KR20070012098A - Capacitor embeddied ltcc multilayer boards - Google Patents

Capacitor embeddied ltcc multilayer boards Download PDF

Info

Publication number
KR20070012098A
KR20070012098A KR1020050066937A KR20050066937A KR20070012098A KR 20070012098 A KR20070012098 A KR 20070012098A KR 1020050066937 A KR1020050066937 A KR 1020050066937A KR 20050066937 A KR20050066937 A KR 20050066937A KR 20070012098 A KR20070012098 A KR 20070012098A
Authority
KR
South Korea
Prior art keywords
dielectric constant
capacitor
low
high dielectric
region
Prior art date
Application number
KR1020050066937A
Other languages
Korean (ko)
Inventor
박윤휘
이택정
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020050066937A priority Critical patent/KR20070012098A/en
Publication of KR20070012098A publication Critical patent/KR20070012098A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

An LTCC(low temperature co-fired ceramic) stack board is provided to solve a signal leakage problem caused by connection of a high dielectric layer and a signal line by embodying a built-in capacitor while using at least one layer with a high dielectric constant as a dielectric layer and by forming a window region greater than the diameter of a conductive via hole in a specific region of the high dielectric layer used as the built-in capacitor. A predetermined circuit pattern and a conductive via hole are formed in a plurality of low dielectric layers(11) made of a low-dielectric ceramic material. A high dielectric layer(12) is interposed between the plurality of low dielectric layers, including a capacitor region and a non-capacitor region. First and second electrodes(13a,13b) are formed on the upper and the lower surfaces of the capacitor region, and at least one open window region is formed in the non-capacitor region. A conductive via hole is formed in two low-dielectric layers adjacent to the high dielectric layer among the plurality of low dielectric layers has a smaller diameter than that of the window region, interconnected by the window region. A buffer layer(19a,19b) is formed on the first and the second electrodes to prevent the constitution elements of the high dielectric layer from being diffused to the adjacent low-dielectric layers through the first and the second electrodes.

Description

캐패시터 내장형 저온동시소성세라믹 적층기판{CAPACITOR EMBEDDIED LTCC MULTILAYER BOARDS}CAPACITOR EMBEDDIED LTCC MULTILAYER BOARDS Built-in Capacitor

도1은 종래의 적층형 캐패시터 어레이를 나타내는 단면도이다. 1 is a cross-sectional view showing a conventional stacked capacitor array.

도2a 및 도2b는 각각 본 발명의 일 실시형태에 따른 캐패시터 내장형 저온동시소성 세라믹(LTCC) 적층기판을 나타내는 분해사시도 및 캐패시터층의 상부평면도이다.2A and 2B are an exploded perspective view and a top plan view of a capacitor layer showing a capacitor-embedded low temperature co-fired ceramic (LTCC) laminated substrate according to an embodiment of the present invention, respectively.

도3은 도2a에 도시된 캐패시터 내장형 LTCC 적층기판을 나타내는 단면도이다.3 is a cross-sectional view illustrating a capacitor-embedded LTCC laminated substrate shown in FIG. 2A.

도4는 종래의 적층형 캐패시터 어레이와 본 발명에 따른 캐패시터 내장형 LTCC 적층기판의 유효임피던스 밴드폭을 나타내는 그래프이다.4 is a graph showing an effective impedance bandwidth of a conventional multilayer capacitor array and a LTCC laminated substrate with a capacitor according to the present invention.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

11a,11b,11c,11d,11e: 저유전율층 12: 고유전율층11a, 11b, 11c, 11d, and 11e: low dielectric constant layer 12: high dielectric constant layer

13a,13b: 제1 및 제2 전극 19a,19b: 버퍼층13a, 13b: first and second electrodes 19a, 19b: buffer layer

20: 저온동시소성 세라믹기판20: low temperature simultaneous firing ceramic substrate

본 발명은 반도체 패키지기판으로 사용되는 저온동시소성세라믹 적층기판에 관한 것으로서, 보다 상세하게는 고유전율층을 이용한 캐패시터가 내장된 저온동시소성세라믹 적층기판에 관한 것이다.The present invention relates to a low temperature co-fired ceramic laminated substrate used as a semiconductor package substrate, and more particularly, to a low temperature co-fired ceramic laminated substrate having a capacitor using a high dielectric constant layer.

일반적으로, 무선통신단말기에 WLAN, 블루투스, DMB, 카메라 등과 같은 부가기능이 적용됨에 따라, 각 단의 모듈화가 급속히 진행되고 있다. 한편, 컴퓨터의 중앙처리장치(CPU) 등의 디지털 집적회로의 클럭속도(clock rate)가 증가하고 있다. 이러한 경향에서 전원 노이즈 및 결합 노이즈의 제거가 크게 요구되므로, 디커플링 캐패시터(decoupling capacitor)가 사용된다.In general, as additional functions such as WLAN, Bluetooth, DMB, camera, etc. are applied to the wireless communication terminal, modularization of each terminal is rapidly progressing. On the other hand, the clock rate of digital integrated circuits such as a central processing unit (CPU) of a computer is increasing. In this tendency, the elimination of power supply noise and coupling noise is greatly required, so a decoupling capacitor is used.

통상적으로 디커플링 캐패시터로서 적층형 칩 캐패시터(MLCC)가 사용된다. 하지만, 이러한 디커플링 캐패시터는 하나의 전자제품에 수십개정도가 실장되므로, 모듈 크기에 축소하는데 어려움이 있다. 또한, 전원단의 거리에 따라 추가적으로 기생 인덕턴스가 증가한다는 문제가 있다.Typically a stacked chip capacitor (MLCC) is used as the decoupling capacitor. However, since dozens of such decoupling capacitors are mounted in one electronic product, it is difficult to reduce the module size. In addition, there is a problem that the parasitic inductance is further increased according to the distance of the power stage.

이러한 문제를 해결하기 위한 종래의 방안으로서, 대한민국특허공개공보 2001-0066819호(2001.07.11, 출원인:가부시키가이샤 무라타 세이사쿠쇼 무라타 야스타카)에서는 도1에 도시된 적층형 캐패시터 어레이(10)를 제시하고 있다. As a conventional method for solving such a problem, Korean Patent Laid-Open Publication No. 2001-0066819 (July 11, 2001, Applicant: Murata Seisakusho Murata Yastaka) uses the stacked capacitor array 10 shown in FIG. Suggesting.

도1을 참조하면, 전원공급라인과 접지라인이 구비된 모기판(1)과, 상기 모기판(1)상에 실장된 배선기판(3)과, 상기 배선기판(3) 하부에 장착된 적층형 캐패시터(2)를 포함하며, 상기 배선기판(3)은 도전성 비아홀(4)과 회로패턴(5)을 구성된 신호라인을 포함하며, 상기 배선기판(3) 상에는 마이크로 프로세싱 유닛(MPU)칩(5)이 탑재된다.Referring to FIG. 1, a mother board 1 having a power supply line and a ground line, a wiring board 3 mounted on the mother board 1, and a stacked type mounted below the wiring board 3. And a capacitor (2), wherein the wiring board (3) comprises a signal line formed of a conductive via hole (4) and a circuit pattern (5), and on the wiring board (3) a microprocessing unit (MPU) chip (5). ) Is mounted.

도1에 도시된 적층형 캐패시터(2)는 상면에 제1 및 제2 전극이 모두 형성된 구조를 가지며, 상기 배선기판(3) 하면에 마련된 캐비티영역(C)에 실장되어 MPU칩(5)과 모기판(1)의 전원공급라인과 접지라인 사이의 신호라인에서 연결될 수 있다. The stacked capacitor 2 shown in FIG. 1 has a structure in which both first and second electrodes are formed on an upper surface thereof, and is mounted in a cavity region C provided on a lower surface of the wiring board 3 to form an MPU chip 5 and a mosquito. It can be connected in the signal line between the power supply line and the ground line of the plate (1).

이러한 구조에 따르면, 비교적 신호라인을 단축시킬 수 있으므로, 인덕턴스발생을 감소시키는 동시에, 배선기판 내부에 실장되므로 소형된 모듈로 구현될 수 있다.According to this structure, the signal line can be relatively shortened, thereby reducing inductance and mounted in the wiring board, and thus can be implemented in a compact module.

하지만, 신호라인은 배선기판(3)에서 MLCC(2)와의 연결을 위한 신호라인은 복잡한 구성을 가지므로, 그로 인한 인덕턴스발생을 불가피할 뿐만 아니라, 개별소자형태의 MLCC(2)를 사용하므로, MLCC(2) 자체의 ESL도 갖게 되는 불이익한 점이 있다.However, since the signal line for the connection with the MLCC (2) in the wiring board 3 has a complicated configuration, not only the inductance caused by it, but also because the MLCC (2) in the form of individual elements are used, There is a disadvantage in that the MLCC 2 itself also has an ESL.

본 발명은 상기한 기술적 과제를 해결하기 위한 것으로서, 그 목적은 적어도 하나의 층을 고유전율을 갖는 유전체층으로 형성하여 내장형 캐패시터를 구현한 저온동시소성세라믹 적층기판를 제공하는데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above technical problem, and an object thereof is to provide a low temperature co-fired ceramic laminated substrate in which at least one layer is formed of a dielectric layer having a high dielectric constant to implement an embedded capacitor.

상기한 기술적 과제를 해결하기 위해서, 본 발명은In order to solve the above technical problem, the present invention

소정의 회로패턴과 도전성 비아홀이 형성되며, 저유전율 세라믹물질로 이루어진 복수개의 저유전율층과, 상기 복수개의 저유전율층 사이에 삽입되고, 제1 및 제2 전극이 상하면에 형성된 캐패시터영역과 개방된 적어도 하나의 윈도우영역이 형성된 비캐패시터영역으로 이루어진 고유전율층을 포함하며, 상기 복수개의 저유전율층 중 상기 고유전율층과 인접한 2개의 저유전율층에 형성된 도전성 비아홀은 상기 윈도우영역의 직경보다 작은 직경을 가지며, 상기 윈도우영역을 통해 서로 연결된 것을 특징으로 하는 캐패시터 내장형 저온동시소성세라믹 적층기판을 제공한다. A predetermined circuit pattern and a conductive via hole are formed, interposed between a plurality of low dielectric constant layers made of a low dielectric constant ceramic material and the plurality of low dielectric constant layers, and the first and second electrodes having a capacitor region formed on upper and lower surfaces thereof. And a high dielectric constant layer including a non-capacitor region having at least one window region, wherein conductive via holes formed in two low dielectric constant layers adjacent to the high dielectric constant layer among the plurality of low dielectric constant layers are smaller than the diameter of the window region. It has a low-temperature co-fired ceramic laminated substrate with a capacitor, characterized in that connected to each other through the window area.

바람직하게는, 상기 고유전율층의 구성원소가 상기 제1 및 제2 전극을 통해 상기 인접한 저유전율층으로 확산되는 것을 방지하기 위해서, 상기 제1 및 제2 전극 상에 형성된 버퍼층을 더 포함한다.Preferably, the method further includes a buffer layer formed on the first and second electrodes in order to prevent the elements of the high dielectric constant layer from diffusing to the adjacent low dielectric constant layers through the first and second electrodes.

이러한 버퍼층은 각각 10㎛이하인 것이 바람직하며, 또한, 충분한 확산방지효과를 위해서 5㎛이상의 두께로 형성하는 것이 바람직하다.Each of these buffer layers is preferably 10 mu m or less, and is preferably formed to a thickness of 5 mu m or more for sufficient diffusion prevention effect.

바람직하게, 상기 고유전율층은 BaTiO3일 수 있으며, 이 경우에, 상기 버퍼층은 BaTiO3일 수 있다.Preferably, the high dielectric constant layer may be BaTiO 3 , in this case, the buffer layer may be BaTiO 3 .

이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described the present invention in more detail.

도2a는 본 발명의 일 실시형태에 따른 캐패시터 내장형 저온동시소성 세라믹 (LTCC) 적층기판을 나타내는 분해사시도이다.FIG. 2A is an exploded perspective view showing a capacitor-embedded low temperature co-fired ceramic (LTCC) laminated substrate according to an embodiment of the present invention. FIG.

도2a를 참조하면, 패키지기판용 저온동시소성 세라믹기판은 저유전율 세라믹물질로 이루어진 제1 내지 제5 저유전율층(11a,11b,11c,11d,11e)과, 상기 제3 및 제4 저유전율층(11c,11d) 사이에 삽입된 고유전율층(12)을 포함한다. Referring to FIG. 2A, a low temperature co-fired ceramic substrate for a package substrate includes first to fifth low dielectric constant layers 11a, 11b, 11c, 11d, and 11e made of a low dielectric constant ceramic material, and the third and fourth low dielectric constants. A high dielectric constant layer 12 interposed between the layers 11c and 11d.

상기 제1 내지 제5 저유전율층(11a,11b,11c,11d,11e)은 소정의 회로패턴(14,17a,17b)과 도전성 비아홀(15,16,18)이 형성되며, 상기 제1 저유전율층(11a)에 형성된 회로패턴(14)의 일부는 반도체 칩을 실장하기 위한 도전패턴으로 제공될 수 있다.The first to fifth low dielectric constant layers 11a, 11b, 11c, 11d, and 11e have predetermined circuit patterns 14, 17a, and 17b and conductive via holes 15, 16, and 18, respectively. A portion of the circuit pattern 14 formed on the dielectric constant layer 11a may be provided as a conductive pattern for mounting a semiconductor chip.

상기 제1 및 제5 저유전율층(11a,11b,11c,11d,11e)은 통상의 LTCC기판에 사용되는 낮은 유전율을 갖는 세라믹기판이며, 상기 고유전율층(12)은 강유전성 재료로서 BaTiO3와 같은 세라믹으로 이루어질 수 있다. 바람직하게, 상기 고유전율층(12)은 10∼30㎛의 두께로 형성될 수 있다. The first and fifth low dielectric constant layers 11a, 11b, 11c, 11d, and 11e are ceramic substrates having a low dielectric constant used in a conventional LTCC substrate, and the high dielectric constant layer 12 is formed of BaTiO 3 and ferroelectric materials. It may be made of the same ceramic. Preferably, the high dielectric constant layer 12 may be formed to a thickness of 10 to 30㎛.

상기 고유전율층(12)은 도2b에 도시된 바와 같이 캐패시터영역(12b)과 비캐패시터영역(12a)으로 구분될 수 있다. 상기 캐패시터영역(12b)의 상하면에는 각각 제1 및 제2 전극(13a,13b)이 형성되어, 캐패시터로 작용할 수 있다. 상기 제1 및 제2 전극(13a,13b)은 인접한 제3 및 제4 저유전율층(11c,11d)의 도전성 비아홀(16a,16b)과 연결된다.The high dielectric constant layer 12 may be divided into a capacitor region 12b and a non-capacitor region 12a as shown in FIG. 2B. First and second electrodes 13a and 13b are formed on the upper and lower surfaces of the capacitor region 12b, respectively, to act as capacitors. The first and second electrodes 13a and 13b are connected to the conductive via holes 16a and 16b of the adjacent third and fourth low dielectric constant layers 11c and 11d.

바람직하게, 상기 캐패시터영역(12b)에 형성된 제1 및 제2 전극(13a,13b)과 상기 제3 및 제4 저유전율층(11c,11d) 사이에는 각각 버퍼층(19a,19b)이 채용될 수 있다. 일반적으로 사용되는 강유전성 물질을 다른 인접한 층으로 특정원소가 확산되어 신뢰성을 저하될 수 있다. 예를 들어, BaTiO3로 이루어진 고유전율층은 제1 및 제2 전극(13a,13b)을 통해 Ba원소가 확산되어 신뢰성을 크게 저하시킬 수 있다. 이러한 불이익한 확산을 방지하기 위해서, 버퍼층(19a,19b)이 도입된다. 상기 고유전율층이 BaTiO3인 경우에, 상기 버퍼층(19a,19b)은 이와 동일한 BaTiO3인 것이 바람직하다. 본 발명에 채용된 버퍼층(19a,19b)은 각각 10㎛이하인 것이 바람직하며, 또한, 충분한 확산방지효과를 위해서 5㎛이상의 두께로 형성하는 것이 바람직하다.Preferably, buffer layers 19a and 19b may be employed between the first and second electrodes 13a and 13b and the third and fourth low dielectric constant layers 11c and 11d respectively formed in the capacitor region 12b. have. Ferroelectric materials, which are generally used, can diffuse certain elements into other adjacent layers, reducing reliability. For example, in the high dielectric constant layer made of BaTiO 3 , Ba elements may be diffused through the first and second electrodes 13a and 13b to greatly reduce reliability. In order to prevent such an undesired diffusion, buffer layers 19a and 19b are introduced. In the case where the high dielectric constant layer is BaTiO 3 , the buffer layers 19a and 19b are preferably BaTiO 3 . The buffer layers 19a and 19b employed in the present invention are preferably 10 mu m or less, respectively, and preferably formed in a thickness of 5 mu m or more for sufficient diffusion preventing effect.

또한, 상기 고유전율층(12)은 제3 및 제4 저유전율층(11c,11d)의 신호라인(특히, 도전성 비아홀(16a,16b))을 연결하기 위해서 비캐패시터영역(12a)을 포함한다. 일반적으로, 고유전율층(12)은 신호누설이 크게 발생하므로, 신호라인과 직접 연결되지 않는 것이 요구된다. 이를 위해서, 상기 비캐패시터영역(12a)에는 개방된 형태의 적어도 하나의 윈도우영역(W)을 형성한다. 또한, 상기 윈도우영역(W)은 그 윈도우영역(W)을 통과하는 도전성 비아홀(16)의 직경(d1)보다 큰 직경(d2)을 갖도록 형성된다. In addition, the high dielectric constant layer 12 includes a non-capacitor region 12a for connecting signal lines (particularly, conductive via holes 16a and 16b) of the third and fourth low dielectric constant layers 11c and 11d. . In general, since the signal leakage occurs in the high dielectric constant layer 12, it is required not to be directly connected to the signal line. To this end, at least one window region W having an open shape is formed in the non-capacitor region 12a. In addition, the window region W is formed to have a diameter d2 larger than the diameter d1 of the conductive via hole 16 passing through the window region W. FIG.

한편, 상기 고유전율층(12)과 인접한 제3 및 제4 저유전율층(11c,11d)에 형성된 도전성 비아홀 중 비캐패시터영역을 관통하는 도전성 비아홀(16a,16b)은 그 충전물질이 윈도우영역(W)을 향해 일부 돌출되도록 형성한다. 결과적으로, 적층가압과정에서 제3 및 제4 저유전율층(11c,11d)의 도전성 비아홀부분(16a,16b)은 고유전율층과 직접 접속되지 않은 채로 상기 윈도우영역(W)을 통해 직접 연결될 수 있다.Meanwhile, among the conductive via holes formed in the third and fourth low dielectric constant layers 11c and 11d adjacent to the high dielectric constant layer 12, the conductive via holes 16a and 16b that pass through the non-capacitor region are filled with a window region ( It forms so that it may partially protrude toward W). As a result, the conductive via hole portions 16a and 16b of the third and fourth low dielectric constant layers 11c and 11d may be directly connected through the window region W without being directly connected to the high dielectric constant layers in the stack pressing process. have.

당업자에게는 자명한 바와 같이, 도2a에 도시된 실시형태에서 5개의 저유전율층이 예시되어 있으나, 이에 한정되지 않는다. 또한, 상기 고유전율층은 제3 및 제4 저유전율층이 아닌 다른 위치에 삽입될 수도 있다. As will be apparent to those skilled in the art, five low dielectric constant layers are illustrated in the embodiment shown in FIG. 2A, but are not limited thereto. In addition, the high dielectric constant layer may be inserted at a position other than the third and fourth low dielectric constant layers.

도3은 도2a에 도시된 캐패시터 내장형 LTCC 적층기판(20)을 나타내는 단면도이다.3 is a cross-sectional view showing the capacitor-embedded LTCC laminated substrate 20 shown in FIG. 2A.

도3에 도시된 바와 같이, 패키지기판용 저온동시소성 세라믹기판(20)은 소정의 회로패턴(14,17a,17b)과 도전성 비아홀(15,16,18)이 형성된 제1 내지 제5 저유전율층(11a,11b,11c,11d,11e)과, 상기 제3 및 제4 저유전율층(11c,11d) 사이에 삽입된 고유전율층(12)을 포함한다. 상기 제1 저유전율층(11a)에 형성된 회로패턴(14)에는 반도체 칩(21,25)이 실장될 수 있다.As shown in FIG. 3, the low temperature cofired ceramic substrate 20 for a package substrate includes first to fifth low dielectric constants having predetermined circuit patterns 14, 17a, and 17b and conductive via holes 15, 16, and 18. And a high dielectric constant layer 12 interposed between the layers 11a, 11b, 11c, 11d and 11e and the third and fourth low dielectric constant layers 11c and 11d. The semiconductor chips 21 and 25 may be mounted on the circuit pattern 14 formed on the first low dielectric constant layer 11a.

한편, 도2a에 도시된 바와 같이, 상기 고유전율층(12)의 비캐패시터영역을 통과하도록 형성된 제3 및 제4 저유전율층(11c,11d)에 형성된 도전성 비아홀부분(16a,16b)은 비아홀의 직경보다 큰 직경을 갖는 윈도우영역(W)을 향해 일부 돌출되 도록 형성되므로, 적층가압과정에서 도3에 도시된 바와 같이, 상기 고유전율층(12)을 관통하는 도전성 비아홀은 고유전율층(12)에 접촉되지 않으면서, 상기 윈도우영역(W)을 통해 직접 연결될 수 있다. Meanwhile, as shown in FIG. 2A, the conductive via hole portions 16a and 16b formed in the third and fourth low dielectric constant layers 11c and 11d formed to pass through the non-capacitor region of the high dielectric constant layer 12 are via holes. Since it is formed to partially protrude toward the window area W having a diameter larger than the diameter of the, as shown in FIG. 3 during the stack pressing process, the conductive via hole penetrating through the high dielectric constant layer 12 is a high dielectric constant layer ( It may be directly connected through the window area W without being in contact with 12).

이로써, 고유전율층과의 신호라인 접속을 방지함으로써, 고유전율층으로 인한 신호누설문제를 해결할 수 있다. As a result, signal leakage due to the high dielectric constant layer can be solved by preventing signal lines from being connected to the high dielectric constant layer.

도4는 종래의 적층형 캐패시터 어레이와 본 발명에 따른 캐패시터 내장형 LTCC 적층기판의 유효임피던스 밴드폭을 나타내는 그래프이다.4 is a graph showing an effective impedance bandwidth of a conventional multilayer capacitor array and a LTCC laminated substrate with a capacitor according to the present invention.

종래예로서, 도1에서 설명된 종래의 방식으로, 0.6 × 0.5㎜사이즈를 갖는 47㎋용량의 MLCC를 제품을 이용하였다. As a conventional example, in the conventional manner described in Fig. 1, a 47 kHz capacity MLCC having a size of 0.6 × 0.5 mm was used.

본 발명에 따라 도3에 도시된 구조와 같이, 캐패시터 내장형 LTCC기판을 제조하였다. 내장형 캐패시터는 유사한 정전용량을 갖도록 설계하였다. 캐패시터용 상하부전극패턴의 크기는 12 × 12㎜로 제조하고 고유전율층으로는 0.2㎜의 BaTiO3막을 이용하였다. 실측한 정전용량값은 49.5㎋로서 종래예의 MLCC와 유사한 정전용량값을 갖는 것으로 확인되었다. According to the present invention, as shown in FIG. 3, a capacitor-embedded LTCC substrate was manufactured. Internal capacitors are designed to have similar capacitances. The size of the upper and lower electrode patterns for the capacitor was 12 × 12 mm and a BaTiO 3 film having a thickness of 0.2 mm was used as the high dielectric constant layer. The measured capacitance value was 49.5 kV and it was confirmed to have a capacitance value similar to that of the conventional MLCC.

이어, 종래예와 발명예에 대한 각 캐패시터의 유효임피던스 밴드폭을 측정하였다.Subsequently, the effective impedance bandwidth of each capacitor for the conventional example and the invention example was measured.

그 결과, 종래예의 유효임피던스 밴드폭에 비해, 본 발명에 따른 캐패시터 내장형 LTCC기판(b)은 3∼4배 큰 유효임피던스 밴드폭을 갖는 것으로 나타났다. 또한, ESL 측정한 결과, 종래예는 0.46nH로 측정된 반면에, 본 발명에 따른 캐패시터는 약 0.17nH로 3배이상 감소된 것을 확인할 수 있었다.As a result, compared with the effective impedance bandwidth of the conventional example, the capacitor-embedded LTCC substrate (b) was found to have an effective impedance bandwidth of 3 to 4 times larger. In addition, as a result of the ESL measurement, the conventional example was measured to 0.46nH, while the capacitor according to the present invention was confirmed to be reduced by more than three times to about 0.17nH.

이러한 결과는, 본 발명에서 캐패시터를 고유전율층을 이용하여 구현함으로써 기생임피던스 효과를 획기적으로 감소시킨 사실에 기인하는 것으로 예상할 수 있다. 또한, 고유전율층에 의한 신호누설도 거의 발생되지 않음을 확인할 수 있다. These results can be expected to be due to the fact that the parasitic impedance effect is greatly reduced by implementing the capacitor using a high dielectric constant layer in the present invention. In addition, it can be confirmed that the signal leakage by the high dielectric constant layer is hardly generated.

이와 같이, 유효임피던스 대역폭의 증가는, 동일한 용량의 캐패시터를 적게 사용할 수 있다는 것을 의미하므로, 모듈 사이즈를 보다 용이하게 축소화시킬 수 있다.In this way, the increase in the effective impedance bandwidth means that fewer capacitors of the same capacity can be used, so that the module size can be more easily reduced.

상술한 실시형태 및 첨부된 도면은 바람직한 실시형태의 예시에 불과하며, 본 발명은 첨부된 청구범위에 의해 한정하고자 한다. 또한, 본 발명은 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.The above-described embodiments and the accompanying drawings are merely illustrative of preferred embodiments, and the present invention is intended to be limited by the appended claims. In addition, it will be apparent to those skilled in the art that the present invention may be substituted, modified, and changed in various forms without departing from the technical spirit of the present invention described in the claims.

상술한 바와 같이, 본 발명에 따르면, 적어도 하나의 층을 고유전율을 갖는 유전체층으로 형성하여 내장형 캐패시터를 구현하는 동시에, 내장형 캐패시터로 사용되는 고유전율층의 특정영역에 도전성 비아홀의 직경보다 큰 윈도우영역을 제공 함으로써, 고유전율층과 신호라인(즉, 도전성 비아홀)의 접속으로 인한 신호누설문제를 해결하는 동시에, 기생인덕턴스를 감소시켜 큰 유효임피던스 대역폭을 갖는 캐패시터 내장형 패키지기판을 제공할 수 있다.As described above, according to the present invention, at least one layer is formed of a dielectric layer having a high dielectric constant to implement an embedded capacitor, and at the same time, a window area larger than the diameter of the conductive via hole in a specific region of the high dielectric constant layer used as the embedded capacitor. The present invention can solve the signal leakage problem caused by the connection of the high dielectric constant layer and the signal line (that is, the conductive via hole), and can reduce the parasitic inductance to provide a capacitor-embedded package substrate having a large effective impedance bandwidth.

Claims (5)

소정의 회로패턴과 도전성 비아홀이 형성되며, 저유전율 세라믹물질로 이루어진 복수개의 저유전율층; 및A plurality of low dielectric constant layers formed with a predetermined circuit pattern and conductive via holes and made of a low dielectric constant ceramic material; And 상기 복수개의 저유전율층 사이에 삽입되고, 제1 및 제2 전극이 상하면에 형성된 캐패시터영역과 개방된 적어도 하나의 윈도우영역이 형성된 비캐패시터영역으로 이루어진 고유전율층을 포함하며, A high dielectric constant layer interposed between the plurality of low dielectric constant layers, the first and second electrodes including a capacitor region having upper and lower surfaces and a non-capacitor region having at least one open window region; 상기 복수개의 저유전율층 중 상기 고유전율층과 인접한 2개의 저유전율층에 형성된 도전성 비아홀은 상기 윈도우영역의 직경보다 작은 직경을 가지며, 상기 윈도우영역을 통해 서로 연결된 것을 특징으로 하는 캐패시터 내장형 저온동시소성세라믹 적층기판.The conductive via holes formed in the two low dielectric constant layers adjacent to the high dielectric constant layers among the plurality of low dielectric constant layers have a diameter smaller than the diameter of the window region and are connected to each other through the window region. Ceramic laminated substrate. 제1항에 있어서,The method of claim 1, 상기 고유전율층의 구성원소가 상기 제1 및 제2 전극을 통해 상기 인접한 저유전율층으로 확산되는 것을 방지하기 위해서, 상기 제1 및 제2 전극 상에 형성된 버퍼층을 더 포함하는 것을 특징으로 하는 캐패시터 내장형 저온동시소성세라믹 적층기판.And a buffer layer formed on the first and second electrodes in order to prevent the elements of the high dielectric constant layer from diffusing to the adjacent low dielectric constant layers through the first and second electrodes. Built-in low temperature simultaneous firing ceramic laminated substrate. 제2항에 있어서,The method of claim 2, 상기 버퍼층은 각각 10㎛이하인 것을 특징으로 하는 캐패시터 내장형 저온동 시소성세라믹 적층기판.Capacitor-embedded low-temperature copper firing ceramic laminated substrate, characterized in that each buffer layer is 10㎛ or less. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 고유전율층은 BaTiO3인 것을 특징으로 하는 캐패시터 내장형 저온동시소성세라믹 적층기판.The high dielectric constant layer is BaTiO 3 Capacitor embedded low-temperature co-fired ceramic laminated substrate, characterized in that. 제4항에 있어서,The method of claim 4, wherein 상기 버퍼층은 BaTiO3인 것을 특징으로 하는 캐패시터 내장형 저온동시소성세라믹 적층기판.The buffer layer is BaTiO 3 Capacitor embedded low-temperature simultaneous firing ceramic laminated substrate, characterized in that.
KR1020050066937A 2005-07-22 2005-07-22 Capacitor embeddied ltcc multilayer boards KR20070012098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050066937A KR20070012098A (en) 2005-07-22 2005-07-22 Capacitor embeddied ltcc multilayer boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050066937A KR20070012098A (en) 2005-07-22 2005-07-22 Capacitor embeddied ltcc multilayer boards

Publications (1)

Publication Number Publication Date
KR20070012098A true KR20070012098A (en) 2007-01-25

Family

ID=38012630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050066937A KR20070012098A (en) 2005-07-22 2005-07-22 Capacitor embeddied ltcc multilayer boards

Country Status (1)

Country Link
KR (1) KR20070012098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887133B1 (en) * 2007-11-28 2009-03-04 삼성전기주식회사 Low temperature co-fired ceramic substrate
CN104425440A (en) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 Semiconductor device and formation method thereof
US9288068B2 (en) 2012-06-01 2016-03-15 Electronics And Telecommunications Research Institute Method and apparatus for transmitting parameters to multicast agent in relayed multicast network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887133B1 (en) * 2007-11-28 2009-03-04 삼성전기주식회사 Low temperature co-fired ceramic substrate
US9288068B2 (en) 2012-06-01 2016-03-15 Electronics And Telecommunications Research Institute Method and apparatus for transmitting parameters to multicast agent in relayed multicast network
CN104425440A (en) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 Semiconductor device and formation method thereof

Similar Documents

Publication Publication Date Title
US7663892B2 (en) Printed circuit board having embedded RF module power stage circuit
US20030147197A1 (en) Multilayer electronic part, multilayer antenna duplexer, and communication apparatus
US7545624B2 (en) Multilayer chip capacitor
US7499258B2 (en) Embedded multilayer chip capacitor and printed circuit board having the same
US7230815B2 (en) Multilayered chip capacitor and printed circuit board having embedded multilayered chip capacitor
US6430030B2 (en) High k dielectric material with low k dielectric sheathed signal vias
US7443268B2 (en) Bandpass filter within a multilayered low temperature co-fired ceramic substrate
US20080017407A1 (en) Interposer and electronic device using the same
US9648794B2 (en) Wiring board and electronic apparatus
KR101414751B1 (en) Capacitor-embedded substrate and method of manufacturing the same
US20080158777A1 (en) Capacitor and multi-layer board embedding the capacitor
US20070158105A1 (en) Multilayer wiring board capable of reducing noise over wide frequency band with simple structure
CN102638931B (en) Electronic assembly, method for minimizing parasitic capacitance, and method for manufacturing circuit board structure
KR20020042698A (en) Electronic assembly comprising substrate with embedded capacitors and methods of manufacture
US7417196B2 (en) Multilayer board with built-in chip-type electronic component and manufacturing method thereof
KR100593930B1 (en) Multi-layer ceramic capacitor
US7529103B2 (en) Multi-layered printed circuit board embedded with filter
JP2008235293A (en) Multilayer printed wiring board
KR20030030938A (en) Electronic circuit unit
KR20070012098A (en) Capacitor embeddied ltcc multilayer boards
KR20010049422A (en) High Frequency Module
US7064427B2 (en) Buried array capacitor and microelectronic structure incorporating the same
US20060060937A1 (en) Embedded passive component
CN109166729B (en) Capacitor structure based on dielectric integrated suspension line and high-dielectric material
KR100674823B1 (en) Wiring connection structure of multilayered chip capacitor array

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application