KR20070006584A - Remanufacturing method for the aged scr de-nox catalyst - Google Patents

Remanufacturing method for the aged scr de-nox catalyst Download PDF

Info

Publication number
KR20070006584A
KR20070006584A KR1020060063353A KR20060063353A KR20070006584A KR 20070006584 A KR20070006584 A KR 20070006584A KR 1020060063353 A KR1020060063353 A KR 1020060063353A KR 20060063353 A KR20060063353 A KR 20060063353A KR 20070006584 A KR20070006584 A KR 20070006584A
Authority
KR
South Korea
Prior art keywords
catalyst
scr
performance
scr catalyst
iii
Prior art date
Application number
KR1020060063353A
Other languages
Korean (ko)
Inventor
박해경
임종선
김태원
Original Assignee
박해경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박해경 filed Critical 박해경
Publication of KR20070006584A publication Critical patent/KR20070006584A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

Provided is a method for preparing a used SCR de-NOx catalyst, comprising recovering a used SCR de-NOx catalyst of which service life is substantially terminated, cleaning and rinsing the recovered catalyst, performing performance inspection of the catalyst, acid-treating the performance inspection finished catalyst, correcting performance of the acid-treated catalyst, and heat-treating the catalyst. A method for preparing a used SCR de-NOx catalyst comprises: a contaminant cleaning step of removing contaminants presenting on a surface of a recovered SCR(selective catalytic reduction) catalyst using compressed air; an ultrasonic rinsing step of rinsing the cleaning step finished catalyst using ultrasonic waves; a catalyst inspection step of inspecting performance of the rinsing step finished catalyst; an acid-treating step of acid-treating the inspection step finished catalyst; a performance correcting step of correcting performance of the acid-treating step finished catalyst; and a heat-treating step of heat-treating the performance correcting step finished catalyst. The ultrasonic rinsing step is performed by rinsing the catalyst using ultrasonic waves for 30 minutes after injecting the recovered SCR catalyst and water into a reactor having an ultrasonic equipment.

Description

폐 탈질 SCR 촉매의 재제조 방법{Remanufacturing method for the Aged SCR De-Nox Catalyst}Remanufacturing method for the Aged SCR De-Nox Catalyst

도 1은 본 발명에 따른 폐 탈질 SCR 촉매의 재제조 방법을 나타내는 흐름도,1 is a flow chart showing a method for remanufacturing a waste denitrification SCR catalyst according to the present invention;

도 2는 본 발명에 따른 재제조 방법으로 재제조된 촉매의 성능을 평가하기 위한 폐 SCR 촉매 활성 측정장치의 구성을 나타내는 도이다.2 is a view showing the configuration of a waste SCR catalyst activity measuring apparatus for evaluating the performance of the catalyst remanufactured by the remanufacturing method according to the present invention.

본 발명은 폐 탈질 SCR 촉매의 재제조 방법에 관한 것으로서, 보다 상세하게는 질소산화물을 제거하기 위해 적용되는 선택적 촉매 환원법(Selective Catalytic Reduction, SCR)에 사용되는 촉매의 수명이 실질적으로 종료되면, 이를 회수하여 세척, 촉매 성능 검사 및 촉매성능 보정을 통한 폐 탈질 SCR 촉매의 재제조 방법에 관한 것이다.The present invention relates to a method for remanufacturing a waste denitrification SCR catalyst, and more particularly, when the life of the catalyst used in the selective catalytic reduction (SCR) applied to remove the nitrogen oxides is substantially terminated, The present invention relates to a method for remanufacturing a waste denitrification SCR catalyst through recovery, washing, catalyst performance inspection, and catalyst performance correction.

열 병합 발전소, 석탄화력 발전소 및/또는 소각장 등에서 배출되는 배기가스에는 일반적으로 염산가스, 황산화물, 질소산화물 및 다이옥신류 등과 같은 유해한 물질이 다량 포함되어 있는바, 이들 유해물질 중에서 질소산화물을 특정적으로 제거하기 위한 방법으로 NH3를 환원제로 사용하는 선택적 촉매 환원법(SCR)이 널리 적용되고 있다.Exhaust gases from coal-fired power plants, coal-fired power plants, and / or incinerators generally contain large amounts of harmful substances such as hydrochloric acid, sulfur oxides, nitrogen oxides, and dioxins. The selective catalytic reduction method (SCR) using NH 3 as a reducing agent has been widely applied as a method for removing.

특히, 우리나라의 열 병합 발전소, 석탄화력 발전소 및 소각장 등의 질소산화물 배출시설에서는 이미 상술한 SCR 탈질설비를 설치하였거나 설치하고 있으며, 정부 및 환경단체에서 요구하고 있는 대기 중의 질소산화물 배출규제가 보다 엄격해지면서, 이러한 배출규제를 만족할 수 있도록 SCR 탈질설비를 적용하는 사례가 급증하고 있고, 상기 SCR 탈질 설비에 사용되는 대부분의 촉매를 외국에서 전량 수입하고 있는 실정이다.In particular, the nitrogen oxide discharge facilities such as coal-fired power plants, coal-fired power plants, and incinerators in Korea have already installed or installed the above-described SCR denitrification facilities, and the emission regulations in the air required by the government and environmental organizations are more stringent. As it disappears, cases of applying SCR denitrification facilities to satisfy such emission regulations are increasing rapidly, and most of the catalysts used in the SCR denitrification facilities are imported from foreign countries.

한편, 상기 SCR 탈질 공정에서 질소산화물을 제거하기 위해 설치되는 촉매는 이산화티탄(TiO2)을 담체로 하여 소량의 바나듐(V2O5) 및 텅스텐(WO3)을 첨가시켜 제조된 촉매를 사용하는바, 이러한 SCR 탈질 촉매는 SCR 탈질 공정에 설치되어 사용되는 과정에서 배기가스에 포함되어 있는 다량의 불순물 및 오염물질 등에 의해 촉매가 오염되어 시간이 지남에 따라 촉매의 활성이 감소하게 되고, 결국 평균적으로 2 내지 3년이 경과되면 촉매의 성능이 실질적으로 저하되거나 종료되게 된다.On the other hand, the catalyst is installed to remove the nitrogen oxide in the SCR denitrification process using a catalyst prepared by adding a small amount of vanadium (V 2 O 5 ) and tungsten (WO 3 ) using a titanium dioxide (TiO 2 ) as a carrier. As such, the SCR denitrification catalyst is contaminated by a large amount of impurities and contaminants contained in the exhaust gas in the process of being installed and used in the SCR denitrification process, and thus the activity of the catalyst decreases over time. On average, after two to three years, the performance of the catalyst is substantially degraded or terminated.

이에, SCR 탈질설비에 장착된 SCR 촉매가 성능을 발휘하여 규제치 이하의 질소 산화물을 배출하는 일반적인 수명을 고려하여 보면, 촉매의 수명이 실질적으로 종료된 현재를 포함하여 향후 3 내지 5년 후에서부터는 기존에 설치되어 운전되어지던 수십 내지 수백만 톤에 이르는 폐 탈질 SCR 촉매가 지속적으로 발생하게 될 것이다.Therefore, considering the general lifespan of the SCR catalyst mounted in the SCR denitrification facility to discharge the nitrogen oxide below the regulated value, from the next three to five years, including the present, the life of the catalyst is substantially terminated. Tens to millions of tonnes of waste denitrification SCR catalysts that have been installed and operated will continue to be generated.

그러므로 상기 폐 탈질 SCR 촉매를 재제조하여 촉매의 성능을 종래의 새로운 촉매의 성능으로 복구시켜 재사용할 수 있도록 하는 폐 탈질 SCR 촉매의 재제조 방법이 요구되고 있으며, 이것은 향후 수입 대체 효과는 물론 자원 재활용의 관점에서도 시급히 필요한 촉매의 재제조 기술이라 하겠다.Therefore, there is a need for a method for remanufacturing the waste denitrification SCR catalyst which re-manufactures the waste denitrification SCR catalyst so that the performance of the catalyst can be restored and reused. In view of this, it is an urgently needed catalyst remanufacturing technology.

이에, 본 발명자들은 전술한 문제점을 해결하기 위하여 지속적으로 연구하던 중 실질적으로 수명이 종료된 폐 탈질 SCR 촉매 회수하여 이를 물리적 세척 단계를 거친 후 촉매 성능을 검사하는 단계를 거쳐 객관적으로 촉매의 상태를 검증하며, 이후 성능이 떨어진 것으로 확인된 촉매를 화학적으로 세정 및 성능 복원을 한 후 열처리하여 다시 SCR 촉매로 사용할 수 있도록 하는 재제조 방법을 착안하여 본 발명을 완성하기에 이르렀다.Thus, the present inventors objectively check the state of the catalyst through the step of recovering the waste denitrification SCR catalyst substantially end of life during the continuous research to solve the above-mentioned problems and undergoes a physical washing step and then inspect the catalyst performance. The present invention was completed by devising a remanufacturing method that can be used as an SCR catalyst after chemically cleaning and restoring a catalyst which has been found to be inferior in performance after chemical cleaning and performance restoration.

본 발명은 전술한 문제점을 해결하기 위하여 도출된 것으로서, 실질적으로 수명이 종료된 폐 탈질 SCR 촉매를 회수하여 세척 및 세정한 뒤 성능을 검사하고, 성능검사가 종료된 촉매를 산처리하고, 산처리된 촉매의 성능을 보정한 후 열처리하는 것을 포함하는 폐 탈질 SCR 촉매의 재제조 방법을 제공하는 것에 기술적 과제가 있다.The present invention was derived in order to solve the above-mentioned problems, and the performance of the waste denitrification SCR catalyst which has substantially expired is recovered, washed and washed, and then tested for performance, and the acid treatment of the finished catalyst has been subjected to acid treatment and acid treatment. There is a technical problem to provide a method for remanufacturing a waste denitrification SCR catalyst comprising correcting the performance of the prepared catalyst and then performing heat treatment.

본 발명은 압축공기를 이용하여 회수된 SCR 촉매의 표면에 존재하는 오염물질을 제거하는 오염물질 세척단계; 상기 세척단계가 종료된 촉매를 초음파로 세정하는 초음파 세정단계; 상기 세정단계가 종료된 촉매의 성능을 검사하는 촉매 검사단계; 상기 검사단계가 종료된 촉매를 산처리하는 산처리단계; 상기 산처리 단계가 종료된 촉매의 성능을 보정하는 성능 보정단계; 및 상기 성능 보정단계가 종료된 촉매를 열처리하는 열처리단계를 포함하는 폐 탈질 SCR 촉매의 재제조 방법을 제공한다.The present invention is a contaminant washing step of removing contaminants present on the surface of the recovered SCR catalyst using compressed air; An ultrasonic cleaning step of ultrasonically cleaning the catalyst in which the washing step is completed; A catalyst inspection step of examining the performance of the catalyst in which the washing step is completed; An acid treatment step of acid treatment of the catalyst in which the inspection step is completed; A performance correction step of correcting the performance of the catalyst in which the acid treatment step is completed; And a heat treatment step of heat treating the catalyst on which the performance correction step is completed.

본 발명에 따른 실질적으로 수명이 종료된 촉매, 특정적으로 SCR 촉매는 질소산화물을 제거하기 위한 SCR 탈질설비에 적용되어 사용되는 동안 배기가스에 포함된 불순성분 및 오염물질 등에 장시간 노출됨으로써, 그 촉매의 활성이 새로운 SCR 촉매의 성능대비 70%이하로 감소한 촉매를 의미하는 것으로서, 이는 통상적으로 폐 탈질 SCR 촉매로 지칭할 수 있는바, 본 발명에서는 상기 폐 탈질 SCR 촉매를 실질적으로 수명이 종료된 또는 활성이 현저히 감소한 촉매, 즉 SCR 촉매와 동일한 것으로 간주할 수 있다.Substantially end-of-life catalysts, in particular SCR catalysts, according to the present invention are subjected to prolonged exposure to impurities and contaminants contained in the exhaust gas during the application and use of SCR denitrification equipment for removing nitrogen oxides. It means that the activity of is reduced to less than 70% of the performance of the new SCR catalyst, which can be commonly referred to as waste denitrification SCR catalyst, in the present invention the waste denitrification SCR catalyst is substantially end of life or It can be regarded as the same as the catalyst with significantly reduced activity, ie SCR catalyst.

이하, 본 발명에 대하여 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 그러나 하기의 설명은 오로지 본 발명을 구체적으로 설명하기 위한 것으로 하기 설명에 의해 본 발명의 범위로 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the following description is only for explaining the present invention specifically, and is not limited to the scope of the present invention by the following description.

도 1은 본 발명에 따른 폐 탈질 SCR 촉매의 재제조 방법을 나타내는 흐름도 로서 함께 설명한다.1 is a flow chart illustrating a method for remanufacturing a waste denitrification SCR catalyst according to the present invention.

도 1에 도시된 바와 같이, 본 발명에 따른 폐 탈질 SCR 촉매의 재제조 방법은 재제조 산업에서 정의하는 재제조 절차에 따라 촉매를 재제조하는바, 보다 구체적으로는 폐 탈질 SCR 촉매를 물리적으로 재제조하는 물리적 재제조 방법, 촉매의 성능을 측정하는 촉매 검사방법, 화학적으로 재제조하는 화학적 재제조 방법 및/또는 촉매 활성성분을 함침하는 성능 보정방법으로 구별될 수 있다.As shown in FIG. 1, in the method for remanufacturing the waste denitrification SCR catalyst according to the present invention, the catalyst is remanufactured according to a remanufacturing procedure defined in the remanufacturing industry, and more specifically, the waste denitrification SCR catalyst is physically produced. Physical remanufacturing methods for remanufacturing, catalyst inspection methods for measuring the performance of catalysts, chemical remanufacturing methods for chemical remanufacturing, and / or performance correction methods for impregnating catalyst active ingredients.

이때, 상기 물리적 재제조 방법과 화학적 제재조 방법의 재제조 순서는 특별히 한정된 것을 아니지만, 바람직하게는 물리적 재제조 방법이 종료된 촉매를 화학적 재제조 방법으로 재제조하는 것이 좋다.At this time, the remanufacturing order of the physical remanufacturing method and the chemical remanufacturing method is not particularly limited, but preferably, the chemical remanufacturing method is completed by a catalyst in which the physical remanufacturing method is completed.

이에, 상기 폐 탈질 SCR 촉매의 재제조 방법을 보다 구체적으로 살펴보면, 먼저 본 발명에 따른 폐 탈질 SCR 촉매의 물리적인 재제조 방법은 압축공기를 이용하여 회수된 SCR 촉매의 표면에 존재하는 오염물질을 제거하는 오염물질 세척단계; 오염물질 세척단계가 종료된 촉매를 초음파로 세정하는 초음파 세정단계를 포함한다.Thus, looking at the method for remanufacturing the waste denitrification SCR catalyst in more detail, first, the physical remanufacturing method of the waste denitrification SCR catalyst according to the present invention is to remove contaminants present on the surface of the recovered SCR catalyst using compressed air. Removing pollutants; And an ultrasonic cleaning step for ultrasonically cleaning the catalyst in which the contaminant washing step is completed.

여기서, 상기 오염물질 세척단계는 통상적으로 폐 탈질 SCR 촉매의 표면에 존재하는 오염물질을 고압, 예를 들면 0.1 내지 0.5 kg/cm2의 압력으로 제거하기 위한 것이며, 상기 초음파 세정단계는 초음파 장치가 구비된 반응기에 회수된 촉매, 바람직하게는 SCR 촉매 및 물, 바람직하게는 증류수를 충진시킨 후 5 내지 30분 동안 15,000 내지 24,000MHz 주파수의 초음파를 이용하여 촉매를 세정하는 것을 포함 한다.Here, the contaminant washing step is typically for removing contaminants present on the surface of the waste denitrification SCR catalyst at a high pressure, for example, at a pressure of 0.1 to 0.5 kg / cm 2 , and the ultrasonic cleaning step includes: After filling the reactor with the recovered catalyst, preferably the SCR catalyst and water, preferably distilled water, and washing the catalyst using ultrasonic waves of 15,000 to 24,000 MHz frequency for 5 to 30 minutes.

한편, 본 발명에 따른 촉매의 성능을 검사하는 촉매 검사단계는 SCR 설비로부터 회수된 실질적으로 수명이 종료된 폐 탈질 SCR 촉매의 성능을 검사하여 이를 제제조 할 것인가를 판단하기 위한 것으로서, ⅰ) 폐 탈질 SCR 촉매를 유도결합플라즈마분광분석기로 측정하여 촉매를 구성하고 있는 활성성분의 손실률 및 촉매표면에 침적된 중금속 함량을 평가하는 단계; ⅱ) 단계 ⅰ)의 폐 탈질 SCR 촉매를 X-선회절분석기 측정하여 촉매의 결정구조를 평가하는 단계; ⅲ) 단계 ⅱ)의 폐 탈질 SCR 촉매를 비표면적 분석기 및 기공분포측정기로 측정하여 촉매의 비표면적 감소율 및 기공분포를 평가하는 단계; ⅳ) 단계 ⅲ)의 폐 탈질 SCR 촉매를 열중량분석기로 측정하여 촉매의 열적안정성을 평가하는 단계; ⅴ) 단계 ⅳ)의 폐 탈질 SCR 촉매를 촉매 성능 측정장치로 NOx 전환활성을 평가하는 단계를 포함한다.On the other hand, the catalyst inspection step of examining the performance of the catalyst according to the present invention is to determine whether to prepare a test by examining the performance of the substantially end-of-life denitrification SCR catalyst recovered from the SCR facility, i) waste Measuring the denitrification SCR catalyst with an inductively coupled plasma spectrometer to evaluate the loss rate of the active ingredient constituting the catalyst and the heavy metal content deposited on the catalyst surface; Ii) X-ray diffractometer measurement of the waste denitrification SCR catalyst of step iii) to evaluate the crystal structure of the catalyst; Iii) measuring the waste denitrification SCR catalyst of step ii) with a specific surface area analyzer and a pore distribution analyzer to evaluate specific surface area reduction rate and pore distribution of the catalyst; Iii) evaluating the thermal stability of the catalyst by measuring the waste denitrification SCR catalyst of step iv) with a thermogravimetric analyzer; Iii) evaluating the NOx conversion activity of the waste denitrification SCR catalyst of step iv) with a catalytic performance measurement device.

여기서, 상기 검사단계를 구성하는 각각의 단계는 그 순서가 특별히 한정된 것은 아니므로, 사용자의 선택에 따라 순서를 결정할 수 있으며, 바람직한 측정 조건으로서 상기 X-선회절분석기(XRD, X-ray diffractometer)는 5o 내지 90o에 이르는 범위에서 측정하고, 촉매의 표면상태를 확인하기 위해서는 전자현미경(SEM, scanning electron microscopy)은 배율 10,000 내지 50,000 배의 범위에서 관찰하고, 열중량분석기(TGA, thermogravimetric analyzer)는 150 내지 600℃ 영역에서의 촉매 열적안정성 측정한다.Here, each step constituting the inspection step is not particularly limited in order, it is possible to determine the order in accordance with the user's selection, the X-ray diffractometer (XRD) as the preferred measurement conditions Is measured in the range of 5 o to 90 o , and in order to check the surface state of the catalyst, SEM (scanning electron microscopy) is observed at a magnification of 10,000 to 50,000 times, and a thermogravimetric analyzer (TGA) ) Is the catalyst thermal stability measurement in the 150 to 600 ℃ range.

또한, 상기 단계 ⅴ)의 폐 탈질 SCR 촉매를 촉매 성능 측정장치로 NOx 전환 활성을 평가하는 단계는 배출가스를 모사하여 촉매의 반응활성을 측정할 수 있는 촉매활성 측정장치를 구성한 뒤 상기 촉매활성 측정장치에 촉매를 설치하여 모사된 배출가스를 노출시킴으로써 촉매활성을 측정하는 단계; 촉매를 SCR 설비에 설치한 후 SCR 설비가 운행되는 조건에서 촉매의 반응활성을 측정하는 단계 또는 이들의 조합된 단계로 구성될 수 있다.In addition, the step of evaluating the NOx conversion activity of the waste denitrification SCR catalyst of step iii) as a catalyst performance measuring device is configured to measure the catalytic activity after configuring the catalytic activity measuring device capable of measuring the reaction activity of the catalyst by simulating the exhaust gas. Measuring the catalytic activity by installing a catalyst in the device and exposing the simulated off-gas; After the catalyst is installed in the SCR facility may be composed of the step of measuring the reaction activity of the catalyst under the condition that the SCR facility is running or a combination thereof.

한편, 본 발명에 따른 촉매 검사단계에 있어서, 상기 단계 ⅰ) 내지 단계 ⅴ) 중 어느 한 단계에서 분석된 폐 탈질 SCR촉매가 원하는 조건을 만족하지 못할 경우, 그 다음 단계를 진행하지 않고 폐 탈질 SCR 촉매를 폐기하는바, 상기 원하는 조건은 단계 ⅰ)의 활성성분의 손실률 및 중금속 함량은 손실율 5%이내, 중금속 함량 10%이내; 단계 ⅱ)의 촉매의 결정구조는 아나타제 형태; 단계 ⅲ)의 비표면적 감소율 및 기공분포는 감소율 30%이내, 기공의 분포 중 미세기공분포의 변화율이 50%이내; 단계 ⅳ)의 열적안정성이 분석온도 600℃ 범위 내에서 총 중량 감소율이 5%이내; 단계 ⅴ)의 NOx 전환율이 촉매활성 70%이상이다.On the other hand, in the catalyst inspection step according to the present invention, if the waste denitrification SCR catalyst analyzed in any one of the steps iii) to iii) does not satisfy the desired conditions, the waste denitrification SCR without proceeding to the next step Discarding the catalyst, the desired conditions are the loss rate and heavy metal content of the active ingredient of step iii) less than 5% loss rate, less than 10% heavy metal content; The crystal structure of the catalyst of step ii) is in the anatase form; The specific surface area reduction rate and pore distribution of step iii) are within 30% of reduction rate, and the rate of change of micropore distribution in pore distribution is within 50%; The thermal stability of step iii) is within 5% of the total weight loss within the analysis temperature of 600 ° C .; The NOx conversion in step iii) is at least 70% catalytic activity.

본 발명에 따른 폐 탈질 SCR 촉매의 화학적 재제조 방법은 실질적으로 수명이 종료된 촉매, 특정적으로 폐 탈질 SCR 촉매를 산처리 하는 산처리단계를 포함하는 것으로서, 상기 산처리단계는 초음파 장치가 구비된 반응기에 SCR 촉매, 특정적으로 폐 탈질 SCR 촉매 및 pH 1 내지 5로 유지되는 황산, 질산 또는 이들의 혼합물 용액을 충진시킨 후 5 내지 30분 동안 초음파를 이용하여 촉매를 세정하여 산처리 하고, 산처리된 촉매를 물로 5 내지 10분 동안 세척한 후 약 150℃의 온도에서 약 2시간 동안 건조하는 것을 포함한다.The chemical remanufacturing method of the waste denitrification SCR catalyst according to the present invention includes an acid treatment step of acid-treating the catalyst having a substantially end of life, in particular the waste denitrification SCR catalyst, wherein the acid treatment step is provided with an ultrasonic apparatus. The reactor was charged with an SCR catalyst, specifically a waste denitrification SCR catalyst and a solution of sulfuric acid, nitric acid or a mixture thereof maintained at pH 1 to 5, followed by acid treatment by washing the catalyst using ultrasonic waves for 5 to 30 minutes, The acid treated catalyst is washed with water for 5 to 10 minutes and then dried at a temperature of about 150 ° C. for about 2 hours.

여기서, 상기 산처리단계는 실질적으로 수명이 종료된 촉매를 물리적 재제조 방법으로 처리하지 않고 직접 산 처리할 수도 있지만, 바람직하게는 물리적 재제조 방법에 포함된 초음파 세정단계의 후공정으로서 초음파 세정단계가 종료된 촉매를 산처리하는 것이 좋다.Here, the acid treatment step may be an acid treatment directly without treating the catalyst which has been substantially end of life without a physical remanufacturing method, but is preferably an ultrasonic cleaning step as a post-process of the ultrasonic cleaning step included in the physical remanufacturing method. Acid treatment of the finished catalyst is preferred.

한편, 본 발명에 따른 성능 보정단계는 촉매활성성분인 바나듐, 텅스텐 또는 이들의 혼합물 폐 SCR 촉매 표면에 함침시킨 후 약 150℃에서 약 2시간 동안 건조시키고, 건조된 촉매를 약 500℃에서 약 3시간 동안 소성하는 것을 포함한다.On the other hand, the performance correction step according to the present invention is impregnated on the surface of the spent SCR catalyst catalyst vanadium, tungsten or a mixture thereof, and dried for about 2 hours at about 150 ℃, the dried catalyst at about 500 ℃ about 3 Firing for time.

여기서, 상기 함침되는 바나듐은 촉매의 중량 대비 최대 1.5중량%까지 함침하고, 함침되는 텅스텐은 촉매의 중량 대비 최대 0.5중량%까지 함침한다.Here, the impregnated vanadium is impregnated up to 1.5% by weight based on the weight of the catalyst, tungsten impregnated is impregnated up to 0.5% by weight relative to the weight of the catalyst.

본 발명에 따른 열처리 단계는 가열 가능한 가열장치에 폐 SCR 촉매를 충진시킨 후 공간속도 5,000 내지 10,000hr-1로 공기를 흘려주면서 가열장치의 온도를 450 내지 550℃로 가열한 뒤 이러한 상태를 2 내지 3시간 동안 유지시켜 촉매에 침적된 오염물질을 산화시켜 제거하는 것을 포함한다.In the heat treatment step according to the present invention, after filling the waste SCR catalyst in the heatable heating device, the air is flowed at a space velocity of 5,000 to 10,000 hr −1, and the temperature of the heating device is heated to 450 to 550 ° C., followed by 2 to 2 conditions. Maintaining for 3 hours to oxidize and remove contaminants deposited on the catalyst.

한편, 본 발명에 따른 물리적 재제조 방법, 화학적 재제조 방법 및 촉매 성능보정 등은 오염된 폐 탈질 SCR 촉매의 오염 상태 및 요구되는 재제조 성능조건, 예를 들면 새로운 촉매의 성능대비 90%의 성능을 갖는 재제조 조건에 따라 그 적용이 결정된다.On the other hand, the physical remanufacturing method, the chemical remanufacturing method and the catalyst performance correction according to the present invention are contaminated with the contaminated waste denitrification SCR catalyst and the required remanufacturing performance conditions, for example, 90% of the performance of the new catalyst. Its application depends on the conditions of remanufacturing.

이하에서 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로 이들 실시예 에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for illustrating the present invention in detail and do not limit the scope of the present invention by these examples.

<실시예><Example>

먼저 수명이 실질적으로 종료된 폐탈질 SCR 촉매를 SCR 설비의 촉매 거치대로부터 분리하여 촉매를 회수하였다. First, the waste denitrification SCR catalyst whose life was substantially terminated was separated from the catalyst holder of the SCR plant to recover the catalyst.

이때, 상기 회수된 촉매는 46 cpsi(cell per square inch)의 허니컴 형태의 촉매 1개로서, 열병합 발전소의 배가스 유입부로부터 1,500cm에 이르는 위치의 촉매는 열화되고 중금속이 침착되어 색변형이 심하게 일어나 짙은 갈색을 띄고 있는 상태였으며, 자체 반응 실험 결과 촉매 활성이 온도 범위 350 내지 600℃에 걸쳐 사용하지 않은 신촉매의 60 내지 70% 수준을 유지하고 있었다.At this time, the recovered catalyst is a honeycomb catalyst of 46 cpsi (cell per square inch), the catalyst at a position up to 1,500 cm from the exhaust gas inlet of the cogeneration plant deteriorates and heavy metals are deposited to cause severe color deformation. It was dark brown, and the self-reaction test showed that the catalytic activity was maintained at 60 to 70% of the unused new catalyst over the temperature range 350 to 600 ° C.

그 다음, SCR 반응 장치로부터 회수된 촉매를 0.3 kg/cm2의 압축공기를 이용하여 세척하였다. The catalyst recovered from the SCR reactor was then washed using 0.3 kg / cm 2 of compressed air.

그 다음, 상기 세척된 촉매를 410mm x 410mm x 590mm의 단조식 초음파 발생장치[UIL-600W, 유일초음파, 대한민국]가 구비된 반응기에 충진시킨 뒤 증류수를 충분히 채운 후 24,000Hz에서 15분 동안 초음파 세정 하였고, 초음파 세정이 종료된 촉매를 150℃에서 3시간 동안 건조하였다.Then, the washed catalyst was filled in a reactor equipped with a 410 mm x 410 mm x 590 mm forged ultrasonic generator [UIL-600W, Ultrasonic Wave, Korea], filled with distilled water, and then ultrasonically cleaned at 24,000 Hz for 15 minutes. And the ultrasonic cleaning was completed, the catalyst was dried at 150 ℃ for 3 hours.

그 다음, 건조된 촉매를 410mm x 410mm x 590mm의 단조식 초음파 발생장치[UIL-600W, 유일초음파, 대한민국]가 구비된 반응기에 충진시킨 뒤 pH가 3이 되도록 제조된 황산용액을 충분히 채운 후 24,000Hz에서 15분 동안 초음파 세척을 하였고, 초음파 세척이 종료된 촉매를 150℃에서 3시간 동안 건조하였다.Then, the dried catalyst was charged into a reactor equipped with a 410 mm x 410 mm x 590 mm forged ultrasonic generator [UIL-600W, Ultrasound, Korea], and then filled with a sulfuric acid solution prepared to have a pH of 24,000. Ultrasonic washing was performed for 15 minutes at Hz, and the catalyst after the ultrasonic washing was dried at 150 ° C. for 3 hours.

상기 방법에 1차 세척된 촉매를 육안으로 검사 후 재제조 단계에 따라 촉매가 어느 정도의 성능을 유지하고 있는지 판별한 뒤 촉매 재제조 단계를 적용하고자 촉매의 성능 및 상태를 검사하였다. In the method, the first washed catalyst was visually inspected, and then, after determining the performance of the catalyst according to the remanufacturing step, the performance and condition of the catalyst were examined to apply the catalyst remanufacturing step.

이때, 촉매의 검사방법은 상기 육안으로 검사하는 방법 외에 1차 재제조된 촉매 중 무작위로 촉매를 선택한 후 촉매 물성 측정 및 촉매의 성능 시험을 수행하여 촉매의 성능 평가를 수행하였다.At this time, the inspection method of the catalyst was selected in addition to the method of visual inspection, the catalyst was randomly selected from the first re-produced catalyst, and then the catalyst property measurement and the performance test of the catalyst were performed to evaluate the performance of the catalyst.

상기 평가에 사용된 방법으로서, XRD(X-ray Diffractometer)[Rigaku Dmax II, Rigaku Co., 일본]를 이용 재제조 후의 촉매의 결정구조를 확인하고, BET(Brunauer Emmett Teller)[ASAP 2010, Micromeritics, 미국]로 촉매의 비표면적을 비교하며, TGA(Thermogravimetric Analyzer)[Shimadzu TG-9, Shimadzu, Japan]를 이용하여 재제조된 촉매의 열적거동을 확인하고, ICP(Inductively Coupled Plasma)[Optima 2100 DV, Perkin Elmer Co.]를 이용하여 사용 후 촉매표면에 축적되었던 중금속의 제거정도를 확인하였다.As the method used for the evaluation, XRD (X-ray Diffractometer) [Rigaku Dmax II, Rigaku Co., Japan] was used to confirm the crystal structure of the catalyst after remanufacturing, and BET (Brunauer Emmett Teller) [ASAP 2010, Micromeritics , United States] to compare the specific surface area of the catalyst, to confirm the thermal behavior of the remanufactured catalyst using the Thermogravimetric Analyzer (TGA) [Shimadzu TG-9, Shimadzu, Japan], ICP (Inductively Coupled Plasma) [Optima 2100 DV, Perkin Elmer Co.] was used to confirm the removal of heavy metals accumulated on the catalyst surface after use.

또한, SEM(scanning electron microscopy)[JEOL 5600, Jeol. co. ltd, Japan] 및 EDS(energy dispersive spectrometer)[Stereo scan 440/Link ISIS, Leica Cambridge Ltd.] 분석을 수행하여 재제조 촉매의 표면상태를 관찰하였다. In addition, scanning electron microscopy (SEM) [JEOL 5600, Jeol. co. ltd, Japan] and EDS (energy dispersive spectrometer) [Stereo scan 440 / Link ISIS, Leica Cambridge Ltd.] analyzes were performed to observe the surface state of the remanufacturing catalyst.

상기 1차 세척 및 촉매 성능 검사 후 촉매의 성능을 평가하였다. 촉매의 성능을 평가하기 위하여 사용된 촉매 반응장치는 도 2에 도시된 연속 흐름식 상압 반응기로서 열병합 발전소의 상용 SCR 촉매 반응기의 배출가스를 모사하여 NOx 저감 반응실험에 사용되는 모든 가스의 흐름은 MFC(Mass Flow Controller)[F-100C, Bronkhorst Co.]로 제어가 되며, 반응물의 분석은 Gas Analyzer[Greenline D max. II, 9000, EUROTRON] 및 가스 분석기[Hewlett Packard 9000, 휴렛 패커드, 미국]를 사용하여 분석하였다. 연속 흐름식 상압 반응기의 부피는 45cm3(3cm x 3cm x 5cm) 였으며, PID 제어기를 사용하여 연속 흐름식 상압 반응기의 온도 250 내지 400℃의 범위로 조절하였다.The performance of the catalyst was evaluated after the first wash and catalyst performance test. Catalytic reactor used to evaluate the performance of the catalyst is a continuous flow atmospheric pressure reactor shown in Figure 2 to simulate the exhaust gas of the commercial SCR catalytic reactor of the cogeneration plant, the flow of all the gases used in the NOx reduction reaction experiment is MFC (Mass Flow Controller) [F-100C, Bronkhorst Co.] is controlled by the Gas Analyzer [Greenline D max. II, 9000, EUROTRON] and a gas analyzer [Hewlett Packard 9000, Hewlett Packard, USA]. The volume of the continuous flow atmospheric reactor was 45 cm 3 (3 cm x 3 cm x 5 cm), and the PID controller was used to adjust the temperature of the continuous flow atmospheric reactor in the range of 250 to 400 ° C.

재제조된 열병합 발전소의 상용 SCR 촉매의 특성분석 결과와 NOx 전환 반응실험 결과를 종합 분석하여 촉매의 활성을 평가하였다.The activity of the catalyst was evaluated by comprehensively analyzing the characteristics of the commercial SCR catalyst and the NOx conversion reaction experiment of the regenerated cogeneration plant.

그 결과를 표 1에 나타냈으며, 전환율은 하기 수학식 1로 계산하였다.The results are shown in Table 1, and the conversion rate was calculated by the following equation.

Figure 112006048481094-PAT00001
Figure 112006048481094-PAT00001

Figure 112006048481094-PAT00002
Figure 112006048481094-PAT00002

표 1에 나타낸 바와 같이, 반응변수로서 온도를 변화시켜 가면서, 그리고 공간 속도를 변화시켜 가면서 수행한 1차 세척, 건조 등의 처리를 한 촉매와 폐촉매의 활성을 비교하였다. As shown in Table 1, the activity of the catalyst and the spent catalysts treated with primary washing, drying, etc., carried out with varying temperature and varying space velocity, were compared.

여기서, 상기 온도 및 공간속도를 변화시킨 이유는 실제 열병합 발전소에 적용되는 상용 SCR 촉매의 경우 설치 위치나 설계 조건 등에 따라 촉매층으로 유입되는 오프 가스(off gas)의 온도나 촉매의 설치 장소의 제한 등으로 인한 촉매 수량에 따른 공간 속도가 달라지므로 이를 모사하기 위함이다. Here, the reason for changing the temperature and space velocity is the case of the commercial SCR catalyst applied to the actual cogeneration plant according to the installation location or design conditions, etc. This is to simulate the space velocity depending on the number of catalysts due to.

낮은 온도 영역과 높은 공간속도에서 상기의 물리적 재제조 후 촉매의 성능이 신촉매 대비 90% 이하의 성능을 부이는 촉매의 성능을 보정하기 위하여, 상기 건조된 촉매에 촉매활성성분인 바나디움[Ammonium meta vanadate, Junsei Chemical, 일본] 3g/ft3(촉매 담체) 및 텅스텐[Ammonium tungstate hydrate, Junsei Chemical, 일본] 5g/ft3(촉매 담체)를 함침한 후 150℃에서 3시간 동안 건조시켰다.In order to calibrate the performance of the catalyst after the physical re-manufacturing, which is 90% lower than that of the new catalyst in the low temperature range and high space velocity, vanadium, which is a catalytically active ingredient, is used in the dried catalyst. vanadate, Junsei Chemical, Japan] 3 g / ft 3 (catalyst carrier) and tungsten [Ammonium tungstate hydrate, Junsei Chemical, Japan] 5 g / ft 3 (catalyst carrier) were impregnated and dried at 150 ° C. for 3 hours.

그 다음, 상기 건조된 촉매를 500℃에서 2시간 동안 소성하여 폐 촉매의 성능을 재제조하였다. 이후 촉매는 상용 SCR 촉매 반응 장치에 재조립되어 촉매 재제조 절차를 종료하였다. The dried catalyst was then calcined at 500 ° C. for 2 hours to remanufacture the performance of the spent catalyst. The catalyst was then reassembled in a commercial SCR catalytic reactor to complete the catalyst remanufacturing procedure.

재제조된 촉매를 1차 세척시와 동일한 촉매 반응기를 이용하여 촉매 성능을 측정하였으며, 이를 표 2로 나타냈다. The catalyst performance was measured using the same catalytic reactor as in the first wash of the remanufactured catalyst, which is shown in Table 2.

Figure 112006048481094-PAT00003
Figure 112006048481094-PAT00003

표 2에 나타낸 바와 같이, 화학적 처리까지 모두 마친 촉매의 성능의 경우 대부분 신촉매 기준 90% 이상의 촉매 성능을 갖는 것으로 나타났기 때문에 본 재제조 절차를 통하여 재제조된 촉매의 성능은 신촉매 대비 우수한 성능을 나타냄을 확인하였다. As shown in Table 2, since most of the catalysts that have undergone chemical treatment were found to have a catalyst performance of more than 90% based on the new catalyst, the performance of the catalysts re-produced through this remanufacturing procedure was superior to that of the new catalysts. It confirmed that it was shown.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 일실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the exemplary embodiments described above are to be understood as illustrative in all respects and not as restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the appended claims and their equivalents, rather than the detailed description, are included in the scope of the present invention.

본 발명은 소각장, 열병합 발전소 또는 석탄화력 발전소 등에서 사용되는 질소산화물을 제거하기 위한 SCR 공정의 SCR 촉매를 회수하여 세척, 검사, 성능 보정 및 조립의 단계를 거치게함으로써 전량 폐기되는 촉매의 폐기량을 감소시켜 폐기물 처리비용을 절감하고, 환경오염을 방지할 수 있을 뿐만 아니라, 저렴한 비용으로 폐 탈질 SCR 촉매를 교체할 수 있는 효과가 있다.The present invention is to recover the SCR catalyst of the SCR process for removing nitrogen oxides used in incinerators, cogeneration plants or coal-fired power plants, such as washing, inspection, performance correction and assembly to reduce the amount of waste of the catalyst is discarded entirely In addition to reducing waste disposal costs and preventing environmental pollution, it is possible to replace waste denitrification SCR catalysts at low cost.

Claims (9)

압축공기를 이용하여 회수된 SCR 촉매의 표면에 존재하는 오염물질을 제거하는 오염물질 세척단계; A contaminant washing step of removing contaminants present on the surface of the recovered SCR catalyst using compressed air; 상기 세척단계가 종료된 촉매를 초음파로 세정하는 초음파 세정단계;An ultrasonic cleaning step of ultrasonically cleaning the catalyst in which the washing step is completed; 상기 세정단계가 종료된 촉매의 성능을 검사하는 촉매 검사단계;A catalyst inspection step of examining the performance of the catalyst in which the washing step is completed; 상기 검사단계가 종료된 촉매를 산처리하는 산처리단계;An acid treatment step of acid treatment of the catalyst in which the inspection step is completed; 상기 산처리 단계가 종료된 촉매의 성능을 보정하는 성능 보정단계; 및A performance correction step of correcting the performance of the catalyst in which the acid treatment step is completed; And 상기 성능 보정단계가 종료된 촉매를 열처리하는 열처리단계를 포함하는 폐 탈질 SCR 촉매의 재제조 방법.Method for re-manufacturing the waste denitrification SCR catalyst comprising a heat treatment step of heat-treating the catalyst is completed the performance correction step. 제 1항에 있어서,The method of claim 1, 상기 초음파 세정단계가 초음파 장치가 구비된 반응기에 회수된 SCR 촉매 및 물을 30분 동안 초음파를 이용하여 촉매를 세정하는 것을 특징으로 하는 폐 탈질 SCR 촉매의 재제조 방법.The ultrasonic cleaning step is a method for re-manufacturing the waste denitrification SCR catalyst, characterized in that to clean the catalyst by using ultrasonic waves for 30 minutes SCR catalyst and water recovered in the reactor equipped with the ultrasonic device. 제 1항에 있어서,The method of claim 1, 상기 촉매 검사단계가 ⅰ) 폐 탈질 SCR 촉매를 유도결합플라즈마분광분석기로 측정하여 촉매를 구성하고 있는 활성성분의 손실률 및 촉매표면에 침적된 중금속 함량을 평가하는 단계; ⅱ) 단계 ⅰ)의 폐 탈질 SCR 촉매를 X-선회절분석기 측 정하여 촉매의 결정구조를 평가하는 단계; ⅲ) 단계 ⅱ)의 폐 탈질 SCR 촉매를 비표면적 분석기 및 기공분포측정기로 측정하여 촉매의 비표면적 감소율 및 기공분포를 평가하는 단계; ⅳ) 단계 ⅲ)의 폐 탈질 SCR 촉매를 열중량분석기로 측정하여 촉매의 열적안정성을 평가하는 단계; ⅴ) 단계 ⅳ)의 폐 탈질 SCR 촉매를 촉매 성능 측정장치로 NOx 전환활성을 평가하는 단계를 포함하는 것을 특징으로 하는 폐 탈질 SCR 촉매의 재제조 방법.Wherein the catalyst inspection step iii) measuring the waste denitrification SCR catalyst with an inductively coupled plasma spectrometer to evaluate the loss rate of the active ingredient constituting the catalyst and the heavy metal content deposited on the catalyst surface; Ii) X-ray diffractometer measurement of the waste denitrification SCR catalyst of step iii) to evaluate the crystal structure of the catalyst; Iii) measuring the waste denitrification SCR catalyst of step ii) with a specific surface area analyzer and a pore distribution analyzer to evaluate specific surface area reduction rate and pore distribution of the catalyst; Iii) evaluating the thermal stability of the catalyst by measuring the waste denitrification SCR catalyst of step iv) with a thermogravimetric analyzer; Iii) evaluating the NOx conversion activity of the waste denitrification SCR catalyst of step iii) with a catalytic performance measurement device. 제 3항에 있어서The method of claim 3 상기 단계 ⅰ) 내지 단계 ⅴ) 중 어느 한 단계에서 분석된 폐 탈질촉매가 원하는 조건을 만족하지 못할 경우 그 다음 단계를 진행하지 않고 폐 탈질 촉매를 폐기하는 것을 특징으로 하는 폐 탈질 SCR 촉매의 재제조 방법.If the waste denitrification catalyst analyzed in any one of steps iii) to iii) does not satisfy the desired conditions, the waste denitrification SCR catalyst re-manufacturing is characterized in that the waste denitrification catalyst is discarded without proceeding to the next step. Way. 제 4항에 있어서,The method of claim 4, wherein 상기 원하는 조건이 단계 ⅰ)의 활성성분의 손실률 및 중금속 함량은 손실율 5%이내, 중금속 함량 10%이내; 단계 ⅱ)의 촉매의 결정구조는 아나타제 형태; 단계 ⅲ)의 비표면적 감소율 및 기공분포는 감소율 30%이내, 기공의 분포 중 미세기공분포의 변화율이 50%이내; 단계 ⅳ)의 열적안정성이 분석온도 600℃ 범위 내에서 총 중량 감소율이 5%이내; 단계 ⅴ)의 NOx 전환율이 촉매활성 70%이상인 것을 특징으로 하는 폐 탈질 SCR 촉매의 재제조 방법.The desired condition is that the loss rate and heavy metal content of the active ingredient of step iii) is less than 5% loss, less than 10% heavy metal content; The crystal structure of the catalyst of step ii) is in the anatase form; The specific surface area reduction rate and pore distribution of step iii) are within 30% of reduction rate, and the rate of change of micropore distribution in pore distribution is within 50%; The thermal stability of step iii) is within 5% of the total weight loss within the analysis temperature of 600 ° C .; A process for producing a waste denitrification SCR catalyst, wherein the NOx conversion in step iii) is at least 70% catalytic activity. 제 3항에 있어서,The method of claim 3, wherein 상기 단계 ⅴ)의 폐 탈질 SCR 촉매를 촉매 성능 측정장치로 NOx 전환활성을 평가하는 단계가 배출가스를 모사하여 촉매의 반응활성을 측정할 수 있는 촉매활성 측정장치를 구성한 뒤 상기 촉매활성 측정장치에 촉매를 설치하여 모사된 배출가스를 노출시킴으로써 촉매활성을 측정하는 단계; 촉매를 SCR 설비에 설치한 후 SCR 설비가 운행되는 조건에서 촉매의 반응활성을 측정하는 단계 또는 이들의 조합된 단계를 포함하는 폐 탈질 SCR 촉매의 재제조 방법.The step of evaluating the NOx conversion activity of the waste denitrification SCR catalyst of step iii) as a catalyst performance measuring device constitutes a catalytic activity measuring device capable of measuring the reaction activity of the catalyst by simulating the exhaust gas and then into the catalytic activity measuring device. Measuring the catalytic activity by installing a catalyst and exposing the simulated exhaust gas; A method for re-manufacturing a waste denitrification SCR catalyst comprising measuring the reaction activity of the catalyst under a condition in which the SCR facility is operated after installing the catalyst in the SCR facility or a combination thereof. 제 1항에 있어서,The method of claim 1, 상기 산처리단계가 초음파 장치가 구비된 반응기에 회수된 SCR 촉매 및 pH 1 내지 5로 유지되는 황산, 질산 또는 이들의 혼합물 용액을 충진시킨 후 5 내지 30분 동안 초음파를 이용하여 촉매를 세정하여 산처리 하고, 산처리된 촉매를 물로 5 내지 10분 동안 세척한 후 약 150℃의 온도에서 약 2시간 동안 건조하는 것을 특징으로 하는 폐 탈질 SCR 촉매의 재제조 방법.After the acid treatment step is filled with the recovered SCR catalyst and a solution of sulfuric acid, nitric acid or a mixture thereof maintained at pH 1 to 5 in the reactor equipped with an ultrasonic device for 5 to 30 minutes by washing the catalyst using ultrasonic waves to acid And a process for washing the acid treated catalyst with water for 5 to 10 minutes and then drying at a temperature of about 150 ° C. for about 2 hours. 제 1항에 있어서,The method of claim 1, 상기 성능 보정단계가 촉매활성성분인 바나듐, 텅스텐 또는 이들의 혼합물을 촉매 표면에 함침시킨 후 약 150℃에서 약 2시간 동안 건조시키고, 건조된 촉매를 약 500℃에서 약 3시간 동안 소성하는 것을 포함하는 폐 탈질 SCR 촉매의 재제조 방법.The performance correction step includes impregnating the surface of the catalyst with vanadium, tungsten or a mixture thereof, and then drying at about 150 ° C. for about 2 hours, and calcining the dried catalyst at about 500 ° C. for about 3 hours. A method for remanufacturing a waste denitrification SCR catalyst. 제 1항에 있어서,The method of claim 1, 상기 열처리단계가 가열 가능한 가열장치에 회수된 SCR 촉매를 충진시킨 후 공간속도 5,000 내지 10,000hr-1로 공기를 흘려주면서 가열장치의 온도를 450 내지 550℃로 가열한 뒤 이러한 상태를 2 내지 3시간 동안 유지시켜 촉매에 침적된 오염물질을 산화시켜 제거하는 것을 특징으로 하는 폐 탈질 SCR 촉매의 재제조 방법.After the heat treatment step fills the recovered SCR catalyst in the heatable heating device, the air is flowed at a space velocity of 5,000 to 10,000 hr −1, and the temperature of the heating device is heated to 450 to 550 ° C., and this state is maintained for 2 to 3 hours. A method for remanufacturing a waste denitrification SCR catalyst, wherein the denitrification SCR catalyst is maintained by oxidizing to remove the contaminants deposited on the catalyst.
KR1020060063353A 2005-07-07 2006-07-06 Remanufacturing method for the aged scr de-nox catalyst KR20070006584A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050061436 2005-07-07
KR1020050061436 2005-07-07

Publications (1)

Publication Number Publication Date
KR20070006584A true KR20070006584A (en) 2007-01-11

Family

ID=37871773

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060063353A KR20070006584A (en) 2005-07-07 2006-07-06 Remanufacturing method for the aged scr de-nox catalyst

Country Status (1)

Country Link
KR (1) KR20070006584A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150816A2 (en) * 2011-05-02 2012-11-08 한서대학교 산학협력단 Regeneration or remanufacturing catalyst for hydrogenation processing heavy oil, and method for manufacturing same
KR101271105B1 (en) * 2011-09-05 2013-06-04 주식회사 나노 Methods of recycling a catalyst
KR101321421B1 (en) * 2011-01-12 2013-10-28 리젠아이(주) RECYCLING SYSTEM FOR SPENT CATALYST OF DE―NOx EQUIPMENT
WO2014058121A1 (en) * 2012-10-12 2014-04-17 한서대학교 산학협력단 Method for remanufacture in situ of commercial denitration scr catalyst
KR101456275B1 (en) * 2014-09-17 2014-11-04 주식회사 코캣 Process of regenerating catalyst for denitration
CN104667997A (en) * 2015-01-14 2015-06-03 北京华电斯莱克顿技术有限公司 SCR catalyst regeneration method
CN114917963A (en) * 2022-05-11 2022-08-19 湖北景目环保科技有限公司 SCR denitration catalyst cleaning and regenerating process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321421B1 (en) * 2011-01-12 2013-10-28 리젠아이(주) RECYCLING SYSTEM FOR SPENT CATALYST OF DE―NOx EQUIPMENT
WO2012150816A2 (en) * 2011-05-02 2012-11-08 한서대학교 산학협력단 Regeneration or remanufacturing catalyst for hydrogenation processing heavy oil, and method for manufacturing same
WO2012150816A3 (en) * 2011-05-02 2013-03-21 한서대학교 산학협력단 Regeneration or remanufacturing catalyst for hydrogenation processing heavy oil, and method for manufacturing same
US9457343B2 (en) 2011-05-02 2016-10-04 Hanseo University Academic Cooperation Foundation Regeneration or remanufacturing catalyst for hydrogenation processing heavy oil, and method for manufacturing same
KR101271105B1 (en) * 2011-09-05 2013-06-04 주식회사 나노 Methods of recycling a catalyst
WO2014058121A1 (en) * 2012-10-12 2014-04-17 한서대학교 산학협력단 Method for remanufacture in situ of commercial denitration scr catalyst
US8932972B2 (en) 2012-10-12 2015-01-13 Hanseo University Academic Cooperation Foundation Remanufactured SCR aged catalyst by in-situ technology
KR101456275B1 (en) * 2014-09-17 2014-11-04 주식회사 코캣 Process of regenerating catalyst for denitration
CN104667997A (en) * 2015-01-14 2015-06-03 北京华电斯莱克顿技术有限公司 SCR catalyst regeneration method
CN114917963A (en) * 2022-05-11 2022-08-19 湖北景目环保科技有限公司 SCR denitration catalyst cleaning and regenerating process

Similar Documents

Publication Publication Date Title
KR20070006584A (en) Remanufacturing method for the aged scr de-nox catalyst
KR101345444B1 (en) Remanufactured scr aged catalyst by in-situ technology
CA2847671C (en) Method for suppressing increase in so2 oxidation rate of nox removal catalyst
EP0787521B1 (en) Method and apparatus for treating combustion exhaust gases
JP3480596B2 (en) Dry desulfurization denitrification process
JP2013056319A5 (en)
DK2248584T3 (en) Process for regenerating a catalyst for the treatment of effluent gas
US20080220966A1 (en) Denitrification catalyst regeneration method
WO2009113995A1 (en) Method of regeneration of scr catalyst
KR100601035B1 (en) Method of regenerating nox removal catalyst
JP6249689B2 (en) Exhaust gas treatment regeneration catalyst and exhaust gas treatment catalyst regeneration method
KR101456275B1 (en) Process of regenerating catalyst for denitration
KR100887342B1 (en) Regeneration Method of Used 3-way Catalyst for Gasoline Engine Vehicle and Remanufacturing Method of Used Catalytic Converter
Kapkowski et al. Toward a viable ecological method for regenerating a commercial SCR catalyst–Selectively leaching surface deposits and reconstructing a pore landscape
CN117147758A (en) SCR denitration catalyst poisoning diagnosis method
EP2969139B1 (en) Method for removing iron material from a catalytic converter using an aqueous alkaline solution and an antioxidant
KR20130140189A (en) Method for regenerating exhaust gas purifying catalyst
KR20120009894A (en) Regeneration method for activity of spent activated carbon catalyst for selective catalytic reduction
JP4905985B2 (en) Recycling of used denitration catalyst
JP5716188B2 (en) Arsenic compound removal method and removal apparatus, and denitration catalyst regeneration method and regeneration apparatus
JP6424680B2 (en) Method of regenerating denitration catalyst
Christou et al. Efficient in-situ regeneration method of the catalytic activity of aged TWC
JP2002316051A (en) Method and apparatus for regenerating denitration catalyst or dioxin decomposition catalyst
KR20060016701A (en) Performance evaluation and regeneration method of aged de-nox catalysts
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee