 × 10 11 virus particles / ml were administered to a 6-week-old male mouse by 0.3 ml (1.5 × 10 11 virus particles / mouse) intraperitoneally. Meanwhile, HEPES buffer used as a vehicle in the control group was also administered by intraperitoneal administration (Table 1).

복강투여방법에 의한 시험군(IP) Test group (IP) by abdominal cavity administration 시험군 (복강투여군)Test group (abdominal administration group) 투여용량 (virus particles/mouse)Dose (virus particles / mouse) 동물수The number of animals 대조군 rAAV-EGFP(대조군) rAAV-AShVEGF-ABCControl rAAV-EGFP (Control) rAAV-AShVEGF-ABC HEPES buffer 1.5 × 1011 1.5 × 1011 HEPES buffer 1.5 × 10 11 1.5 × 10 11 8 8 88 8 8

투여 후 10분, 30분, 1시간, 2시간, 4시간, 12시간까지 생존 확인 및 기타 임상 증상을 관찰하였으며, 그 후 4주간 매일 2회 마우스의 생존 및 이상 유무를 관찰하였다.Survival confirmation and other clinical symptoms were observed until 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 12 hours after administration, and then survival and abnormality of mice were observed twice daily for 4 weeks.

(3) 체중변화 및 종양체적 측정(3) Weight change and tumor volume measurement

모든 동물의 체중을 투여 직전과, 시험물질 투여 후 주 2회 측정하였고, 종양의 체적도 주 2회 버니어 캘리퍼스(Vernier calipers)를 이용하여 4주 동안 측정하였다. 그 결과, 낮은 체중증가율을 보였고, 암 치료효과와 시험동물의 체중변화율과는 상관관계가 없는 것으로 관찰되었다. Body weights of all animals were measured immediately before administration and twice a week after administration of the test substance, and tumor volume was also measured for 4 weeks using Vernier calipers twice a week. As a result, low weight gain rate was observed and there was no correlation between cancer treatment effect and weight change rate of test animals.

한편, 종양체적 변화율을 조사한 결과, HEPES 투여 대조군과 rAAV-EGFP 벡터 투여 대조군은 암 성장율에 거의 차이가 나지 않았으나, rAAV-AShVEGF-ABC 벡터 투여군에서는 상기 대조군에 비해 35% 정도의 암 성장억제 효과를 나타내었다 (도 3). 이 결과로부터 대조군으로 사용한 rAAV2의 경우 혈청형 자체에 의한 항암효과는 거의 없다는 것을 알 수 있었으며, 본 발명에 따른 rAAV-AShVEGF-ABC 벡터가 탁월한 종양억제 효과를 나타낸다는 것을 확인할 수 있었다. On the other hand, as a result of examining the tumor volume change rate, the HEPES control group and the rAAV-EGFP vector control group showed little difference in cancer growth rate, but the rAAV-AShVEGF-ABC vector administration group showed a 35% cancer growth inhibition effect compared to the control group. (FIG. 3). From this result, it can be seen that the rAAV2 used as a control group has almost no anticancer effect by the serotype itself, and it was confirmed that the rAAV-AShVEGF-ABC vector according to the present invention showed excellent tumor suppression effect.

(4) 면역조직화학적 분석 및 조직학적 분석(4) immunohistochemical and histological analysis

종양조직을 포르말린에 고정시킨 후, 파라핀 포매 섹션을 만들어 내피세포의 세포밀도를 측정하기 위해 anti-CD34 항체를 이용하여 면역조직화학(immunohistochemistry) 분석을 수행하였고, H&E 염색으로 tumor nodule 및 각 주요장기(신장, 간장, 심장, 폐장, 비장, 부고환, 고환)에 대한 조직병리학적 분석을 실시하였다 (도 4a 및 4b).After immobilizing the tumor tissue in formalin, immunohistochemistry analysis was performed using anti-CD34 antibody to measure endothelial cell density by making paraffin embedded sections, and tumor nodule and major organs by H & E staining. Histopathological analyzes were performed (kidney, liver, heart, lung, spleen, epididymis, testes) (FIGS. 4A and 4B).

HEPES buffer, rAAV-AShVEGF-ABC 그리고 rAAV-EGFP 투여군 모두에서 간조직(소엽, sinusoid 구조의 변성이나 중심정맥주위성 변화, 담관 및 문맥)의 특이적 변화나 이상 소견은 관찰되지 않았고, 비장조직(피막, 비주, 적색수질, 백색수질, 여포변연대, 혈관 및 림프관) 또한 모두 정상적인 형태를 유지하고 있었으며, 일부 미성숙세포들이 관찰되었으나 유의할 만한 소견으로 보기는 어려웠다. In the HEPES buffer, rAAV-AShVEGF-ABC, and rAAV-EGFP-treated groups, no specific changes or abnormalities of liver tissues (lobules, degeneration of sinusoid structures, perivascular changes, bile ducts and portal vein) were observed. Capillary, nasal, red medulla, white medulla, follicular margin, blood vessels and lymphatic vessels) were also in normal form, and some immature cells were observed, but it was difficult to find significant findings.

신장조직의 상태를 살펴보면 HEPES buffer, rAAV-AShVEGF-ABC 그리고 rAAV-EGFP 투여군 모두에서 근위관, 원위관 및 집합관 상피세포를 포함한 사구체에서의 유의한 병변이 관찰되지 않았으며, 심근세포를 포함한 모든 심장조직에 있어서도 유의할 만한 병적소견은 관찰되지 않았다.In the renal tissue condition, no significant lesions were observed in glomeruli including proximal, distal, and ductal epithelial cells in the HEPES buffer, rAAV-AShVEGF-ABC, and rAAV-EGFP groups. No significant pathological findings were observed in the tissues.

rAAV 벡터가 폐조직에 미치는 영향을 살펴보면, HEPES buffer 투여군의 경우 폐엽이 잘 유지되어 있었고, 폐포 역시 잘 열려져 있었으며, 간질은 미세하게 얇아 넓어져 있었으나, 염증세포의 침윤은 관찰되지 않았다. 이러한 소견은 rAAV-AShVEGF-ABC 및 rAAV-EGFP 투여군에 있어서도 동일하게 관찰되어 시험물질 투여에 의한 유의한 변화는 관찰되지 않았다.In the effect of rAAV vector on lung tissue, lung lobes were well maintained, alveoli were well opened, and epilepsy was thin and wide in the HEPES buffer administration group, but no infiltration of inflammatory cells was observed. These findings were similarly observed in the rAAV-AShVEGF-ABC and rAAV-EGFP administration groups, and no significant change was observed by administration of the test substance.

고환조직 및 부고환조직에 미치는 rAAV 벡터의 영향을 살펴보면, HEPES 버퍼 투여 대조군의 경우 seminiferous tubule, Leydig's cell 등이 잘 정돈된 상태로 존재하고 있었으며, 각각의 tubules에서는 각 단계별 미성숙 정모세포층과 그 위에 다소 성숙한 spermatid, 그리고 또 그 위에 완전히 성숙한 정자세포가 존재하였으며, 기타 조직학적 소견 및 부고환조직 소견에 있어서도 유의할 만한 소견은 관찰되지 않았다. 이러한 소견은 rAAV-AShVEGF-ABC 및 rAAV-EGFP 투여군에 있어서도 동일하게 관찰되어 시험물질 투여에 의한 유의한 변화는 관찰되지 않았다.The effects of rAAV vector on testicular and epididymal tissues showed that seminiferous tubules and Leydig's cells were well-organized in the HEPES buffered control group. Spermatid and fully mature sperm cells were present on it, and no significant findings were observed in other histological and epididymal tissues. These findings were similarly observed in the rAAV-AShVEGF-ABC and rAAV-EGFP administration groups, and no significant change was observed by administration of the test substance.

종양조직에 미치는 rAAV 벡터의 영향을 살펴보면, HEPES buffer를 투여한 대조군의 경우 종양조직의 안쪽 면은 사멸 및 고사된 세포의 분포가 많은 반면, 바깥쪽 면은 살아있는 세포가 다수를 차지하고 있었으며, 이러한 소견은 rAAV-AShVEGF-ABC 및 rAAV-EGFP 투여군에서도 비슷하였다. Regarding the effect of rAAV vector on the tumor tissues, the control group administered with HEPES buffer had a large distribution of dead and dead cells on the inner side of the tumor tissue, whereas the outer side had a large number of living cells. Was similar in the rAAV-AShVEGF-ABC and rAAV-EGFP administration groups.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be.

본 발명은 유전자치료용 VEGF-A 안티센스 cDNA, VEGF-B 안티센스 cDNA 및 VEGF-C 안티센스 cDNA를 함유하는 rAAV 벡터를 제공하는 효과가 있으며, 상기 rAAV 벡터를 함유하는 대장암, 방광암 및/또는 폐암 특이적 유전자치료제를 제공하는 효과가 있다.The present invention has the effect of providing a rAAV vector containing VEGF-A antisense cDNA, VEGF-B antisense cDNA and VEGF-C antisense cDNA for gene therapy, specific for colorectal cancer, bladder cancer and / or lung cancer containing the rAAV vector It has the effect of providing gene gene therapy.

본 발명에 따른, 유전자 치료제는 종양의 증식 및 전이에 필수적인 혈관신생에 관여하는 VEGF의 발현을 효율적으로 억제하여, 종양의 성장을 감소시킴으로서 암을 유전자 차원에서 치료하는데 효과적으로 사용될 수 있다.In accordance with the present invention, gene therapeutic agents can be effectively used to treat cancer at the genetic level by efficiently inhibiting the expression of VEGF involved in angiogenesis essential for tumor proliferation and metastasis, thereby reducing tumor growth.

<110> PARK, Keerang AHN, Mee-Young KIM, Wun-Jae HWANG, Seock-Yeon CHO, Young-Hwa LEE, Heuiran <120> Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A, VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer, Bladder Cancer and/or Lung Cancer Comprising the Same <130> P05-B127 <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 429 <212> DNA <213> Homo sapiens <400> 1 gggcctccga aaccatgaac tttctgctgt cttgggtgca ttggagcctt gccttgctgc 60 tctacctcca ccatgccaag tggtcccagg ctgcacccat ggcagaagga ggagggcaga 120 atcatcacga agtggtgaag ttcatggatg tctatcagcg cagctactgc catccaatcg 180 agaccctggt ggacatcttc caggagtacc ctgatgagat cgagtacatc ttcaagccat 240 cctgtgtgcc cctgatgcga tgcgggggct gctgcaatga cgagggcctg gagtgtgtgc 300 ccactgagga gtccaacatc accatgcaga ttatgcggat caaacctcac caaggccagc 360 acataggaga gatgagcttc ctacagcaca acaaatgtga atgcagacca aagaaagata 420 gagcaagac 429 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ggggtaccgt cttgctctat ctttc 25 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ccctcgaggg cctccgaaac catgaact 28 <210> 4 <211> 406 <212> DNA <213> Homo sapiens <400> 4 atgagccctc tgctccgccg cctgctgctc gccgcactcc tgcagctggc ccccgcccag 60 gcccctgtct cccagcctga tgcccctggc caccagagga aagtggtgtc atggatagat 120 gtgtatactc gcgctacctg ccagccccgg gaggtggtgg tgcccttgac tgtggagctc 180 atgggcaccg tggccaaaca gctggtgccc agctgcgtga ctgtgcagcg ctgtggtggc 240 tgctgccctg acgatggcct ggagtgtgtg cccactgggc agcaccaagt ccggatgcag 300 atcctcatga tccggtaccc gagcagtcag ctgggggaga tgtccctgga agaacacagc 360 cagtgtgaat gcagacctaa ccgttctgtt ccgggctggg actctg 406 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 agatatccag agtcccagcc cggaacaga 29 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ccctcgagat gagccctctg ctccg 25 <210> 7 <211> 383 <212> DNA <213> Homo sapiens <400> 7 ctcgacctct cggacgcgga gcccgacgcg ggcgaggcca cggcttatgc aagcaaagat 60 ctggaggagc agttacggtc tgtgtccagt gtagatgaac tcatgactgt actctaccca 120 gaatattgga aaatgtacaa gtgtcagcta aggaaaggag gctggcaaca taacagagaa 180 caggccaacc tcaactcaag gacagaagag actataaaat ttgctgcagc acattataat 240 acagagatct tgaaaagtat tgataatgag tggagaaaga ctcaatgcat gccacgggag 300 gtgtgtatag atgtggggaa ggagtttgga gtcgcgacaa acaccttctt taaacctcca 360 tgtgtgtccg tctacagatg tgg 383 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggggtaccac atctgtagac ggacacaca 29 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ccctcgagct cgacctctcg gacgc 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ggggtaccgt cttgctctat ctttc 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ccctcgagat gagccctctg ctccg 25 <110> PARK, Keerang          AHN, Mee-Young          KIM, Wun-Jae          HWANG, Seock-Yeon          CHO, Young-Hwa          LEE, Heuiran <120> Recombinant Adeno-associated Virus Comprising Antisense cDNAs of          VEGF-A, VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to          Large Intestine Cancer, Bladder Cancer and / or Lung Cancer          Comprising the Same <130> P05-B127 <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 429 <212> DNA <213> Homo sapiens <400> 1 gggcctccga aaccatgaac tttctgctgt cttgggtgca ttggagcctt gccttgctgc 60 tctacctcca ccatgccaag tggtcccagg ctgcacccat ggcagaagga ggagggcaga 120 atcatcacga agtggtgaag ttcatggatg tctatcagcg cagctactgc catccaatcg 180 agaccctggt ggacatcttc caggagtacc ctgatgagat cgagtacatc ttcaagccat 240 cctgtgtgcc cctgatgcga tgcgggggct gctgcaatga cgagggcctg gagtgtgtgc 300 ccactgagga gtccaacatc accatgcaga ttatgcggat caaacctcac caaggccagc 360 acataggaga gatgagcttc ctacagcaca acaaatgtga atgcagacca aagaaagata 420 gagcaagac 429 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ggggtaccgt cttgctctat ctttc 25 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ccctcgaggg cctccgaaac catgaact 28 <210> 4 <211> 406 <212> DNA <213> Homo sapiens <400> 4 atgagccctc tgctccgccg cctgctgctc gccgcactcc tgcagctggc ccccgcccag 60 gcccctgtct cccagcctga tgcccctggc caccagagga aagtggtgtc atggatagat 120 gtgtatactc gcgctacctg ccagccccgg gaggtggtgg tgcccttgac tgtggagctc 180 atgggcaccg tggccaaaca gctggtgccc agctgcgtga ctgtgcagcg ctgtggtggc 240 tgctgccctg acgatggcct ggagtgtgtg cccactgggc agcaccaagt ccggatgcag 300 atcctcatga tccggtaccc gagcagtcag ctgggggaga tgtccctgga agaacacagc 360 cagtgtgaat gcagacctaa ccgttctgtt ccgggctggg actctg 406 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 agatatccag agtcccagcc cggaacaga 29 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ccctcgagat gagccctctg ctccg 25 <210> 7 <211> 383 <212> DNA <213> Homo sapiens <400> 7 ctcgacctct cggacgcgga gcccgacgcg ggcgaggcca cggcttatgc aagcaaagat 60 ctggaggagc agttacggtc tgtgtccagt gtagatgaac tcatgactgt actctaccca 120 gaatattgga aaatgtacaa gtgtcagcta aggaaaggag gctggcaaca taacagagaa 180 caggccaacc tcaactcaag gacagaagag actataaaat ttgctgcagc acattataat 240 acagagatct tgaaaagtat tgataatgag tggagaaaga ctcaatgcat gccacgggag 300 gtgtgtatag atgtggggaa ggagtttgga gtcgcgacaa acaccttctt taaacctcca 360 tgtgtgtccg tctacagatg tgg 383 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggggtaccac atctgtagac ggacacaca 29 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ccctcgagct cgacctctcg gacgc 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ggggtaccgt cttgctctat ctttc 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ccctcgagat gagccctctg ctccg 25  

Claims (3)

서열번호 1의 VEGF-A 안티센스 cDNA, 서열번호 4의 VEGF-B 안티센스 cDNA 및 서열번호 7의 VEGF-C 안티센스 cDNA를 함유하는 rAAV 벡터RAAV vector containing VEGF-A antisense cDNA of SEQ ID NO: 1, VEGF-B antisense cDNA of SEQ ID NO: 4 and VEGF-C antisense cDNA of SEQ ID NO: 7 제1항에 있어서, 다음의 단계를 거쳐 제조되는 것을 특징으로 하는 rAAV 벡터:The rAAV vector of claim 1, wherein the rAAV vector is prepared by the following steps: (a) 서열번호 1의 VEGF-A 안티센스 cDNA, 서열번호 4의 VEGF-B 안티센스 cDNA 및 서열번호 7의 VEGF-C 안티센스 cDNA를 함유하는 pAAV 벡터, AAV rep-cap 플라스미드 DNA 및 아데노바이러스 헬퍼 플라스미드를 동물세포주에 트랜스펙션하는 단계;(a) a pAAV vector containing the VEGF-A antisense cDNA of SEQ ID NO: 1, the VEGF-B antisense cDNA of SEQ ID NO: 4 and the VEGF-C antisense cDNA of SEQ ID NO: 7, an AAV rep-cap plasmid DNA and an adenovirus helper plasmid Transfecting the animal cell line; (b) 상기 트랜스펙션된 동물세포주를 배양하는 단계; 및(b) culturing the transfected animal cell line; And (c) 상기 배양된 세포주를 파쇄한 다음, 재조합 rAAV 입자를 분리·정제하는 단계.(c) crushing the cultured cell line, and then separating and purifying the recombinant rAAV particles. 제1항 또는 제2항의 rAAV 벡터를 포함하는 대장암, 방광암 및/또는 폐암-특이적 유전자 치료제.A colorectal cancer, bladder cancer and / or lung cancer-specific gene therapy comprising the rAAV vector of claim 1.
KR1020050068427A 2005-07-27 2005-07-27 - / Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer Bladder Cancer and/or Lung Cancer Comprising the Same KR100697321B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050068427A KR100697321B1 (en) 2005-07-27 2005-07-27 - / Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer Bladder Cancer and/or Lung Cancer Comprising the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050068427A KR100697321B1 (en) 2005-07-27 2005-07-27 - / Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer Bladder Cancer and/or Lung Cancer Comprising the Same

Publications (2)

Publication Number Publication Date
KR20070013802A true KR20070013802A (en) 2007-01-31
KR100697321B1 KR100697321B1 (en) 2007-03-20

Family

ID=38013453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050068427A KR100697321B1 (en) 2005-07-27 2005-07-27 - / Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer Bladder Cancer and/or Lung Cancer Comprising the Same

Country Status (1)

Country Link
KR (1) KR100697321B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096303A (en) 1997-07-31 2000-08-01 Medical College Of Georgia Research Institute, Inc. Method to enhance treatment of cystic tumors
EP1173564A1 (en) * 1999-04-26 2002-01-23 Aventis Pharma S.A. Use of a recombinant defective adenovirus comprising a nucleic acid encoding an angiogenic factor for treating pulmonary hypertension
JP2004527462A (en) 2000-11-01 2004-09-09 ルードヴィッヒ インスティテュート フォー キャンサー リサーチ INVIVO stimulation of angiogenic activity
US20040214766A1 (en) 2001-10-01 2004-10-28 Kari Alitalo VEGF-C or VEGF-D materials and methods for treatment of neuropathologies
KR20060005163A (en) * 2004-07-12 2006-01-17 충청북도 Colon cancer and/or lung cancer-specific gene therapeutic agent comprising vegf-a antisense cdna and adeno-associated virus

Also Published As

Publication number Publication date
KR100697321B1 (en) 2007-03-20

Similar Documents

Publication Publication Date Title
Tolstoshey Gene therapy, concepts, current trials and future directions
Conrad et al. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1–induced differentiation to target cancer angiogenesis
KR102252423B1 (en) Tumor-targeting trans-splicing ribozyme and use thereof
JP4800544B2 (en) Systemic gene delivery vehicle for tumor therapy
KR100723009B1 (en) A pharmaceutical composition for treating malignant tumors containing human p31 genes
US20110178282A1 (en) Methods and compositions for cancer therapy using a novel adenovirus
KR100563099B1 (en) - / Recombinant Adeno-associated Virus Comprising VEGFR Truncated Soluble cDNA and Gene Therapeutic Agent Specific to Large Intestine Cancer Bladder Cancer and/or Lung Cancer Comprising the Same
KR100697321B1 (en) - / Recombinant Adeno-associated Virus Comprising Antisense cDNAs of VEGF-A VEGF-B and VEGF-C and Gene Therapeutic Agent Specific to Large Intestine Cancer Bladder Cancer and/or Lung Cancer Comprising the Same
KR102169798B1 (en) Mesenchymal stem cell line capable of adenoviral infection and replication
KR100772424B1 (en) - - Gene Therapeutic Agent of Cancer Comprising Recombinant Adeno-associated Virus Containing Antisense cDNAs of VEGF-A VEGF-B and VEGF-C and Recombinant Adeno-associated Virus Containing VEGFR truncated soluble cDNA
KR100732248B1 (en) - / Recombinant Adeno-associated Virus Comprising VEGF Antisense cDNA and Gene Therapeutic Agent Specific to Large Intestine Cancer and/or Lung Cancer Comprising the Same
US20090221675A1 (en) Use of iex-1 for the treatment of glioma tumors
KR100737286B1 (en) - - Recombinant Adeno-associated Virus Containing VEGFR Truncated cDNA and Gene Therapeutic Agent for Cancer Comprising the Same
Ardelt et al. Molecular aspects of bladder cancer IV: gene therapy of bladder cancer
KR20060005163A (en) Colon cancer and/or lung cancer-specific gene therapeutic agent comprising vegf-a antisense cdna and adeno-associated virus
Wang et al. Gene therapy of adeno‐associated virus (AAV) vectors in preclinical models of ischemic stroke
WO2007013704A1 (en) Recombinant adeno-associated virus comprising antisense cdnas of vegf-a, vegf-b and vegf-c and gene therapeutic agent specific to large intestine cancer, bladder cancer and/or lung cancer comprising the same
CA2355228A1 (en) Bone sialoprotein based toxic gene therapy for the treatment of calcified tumors and tissues
Pan et al. The latest advances of experimental research on targeted gene therapy for prostate cancer
KR20230095460A (en) Mesenchymal stem cells overexpressing sFlt-1 having treating malignant melanoma and use thereof
Carroll et al. Gene therapy for liver tumors
JP2024502044A (en) Sense suppressor transfer RNA compositions and related uses and functions
KR20230030063A (en) Cancer therapeutic combination comprising a tumor-targeting trans-splicing ribozyme and a kinase inhibitor
CN101368187A (en) Recombinant human FUS1 and human IL-12 dual-gene expression carrier, liposome complexes, preparation method and application thereof
CN115651932A (en) Construction method and application of targeted digestive tract tumor dual-targeted oncolytic adenovirus

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100219

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee