KR20070011200A - Fabrication of implant with nanotube structure by anodizing - Google Patents

Fabrication of implant with nanotube structure by anodizing Download PDF

Info

Publication number
KR20070011200A
KR20070011200A KR1020060125227A KR20060125227A KR20070011200A KR 20070011200 A KR20070011200 A KR 20070011200A KR 1020060125227 A KR1020060125227 A KR 1020060125227A KR 20060125227 A KR20060125227 A KR 20060125227A KR 20070011200 A KR20070011200 A KR 20070011200A
Authority
KR
South Korea
Prior art keywords
implant
titanium
oxide film
electrolyte
nanotube
Prior art date
Application number
KR1020060125227A
Other languages
Korean (ko)
Inventor
이광민
박상원
이도재
이경구
김현승
Original Assignee
이광민
박상원
이도재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이광민, 박상원, 이도재 filed Critical 이광민
Priority to KR1020060125227A priority Critical patent/KR20070011200A/en
Publication of KR20070011200A publication Critical patent/KR20070011200A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • A61C8/0015Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating being a conversion layer, e.g. oxide layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/816Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Abstract

A process of reforming surface of a porous implant with nano-tube structure is provided to form titanium oxide film in a uniform nano-tube form on surface of the implant and improve osseo-integration on the surface of the implant by adopting anode oxidation of the implant in electrolyte containing fluorine compound and acidic solution. The process includes electro-chemical surface reformation of the implant made of titanium and titanium alloy to form nano-tube form of oxidation coating layer on the surface of the implant. The electro-chemical reformation is performed by preparing an electrolyte which includes 0.1-1.5M H3PO4, H2SO4 solution and 0.5-2.0wt.% of fluorine compound; treating the implant at room temperature to 100deg.C under 2-50V of application voltage for several seconds to hours and with use of the electrolyte; and post heat treating the implant at 200 to 700deg.C.

Description

나노 튜브 형상의 다공성 임플란트 표면 개질 기술{Fabrication of implant with nanotube structure by anodizing}Fabrication of nanotube-shaped porous implant surface modification {Fabrication of implant with nanotube structure by anodizing}

도 1은 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 구조를 전자현미경으로 관찰한 사진이다.Figure 1 is a photograph of the structure of the nanotube oxide film formed on the surface of pure titanium by observing the electron microscope.

도 2는 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 구조를 투과자현미경으로 관찰한 사진이다.Figure 2 is a photograph of the structure of the nanotube oxide film formed on the surface of pure titanium with a transmission microscope.

도. 3은 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 표면 거칠기를 나타낸 원자현미경 사진이다.Degree. 3 is an atomic force micrograph showing the surface roughness of the nanotube oxide film formed on the surface of pure titanium.

도. 4는 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 XPS 분석 곡선이다.Degree. 4 is the XPS analysis curve of the nanotube oxide film formed on the surface of pure titanium.

도 5는 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 구조를 전자현미경으로 관찰한 사진이다.FIG. 5 is a photograph observing the structure of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface with an electron microscope. FIG.

도 6은 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 구조를 투과현미경으로 관찰한 사진이다.6 is a photograph of the structure of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface observed with a transmission microscope.

도. 7은 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 표면 거칠기를 나타낸 원자현미경 사진이다.Degree. 7 is an atomic force micrograph showing the surface roughness of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface.

도. 8은 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 XPS 분석 곡선이 다.Degree. 8 is an XPS analysis curve of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface.

도. 9은 임플란트 Fixture 표면에 나노 튜브 형성 사진Degree. 9 Photo Nanotube Formation on Implant Fixture Surface

본 발명은 임플란트의 표면은 주위 생체조직과 접촉한 상태로 장기간 상호 반응을 하게 되므로 생체적합성이 우수해야 하며, 세포와 조직에 적합한 환경을 부여할 수 있는 특성과 기능을 갖추어야 하므로 임플란트의 표면 특성은 중요함에 따라 임플란트 재료로 널리 이용되고 있는 타이타늄과 타이타늄 합금의 표면은 세포 부착, 증식, 분화, 사멸등 전반적인 세포와의 상호작용에 있어서 중요한 역할을 할 수 있는 표면 개질 방법에 관한 것이다. In the present invention, the surface of the implant should be excellent in biocompatibility because the surface of the implant is in contact with the surrounding biological tissues for a long time, and should have the characteristics and functions to give a suitable environment for cells and tissues. Importantly, the surface of titanium and titanium alloys, which are widely used as implant materials, relates to surface modification methods that can play an important role in overall cell interaction such as cell adhesion, proliferation, differentiation and death.

타이타늄 및 타이타늄 합금은 생체활성이 없기 때문에 골형성 반응이 늦어 치유기간이 길고, 골과 임플란트 사이의 접착력이 약하다. 이러한 단점을 보완하기 위하여 임플란트의 표면적을 증가시키고, 표면 형상을 변화시키거나, 물리적, 화학적 표면 처리를 통해 골유착을 향상시키기 위한 시도가 많이 이루어지고 있다. 이러한 표면 개질 방법에는 다양한 직경의 입자들을 표면에 분사(blasting)하는 방법과 입자 분사후 산처리하는 방법(sandblasted acid etched)이 있으나 입자가 표면에 잔류하거나 산처리에 의한 입계 부식의 문제점이 있다. 또한 플라즈마 스프레이(Plasma spray)법과 하이드록시아파타이트 코팅법이 있으나 골질이 너무 단단할 경우 표면의 알갱이들이 분리 될 수 있다는 단점이 있다.   Titanium and titanium alloys do not have biological activity, so the bone formation reaction is slow and the healing period is long, and the adhesion between the bone and the implant is weak. In order to compensate for these disadvantages, many attempts have been made to increase the surface area of the implant, to change the surface shape, or to improve bone adhesion through physical and chemical surface treatment. The surface modification method includes a method of blasting particles of various diameters on the surface, and a method of sand treatment after the particle injection (sandblasted acid etched), but there are problems of grain boundary corrosion due to residual particles on the surface or acid treatment. In addition, there is a plasma spray method and a hydroxyapatite coating method, but when the bone quality is too hard, there are disadvantages that the grains on the surface may be separated.

타이타늄 및 타이타늄 합금은 표면에 형성된 타이타늄 산화피막에 의해 생체적합성이 좋은 것으로 알려져 있다. 이러한 산화 피막을 형성시키기 위한 방법으로는 열처리하는 방법(대한민국 특허출원 제 98-23074), 열산화 후에 식각 용액으로 식각하는 방법(제 98-23075 호), NaOH, 인산, 황산 또는 옥살산등의 전해액에서 전기화학적으로 양극 산화하는 방법 등이 있다(Int. J. Adhesion and Adhesives. 3. 133(1983), J. Biomed. Eng. Res., 21, 273(2000)).  Titanium and titanium alloys are known to have good biocompatibility due to the titanium oxide film formed on the surface. As a method for forming such an oxide film, a method of heat treatment (Korean Patent Application No. 98-23074), a method of etching with an etching solution after thermal oxidation (No. 98-23075), an electrolyte such as NaOH, phosphoric acid, sulfuric acid, or oxalic acid And electrochemically anodizing (Int. J. Adhesion and Adhesives. 3. 133 (1983), J. Biomed. Eng. Res., 21, 273 (2000)).

그러나, 열산화에 의해 형성된 치밀한 산화피막은 세포 작용에 적합한 다공성 피막을 형성시키지 못하고, 양극산화에 의해 형성된 다공성 피막은 구조 제어가 어렵고 기공의 균일도가 낮아 골과의 적합성이 떨어진다.However, the dense oxide film formed by thermal oxidation does not form a porous film suitable for cellular action, and the porous film formed by anodization is difficult to control the structure and the uniformity of the pores is low, thereby reducing compatibility with bone.

본 발명의 목적은 타이타늄과 타이타늄 합금의 임플란트 표면에 세포부착, 증식, 분화와 같은 세포 활동에 중요한 작용을 할 수 있는 균일한 나노 튜브 형상의 타이타늄 산화 피막을 형성시키는 표면 개질 기술을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a surface modification technique for forming a uniform nanotube-shaped titanium oxide film that can play an important role in cellular activities such as cell adhesion, proliferation and differentiation on the implant surface of titanium and titanium alloy.

본 발명은 타이타늄과 타이타늄 합금으로 이루어진 임플란트의 표면 개질은 전기화학적 방법으로 공정변수의 변화를 통하여 임플란트 표면에 균일한 산화 피막을 형성을 통하여 달성된다. According to the present invention, surface modification of an implant made of titanium and a titanium alloy is achieved by forming a uniform oxide film on the surface of the implant through a change in process parameters by an electrochemical method.

이하 본 발명을 위한 공정을 살펴보면, Looking at the process for the present invention,

본 발명에 사용되는 임플란트 재료는 순수 타이타늄과 타이타늄 합금, 즉 Ta, Nb, Al, V, Zr 등을 일정 비율로 함유한 합금이다. 상기 소재의 불순물을 제거하기 위하여 아세톤과 알코올, 증류수에서 세척하였다. The implant material used in the present invention is an alloy containing pure titanium and a titanium alloy, that is, Ta, Nb, Al, V, Zr and the like in a certain ratio. In order to remove impurities of the material was washed with acetone, alcohol, distilled water.

전기화학적 처리(양극산화)을 위한 전해액은 불소(Fluorine)가 포함된 불소화합물 수용액과 인산(H3PO4), 황산(H2SO4)등과 같은 산 수용액을 일정비율로 혼합한다.  The electrolytic solution for the electrochemical treatment (anodic oxidation) is mixed with an aqueous solution of a fluorine compound containing fluorine and an aqueous solution of an acid such as phosphoric acid (H 3 PO 4) and sulfuric acid (H 2 SO 4) in a proportion.

타이타늄 나노 튜브 형성을 위하여 공정 변수인 전해액의 농도, 즉, 불소화합물의 농도는 0.5~2.0wt.%, 인산과 황산은 0.5~1.5M, 인가 전압 2V~50V로 10초~3시간 동안 표면 개질 공정을 통해서 바람직한 공정 조건을 달성된다.  For the formation of titanium nanotubes, the concentration of the electrolyte, which is a process variable, that is, the concentration of the fluorine compound is 0.5 to 2.0 wt.%, The phosphoric acid and sulfuric acid are 0.5 to 1.5 M, and the applied voltage is 2 to 50 V for 10 seconds to 3 hours. Preferred process conditions are achieved throughout the process.

최적 조건에서 표면 처리된 소재는 증류수에서 세척한 후 40℃~100℃에서 12~24시간 건조하여, 승온 속도 1~10℃/min으로 200~700℃에서 1~2시간 동안 열처리 공정을 통해서 수행된다. The surface-treated material under optimum conditions was washed in distilled water and then dried for 12 to 24 hours at 40 ° C. to 100 ° C., followed by a heat treatment process at a temperature rising rate of 1 to 10 ° C./min at 200 to 700 ° C. for 1 to 2 hours. do.

이하 실시예에서 본 발명을 상세히 설명한다. In the following Examples the present invention will be described in detail.

실시예 1Example 1

본 실시예에서 사용된 소재는 직경 15mm, 두께 2mm의 순수 타이타늄과 타이타늄 합금(Ti-10Ta-10Nb)이다. The material used in this embodiment is a pure titanium and titanium alloy (Ti-10Ta-10Nb) having a diameter of 15 mm and a thickness of 2 mm.

순수 타이타늄을 양극으로, 백금판을 음극으로 사용하였으며, 두 극간의 거리는 10cm로 하였다. 1M H3PO4+1.5wt%HF로 구성된 전해액에서 인가전압 20V에서 10분간 양극 산화하여 200℃에서 열처리 하였다.  Pure titanium was used as an anode and a platinum plate was used as a cathode, and the distance between the two poles was 10 cm. In the electrolyte consisting of 1M H 3 PO 4 + 1.5wt% HF anodized for 10 minutes at an applied voltage of 20V and heat-treated at 200 ℃.

도 1은 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 구조를 전자현미경으로 관찰한 사진이다.Figure 1 is a photograph of the structure of the nanotube oxide film formed on the surface of pure titanium by observing the electron microscope.

도 2는 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 구조를 투과자현미경으로 관찰한 사진이다.Figure 2 is a photograph of the structure of the nanotube oxide film formed on the surface of pure titanium with a transmission microscope.

도. 3은 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 표면 거칠기를 나타낸 원자현미경 사진이다.Degree. 3 is an atomic force micrograph showing the surface roughness of the nanotube oxide film formed on the surface of pure titanium.

도. 4는 순수 타이타늄 표면에 형성된 나노 튜브 산화 피막의 XPS 분석 곡선이다.Degree. 4 is the XPS analysis curve of the nanotube oxide film formed on the surface of pure titanium.

실시예 2Example 2

Ti-10Ta-10Nb 합금을 양극으로, 백금판을 음극으로 사용하였으며, 두 극간의 거리는 10cm로 하였다. 1M H3PO4+1.5wt%HF로 구성된 전해액에서 인가전압 20V에서 10분간 양극 산화하여 200℃에서 열처리 하였다. A Ti-10Ta-10Nb alloy was used as the anode and a platinum plate was used as the cathode, and the distance between the two poles was 10 cm. In the electrolyte consisting of 1M H 3 PO 4 + 1.5wt% HF anodized for 10 minutes at an applied voltage of 20V and heat-treated at 200 ℃.

도 5는 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 구조를 전자현미경으로 관찰한 사진이다.FIG. 5 is a photograph observing the structure of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface with an electron microscope. FIG.

도 6은 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 구조를 투과현미경으로 관찰한 사진이다.6 is a photograph of the structure of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface observed with a transmission microscope.

도. 7은 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 표면 거칠기를 나타낸 원자현미경 사진이다.Degree. 7 is an atomic force micrograph showing the surface roughness of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface.

도. 8은 Ti-10Ta-10Nb 합금 표면에 형성된 나노 튜브 산화 피막의 XPS 분석 곡선이다.Degree. 8 is an XPS analysis curve of the nanotube oxide film formed on the Ti-10Ta-10Nb alloy surface.

실시예 3Example 3

도. 9은 임플란트 Fixture 표면에 나노 튜브 형성 사진Degree. 9 Photo Nanotube Formation on Implant Fixture Surface

상기와 같은 공정을 거쳐 제조된 나노 튜브 형상의 산화 피막은 기존의 표면 처리 방법에 비해 세포부착, 증식, 분화와 같은 세포 활동을 촉진 시킴으로서 골유착을 향상시킬수 있으며, 결과적으로 임플란트 식립 후 치유 기간을 단축 시키는 효과를 가져올 수 있다.The nanotube-shaped oxide film prepared through the above process can improve bone adhesion by promoting cellular activities such as cell adhesion, proliferation, and differentiation compared to conventional surface treatment methods, and consequently, the healing period after implant placement is improved. It can bring a shortening effect.

Claims (2)

타이타늄 및 타이타늄 합금으로 이루어진 임플란트를 전기화학적인 방법으로 표면 개질하여 균일한 나노 튜브 형상을 갖는 산화 피막 형성하는 임플란트 표면 개질 방법Implant surface modification method of forming an oxide film having a uniform nanotube shape by surface modification of an implant made of titanium and a titanium alloy by an electrochemical method 제 1항에 있어서, 전기화학적인 처리가 0.1~1.5M의 H3PO4, H2SO4 수용액에 0.5~2.0wt.% 불소화합물을 혼합한 전해액, 상온~100℃의 온도 범위에서, 2V~50V의 인가전압, 수초~수시간 동안 처리하는 것으로 후처리는 200~700℃로 열처리 하는 것으로 구성된 표면 개질 방법 The electrochemical treatment according to claim 1, wherein the electrochemical treatment is an electrolyte solution containing 0.5 to 2.0 wt.% Fluorine compound in 0.1 to 1.5 M H 3 PO 4 and H 2 SO 4 aqueous solution, an applied voltage of 2 V to 50 V in a temperature range of room temperature to 100 ° C., Surface modification method consisting of heat treatment at 200 ~ 700 ℃ after treatment for several seconds to several hours
KR1020060125227A 2006-12-11 2006-12-11 Fabrication of implant with nanotube structure by anodizing KR20070011200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060125227A KR20070011200A (en) 2006-12-11 2006-12-11 Fabrication of implant with nanotube structure by anodizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060125227A KR20070011200A (en) 2006-12-11 2006-12-11 Fabrication of implant with nanotube structure by anodizing

Publications (1)

Publication Number Publication Date
KR20070011200A true KR20070011200A (en) 2007-01-24

Family

ID=38012198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060125227A KR20070011200A (en) 2006-12-11 2006-12-11 Fabrication of implant with nanotube structure by anodizing

Country Status (1)

Country Link
KR (1) KR20070011200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141610A1 (en) * 2010-05-14 2011-11-17 Consejo Superior De Investigaciones Científicas (Csic) Titanium materials anodised with fluorine
RU2469744C1 (en) * 2011-06-30 2012-12-20 Фикрет Мавлудинович Абдуллаев Method of creating nanostructured bioinert porous surface on titanium implants
KR20180098513A (en) * 2018-08-28 2018-09-04 전남대학교산학협력단 Method for treating surface of Titanium implant
KR20220011820A (en) * 2020-07-21 2022-02-03 조선대학교산학협력단 Manufacturing method for dental implants using titanium alloy And dental implants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141610A1 (en) * 2010-05-14 2011-11-17 Consejo Superior De Investigaciones Científicas (Csic) Titanium materials anodised with fluorine
ES2370248A1 (en) * 2010-05-14 2011-12-13 Consejo Superior De Investigaciones Cientificas (Csic) Titanium materials anodised with fluorine
RU2469744C1 (en) * 2011-06-30 2012-12-20 Фикрет Мавлудинович Абдуллаев Method of creating nanostructured bioinert porous surface on titanium implants
KR20180098513A (en) * 2018-08-28 2018-09-04 전남대학교산학협력단 Method for treating surface of Titanium implant
KR20220011820A (en) * 2020-07-21 2022-02-03 조선대학교산학협력단 Manufacturing method for dental implants using titanium alloy And dental implants

Similar Documents

Publication Publication Date Title
Park et al. Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation
Oh et al. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method
Duarte et al. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation
Feng et al. Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface
KR100856031B1 (en) Porous implant and method for manufacturing the same
CN102586786B (en) Method for forming graded multi-hole shape on titanium surface
KR100910064B1 (en) Implant material with excellent antibacterial and biocompatible properties and Manufacturing method thereof
WANG et al. HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition
Li et al. Surface roughness and hydrophilicity of titanium after anodic oxidation
Voon et al. Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys
Kaczmarek et al. Fluoride concentration effect on the anodic growth of self‐aligned oxide nanotube array on Ti6Al7Nb alloy
CN104611699A (en) Preparation method of magnesium alloy surface micro-arc oxidation-electrophoresis composite coating
KR100402919B1 (en) An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys
KR101283780B1 (en) Titanium implant and preparation method thereof
KR20070011200A (en) Fabrication of implant with nanotube structure by anodizing
KR20080111243A (en) Implant having high quality surface and method for surface treatment of implant
CN108950651A (en) A kind of preparation method of the magnesium alloy surface micro-arc electrophoresis layer of biological composite membrane containing HA
CN104451819A (en) Method for constructing superhydrophobic aluminum surface with high stability
Ohtsu et al. Comparison of NiTi alloy surfaces formed by anodization in nitric, phosphoric, and sulfuric acid electrolytes
JP2019073746A (en) Production method of titanium or titanium alloy oxide thin film with micropore
MAZĂRE et al. Heat treatment of TiO2 nanotubes, a way to significantly change their behaviour
Liang et al. Effect of TiO2 nanotube morphology on the formation of apatite layer in simulated body fluid
TWI462757B (en) Method of surface treatment for titanium implant
KR101304990B1 (en) Method for forming hydroxyapatite coating layer on titanium implant surface and titanium implant having coating layer formed by the same
RU2448741C1 (en) Method of forming nanostructured biocompatible coating on implants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application