KR20070003042A - Method for fabricating metal interconnect in semiconductor device - Google Patents

Method for fabricating metal interconnect in semiconductor device Download PDF

Info

Publication number
KR20070003042A
KR20070003042A KR1020050058769A KR20050058769A KR20070003042A KR 20070003042 A KR20070003042 A KR 20070003042A KR 1020050058769 A KR1020050058769 A KR 1020050058769A KR 20050058769 A KR20050058769 A KR 20050058769A KR 20070003042 A KR20070003042 A KR 20070003042A
Authority
KR
South Korea
Prior art keywords
film
forming
metal
contact
zrb2
Prior art date
Application number
KR1020050058769A
Other languages
Korean (ko)
Other versions
KR100687879B1 (en
Inventor
은병수
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020050058769A priority Critical patent/KR100687879B1/en
Publication of KR20070003042A publication Critical patent/KR20070003042A/en
Application granted granted Critical
Publication of KR100687879B1 publication Critical patent/KR100687879B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for forming a metal contact of a semiconductor device is provided to improve barrier characteristics and to obtain excellent contact resistance and step coverage by using an amorphous metal film as a barrier metal. An interlayer dielectric(320) is formed on a semiconductor substrate(300) with a conductive pattern(310). A contact hole for exposing partially the conductive pattern to the outside is formed on the resultant structure by removing selectively the interlayer dielectric. A first metal film(340) is formed on the entire surface of the resultant structure. A ZrB2 layer is formed on the first metal film. A contact plug metal film for burying the ZrB2 layer and filling the contact hole is formed thereon. The ZrB2 layer is used as a barrier metal.

Description

반도체 소자의 금속컨택 형성방법{Method for fabricating metal interconnect in semiconductor device}Method for fabricating metal interconnect in semiconductor device

도 1a 내지 도 1c는 종래 기술에 따른 반도체 소자의 금속컨택 형성방법을 설명하기 위해 나타내보인 도면들이다. 1A to 1C are diagrams illustrating a metal contact forming method of a semiconductor device according to the related art.

도 2는 종래 기술에 따른 반도체 소자의 금속컨택 형성시 발생하는 문제점을 설명하기 위해 나타내보인 셈(SEM) 사진이다.FIG. 2 is a SEM photograph illustrating a problem occurring when forming a metal contact of a semiconductor device according to the prior art. FIG.

도 3 내지 도 6은 본 발명에 따른 반도체 소자의 금속컨택 형성방법을 설명하기 위해 나타내보인 도면들이다.3 to 6 are views illustrating a metal contact forming method of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

300 : 반도체 기판 310 : 도전막패턴300: semiconductor substrate 310: conductive film pattern

320 : 층간절연막 340 : 제1 금속막320: interlayer insulating film 340: first metal film

350 : 제2 금속막 380 : 컨택플러그용 금속막350: second metal film 380: metal film for contact plug

본 발명은 반도체 소자의 제조방법에 관한 것으로서, 보다 상세하게는 반도체 소자의 금속컨택 형성방법에 관한 것이다. The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a metal contact of a semiconductor device.

일반적으로 반도체 소자를 형성할 경우, 반도체 소자의 금속컨택을 형성하기 위하여 반도체 기판과 배선층을 절연한 층간절연막 상에 비트라인을 형성하고, 그 위에 금속간절연막을 형성한 다음, 금속간절연막 내에 컨택홀을 형성하고, 컨택플러그용 금속막을 컨택홀 내부에 매립함으로써 비트라인과 비트라인을 연결하는 금속컨택플러그를 형성하였다.In general, in the case of forming a semiconductor device, in order to form a metal contact of the semiconductor device, a bit line is formed on an interlayer insulating film insulated from the semiconductor substrate and the wiring layer, an intermetallic insulating film is formed thereon, and then a contact is made in the intermetallic insulating film. A hole was formed and a metal contact plug connecting the bit line and the bit line was formed by filling the contact plug metal film in the contact hole.

이하 도면을 참조하여 종래기술에 따른 반도체 소자의 금속컨택 형성방법에 대하여 보다 상세하게 설명한다.Hereinafter, a method for forming a metal contact of a semiconductor device according to the prior art will be described in more detail with reference to the accompanying drawings.

도 1a 내지 도 1c는 종래 기술에 따른 반도체 소자의 금속컨택 형성방법을 설명하기 위해 나타내보인 도면들이다. 그리고 도 2는 종래 기술에 따른 반도체 소자의 금속컨택 형성시 발생하는 문제점을 설명하기 위해 나타내보인 셈(SEM) 사진이다.1A to 1C are diagrams illustrating a metal contact forming method of a semiconductor device according to the related art. FIG. 2 is a SEM photograph illustrating a problem occurring when forming a metal contact of a semiconductor device according to the prior art.

먼저 도 1a를 참조하면, 도전막패턴(110)이 형성되어 있는 반도체 기판(100) 상에 층간절연막(130)을 형성한 다음, 층간절연막(130)을 선택적으로 식각하여 컨택홀(140)을 형성한다. Referring to FIG. 1A, an interlayer insulating film 130 is formed on a semiconductor substrate 100 on which a conductive film pattern 110 is formed, and then the contact hole 140 is selectively etched by etching the interlayer insulating film 130. Form.

다음에 도 1b를 참조하면, 컨택홀(140) 및 층간절연막(130) 전면에 티타늄(Ti)막(150) 및 티타늄나이트라이드(TiN)막(160)을 포함하는 장벽금속층(170)을 형성한다. 여기서 티타늄(Ti)막(150)은 이온금속플라즈마(IMP; Ion metal plasma) 증착방법을 이용하여 형성하고, 티타늄나이트라이드(TiN)막(160)은 유기금속증착(MOCVD; Metal organic chemical vapor deposition) 방법을 이용하여 형성한다. Next, referring to FIG. 1B, a barrier metal layer 170 including a titanium (Ti) film 150 and a titanium nitride (TiN) film 160 is formed on the contact hole 140 and the interlayer insulating film 130. do. Here, the titanium (Ti) film 150 is formed using an ion metal plasma (IMP) deposition method, and the titanium nitride (TiN) film 160 is formed of metal organic chemical vapor deposition (MOCVD). Form using the method.

다음에 도 1c를 참조하면, 장벽금속층(170) 및 컨택홀(140)을 매립하도록 컨 택플러그용 금속막(180)을 형성한다. 컨택플러그용 금속막(180)은 텅스텐(W)막으로 형성할 수 있다. 이를 위해 사일렌(SiH₄)가스를 30sccm의 유량으로 공급하고, 육불화텅스텐(WF6) 가스를 40sccm의 유량으로 공급하여 대략 400Å의 두께로 핵생성층(nuclear layer)(도시하지 않음)을 형성한다. 다음에, 수소(H₂)가스의 환원반응에 의하여 텅스텐(W) 막이 컨택홀(140)을 모두 매립할 때까지 대략 3600Å의 두께로 텅스텐(W)막을 성장시킨다.Next, referring to FIG. 1C, the contact plug metal layer 180 is formed to fill the barrier metal layer 170 and the contact hole 140. The contact plug metal film 180 may be formed of a tungsten (W) film. To this end, a siren (SiH₄) gas is supplied at a flow rate of 30 sccm, and a tungsten hexafluoride (WF 6 ) gas is supplied at a flow rate of 40 sccm to form a nuclear layer (not shown) with a thickness of approximately 400 kPa. do. Next, the tungsten (W) film is grown to a thickness of approximately 3600 kPa until the tungsten (W) film completely fills the contact holes 140 by the reduction reaction of hydrogen (H 2) gas.

그런데 반도체 소자가 고집적화됨에 따라 디자인 룰이 감소하면서 캐패시터 정전용량의 확보를 위해 스토리지노드 산화막이 높아지게 되었다. 이에 따라 금속컨택의 단차가 35000Å 이상이 되어 종횡비(aspect ratio)가 30이상 되면서 장벽금속층(170)으로 이용하는 티타늄나이트라이드(TiN)막(160) 및 핵생성층인 텅스텐(W)막이 컨택홀(140) 하부에 너무 얇게 증착되면서 후속 컨택플러그용 금속막(180)의 매립공정에서 효과적인 배리어막 역할을 할 수 없게 되고 TiFx 와 같이 비저항이 높은 막이 형성되어 높은 컨택저항을 유발시키는 문제가 발생한다. 또한, 사일렌(SiH₄) 가스를 환원가스로 이용할 경우, 컨택홀(140) 상부에 오버행을 유발시켜 후속 컨택플러그용 금속막(180) 매립 공정시, 육불화텅스텐(WF6) 가스의 공급을 차단하여 우수한 스텝 커버리지(step coverage)를 얻을 수 없다.However, as semiconductor devices have been highly integrated, design rules have been reduced and storage node oxides have been increased to secure capacitor capacitance. Accordingly, the titanium contact layer has a step ratio of 35000 GPa or more, an aspect ratio of 30 or more, and a titanium nitride (TiN) film 160 used as the barrier metal layer 170 and a tungsten (W) film, which is a nucleation layer, are used as contact holes ( 140) As it is deposited too thin in the lower portion, it may not serve as an effective barrier film in the subsequent filling process of the contact plug metal layer 180 and a high resistivity film such as TiFx may be formed to cause high contact resistance. In addition, when using a SiH (SiH 가스) gas as a reducing gas, it causes an overhang in the upper portion of the contact hole 140, the supply of tungsten hexafluoride (WF 6 ) gas in the subsequent contact plug metal film 180 embedding process Blocking does not provide good step coverage.

한편, 컨택플러그용 금속막(180)으로서 텅스텐(W)막을 증착시, 수소(H₂)가스를 환원가스로 이용할 경우, 초기의 느린 반응속도로 인하여 장벽금속층(170)이 육불화텅스텐(WF6) 가스에 노출되는 시간이 길어짐에 따라 육불화텅스텐(WF6) 가스 가 티타늄나이트라이드(TiN)막(160)의 사이로 침투하여 티타늄(Ti)막(150)과 반응하여 도 2에 도시된 바와 같이 폭발성 결함(volcano defect)이 발생한다. 이러한 문제를 방지하기 위해 티타늄나이트라이드(TiN)막(160)의 두께를 두껍게 하는 경우, 컨택홀(140) 상부(top)의 입구가 좁아져 컨택플러그용 금속막(180)의 갭필 특성이 저하된다.On the other hand, when depositing a tungsten (W) film as the contact plug metal film 180, when hydrogen (H₂) gas is used as the reducing gas, the barrier metal layer 170 is tungsten hexafluoride (WF 6 ) due to the initial slow reaction rate. As the exposure time to the gas increases, tungsten hexafluoride (WF 6 ) gas penetrates between the titanium nitride (TiN) film 160 and reacts with the titanium (Ti) film 150, as shown in FIG. 2. Similarly, a volcano defect occurs. In order to prevent such a problem, when the thickness of the titanium nitride (TiN) layer 160 is thickened, the opening of the upper portion of the contact hole 140 is narrowed, so that the gap fill characteristic of the contact plug metal layer 180 is reduced. do.

그리고 또 다른 문제로 티타늄나이트라이드(TiN)막(160)이 대기 중의 산소(O₂)와 결합하여 후속공정에서 컨택플러그용 금속막(180)의 핵생성층이 성장하지 못하여 상기 컨택플러그용 금속막(180)의 매립 특성이 열화되어 급격한 컨택저항 증가 현상이 발생하고 있다. 이를 방지하기 위해 장벽금속층 형성 후 컨택플러그용 금속막을 지연시간 없이 형성하거나 최소한 2-4시간 내에 매립 공정을 진행해야하나 공정상의 큰 부담이 된다.Another problem is that the titanium nitride (TiN) layer 160 is combined with oxygen (O 2) in the atmosphere, so that the nucleation layer of the contact plug metal layer 180 does not grow in a subsequent process, so that the contact plug metal layer cannot be grown. The buried characteristic of the 180 is deteriorated and a sudden increase in contact resistance occurs. In order to prevent this, the contact plug metal film must be formed without a delay time after the barrier metal layer is formed or the buried process must be performed within at least 2-4 hours, but this is a big burden on the process.

본 발명이 이루고자 하는 기술적 과제는 반도체 소자의 금속컨택 형성공정에서 장벽금속층의 형성물질을 변화시킴으로써 여러 가지 문제점을 개선할 수 있는 반도체 소자의 금속컨택 형성방법을 제공하는데 있다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a method for forming a metal contact of a semiconductor device, which may solve various problems by changing a material of forming a barrier metal layer in a metal contact forming process of a semiconductor device.

상기 기술적 과제를 달성하기 위하여, 본 발명에 따른 반도체 소자의 금속컨택 형성방법은, 도전막패턴이 형성되어 있는 반도체 기판 상에 층간절연막을 형성하는 단계; 상기 층간절연막을 선택적으로 제거하여 상기 도전막패턴의 소정영역을 노출시키는 컨택홀을 형성하는 단계; 상기 컨택홀 및 층간절연막 전면에 제1 금속 막을 형성하는 단계; 상기 제1 금속막 위에 붕화지르코늄(ZrB₂)막을 형성하는 단계; 상기 붕화지르코늄(ZrB₂)막 및 컨택홀을 매립하도록 컨택플러그용 금속막을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above technical problem, a method of forming a metal contact of a semiconductor device according to the present invention, forming an interlayer insulating film on a semiconductor substrate on which a conductive film pattern is formed; Selectively removing the interlayer insulating film to form a contact hole exposing a predetermined region of the conductive film pattern; Forming a first metal film over the contact hole and the interlayer insulating film; Forming a zirconium boride (ZrB₂) film on the first metal film; And forming a contact plug metal film to fill the zirconium boride (ZrB₂) film and the contact hole.

본 발명에 있어서, 상기 제1 금속막은 티타늄(Ti) 또는 탄탈륨(Ta)을 포함하여 형성할 수 있다.In the present invention, the first metal film may include titanium (Ti) or tantalum (Ta).

상기 붕화지르코늄(ZrB₂)막은 원거리 플라즈마 증착(RPECVD)방법을 이용하는 것이 바람직하다.Preferably, the zirconium boride (ZrB₂) film uses a remote plasma deposition (RPECVD) method.

상기 제1 금속막 및 붕화지르코늄(ZrB₂)막을 형성하는 단계는, 인-시츄로 진행하는 것이 바람직하다.The forming of the first metal film and the zirconium boride (ZrB₂) film is preferably performed in-situ.

본 발명에 있어서, 컨택플러그용 금속막을 형성하는 단계는, 상기 붕화지르코늄(ZrB₂)막 상에 핵생성층을 형성하는 단계; 및 상기 핵생성층을 성장시키는 단계를 더 포함하여 형성할 수 있다.In the present invention, the forming of the contact plug metal film may include forming a nucleation layer on the zirconium boride (ZrB₂) film; And growing the nucleation layer.

상기 컨택플러그용 금속막을 형성하는 단계는, 수소(H₂)가스를 육불화텅스텐(WF6) 가스의 환원가스로 공급하는 것이 바람직하다.In the forming of the contact plug metal film, hydrogen (H 2) gas is preferably supplied as a reducing gas of tungsten hexafluoride (WF 6 ) gas.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명하고자 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like parts are designated by like reference numerals throughout the specification.

도 3 내지 도 6는 본 발명의 실시예에 따른 반도체 소자의 금속컨택 형성방법을 설명하기 위하여 나타내 보인 도면들이다.3 to 6 are views illustrating a method of forming a metal contact of a semiconductor device according to an embodiment of the present invention.

먼저 도면에 도시하지는 않았지만, 먼저 도면에 도시하지는 않았지만, 반도체 기판(300)의 활성영역에 소정의 공정을 진행하여 트랜지스터(도시하지 않음)를 형성한다. Although not shown in the drawing, first, although not shown in the drawing, a predetermined process is performed in the active region of the semiconductor substrate 300 to form a transistor (not shown).

다음에 도 3을 참조하면, 트랜지스터 상에 도전막 패턴(310)을 형성하고, 트랜지스터 상부에 형성될 배선을 전기적으로 절연하고자 반도체 기판(300) 전면에 층간절연막(320)을 형성한다. 계속해서 층간절연막(320) 위에 반도체 기판(300)의 활성영역이 선택적으로 개방되는 마스크막 패턴(도시하지 않음)을 형성한다. 다음에 마스크막 패턴을 식각마스크로 층간절연막(320)을 식각하여 반도체 기판(300)의 표면을 노출시키는 컨택홀(330)을 형성하고 마스크막 패턴은 제거한다. 그리고 컨택홀(330) 하부에 생성되는 자연 산화막(도시하지 않음)을 제거하기 위한 세정공정을 진행한다.Next, referring to FIG. 3, a conductive film pattern 310 is formed on a transistor, and an interlayer insulating film 320 is formed on the entire surface of the semiconductor substrate 300 to electrically insulate the wiring to be formed on the transistor. Subsequently, a mask layer pattern (not shown) is formed on the interlayer insulating layer 320 to selectively open the active region of the semiconductor substrate 300. Next, the interlayer insulating layer 320 is etched using the mask layer pattern as an etch mask to form a contact hole 330 exposing the surface of the semiconductor substrate 300, and the mask layer pattern is removed. In addition, a cleaning process for removing a natural oxide film (not shown) generated under the contact hole 330 is performed.

다음에 도 4를 참조하면, 컨택홀(330) 및 층간절연막(320) 전면에 제1 금속막으로서 티타늄(Ti)막(340)을 형성하고, 티타늄(Ti)막(340)위에 제2 금속막으로서 붕화지르코늄(ZrB₂)막(350)을 증착하여 장벽금속층(360)을 형성한다. 여기서 티타늄(Ti)막(340)은 이온금속플라즈마(Ion metal plasma; IMP) 증착방법을 이용하여 대략 200Å의 두께로 형성할 수 있다. 제1 금속막은 탄탈륨(Ta)막을 이용할 수도 있다. 그리고 붕화지르코늄(ZrB₂)막(350)은 저온플라즈마증착 방법으로서 원거리 플라즈마 증착(Remote plasma enhanced chemical vapor deposition; RPECVD)방법으 로 대략 100Å의 두께로 형성할 수 있다. 붕화지르코늄(ZrB₂)막(350)은 180-300℃의 온도에서 소스가스로 Zr(BH₄)₄가스를 이용하고, 10-4 - 10-3 의 압력 하에서 수소(H₂) 플라즈마를 이용하여 형성할 수 있다. 수소(H₂) 플라즈마를 이용할 경우, 붕화지르코늄(ZrB₂)막(350) 내에 붕소(B)의 함유비율은 (B/Zr=2)로 유지시켜준다. 붕화지르코늄(ZrB₂)막(350) 내에 붕소(B)의 함유비율이 2보다 높을 경우, 붕소(B)는 대기 중의 산소(O₂)와 결합하여 박막의 저항이 높아지기 때문에 수소(H₂) 플라즈마를 이용하여 붕화지르코늄(ZrB₂)막(350) 내의 지르코늄(Zr)과 붕소(B)의 정량비가 정확히 2인 ZrB₂로 유지시키면 붕화지르코늄(ZrB₂ )막(350)이 대기 중에 노출되었을 때 산소(O₂)와 결합하는 현상을 방지하여 박막의 저항이 급격히 높아지는 현상을 개선할 수 있다. Next, referring to FIG. 4, a titanium (Ti) film 340 is formed as a first metal film on the contact hole 330 and the interlayer insulating film 320, and a second metal is formed on the titanium film 340. A zirconium boride (ZrB₂) film 350 is deposited as a film to form a barrier metal layer 360. Here, the titanium (Ti) film 340 may be formed to a thickness of about 200 μs using an ion metal plasma (IMP) deposition method. A tantalum (Ta) film may be used for the first metal film. The zirconium boride (ZrB₂) film 350 may be formed to a thickness of approximately 100 kW by a remote plasma enhanced chemical vapor deposition (RPECVD) method as a low temperature plasma deposition method. The zirconium boride (ZrB₂) film 350 may be formed by using Zr (BH₄) ₄ gas as a source gas at a temperature of 180-300 ° C., and using hydrogen (H₂) plasma under a pressure of 10 −4 −10 −3 . Can be. When using a hydrogen (H 2) plasma, the content of boron (B) in the zirconium boride (ZrB 2) film 350 is maintained at (B / Zr = 2). When the content ratio of boron (B) in the zirconium boride (ZrB₂) film 350 is higher than 2, boron (B) is combined with oxygen (O₂) in the atmosphere, which increases the resistance of the thin film. Therefore, hydrogen (H₂) plasma is used. If the ratio of zirconium (Zr) and boron (B) in the zirconium boride (ZrB₂) film 350 is maintained at ZrB₂ with an exact ratio of 2, the zirconium boride (ZrB₂) film 350 is exposed to oxygen (O₂) By preventing the phenomenon of bonding can be improved that the resistance of the thin film rapidly increases.

즉, 종래에는 제2 금속막으로서 티타늄나이트라이드(TiN)막을 이용할 경우, 티타늄나이트라이드(TiN)막이 대기 중의 산소(O₂)와의 결합하게 되는 문제로 인해 컨택플러그용 금속막의 형성시 핵생성층이 성장되지 못하여 후속 컨택플러그용 금속막의 매립 특성이 열화되어 컨택저항이 증가하는 현상을 방지할 수 있게 된다. 따라서 장비운용상에 여유를 가질 수 있게 된다. 또한 붕화지르코늄(ZrB)의 경우, 비정질성 막을 형성하기 때문에 종래의 티타늄나이트라이드(TiN)막처럼 결정입자가 서로 접하는 경계가 규칙적으로 존재하지 않아 후속의 텅스텐(W)막 증착 공정에서 육불화텅스텐(WF6) 가스의 어택(attack)을 효과적으로 방지할 수 있다. 이 경우 티타늄(Ti)막(340)과 붕화지르코늄(ZrB₂)막(350)의 형성은 인-시츄(in-situ)로 진행 할 수 있다.That is, when a titanium nitride (TiN) film is conventionally used as a second metal film, the nucleation layer is formed during the formation of the contact plug metal film due to the problem that the titanium nitride (TiN) film is combined with oxygen (O 2) in the atmosphere. Since it is not grown, the buried characteristics of the subsequent contact plug metal film may be deteriorated, thereby preventing the increase in contact resistance. Therefore, it is possible to afford the equipment operation. In addition, since zirconium boride (ZrB) forms an amorphous film, there is no regular boundary between crystal grains contacting each other like a conventional titanium nitride (TiN) film, and thus tungsten hexafluoride in a subsequent tungsten (W) film deposition process. (WF 6 ) It can effectively prevent the attack of the gas (WF 6 ). In this case, the titanium (Ti) film 340 and the zirconium boride (ZrB₂) film 350 may be formed in-situ.

다음에 도 5를 참조하면, 붕화지르코늄(ZrB₂)막(350) 위에 수소(H₂)가스를 350-450sccm의 유량으로 공급하고 육불화텅스텐(WF6) 가스를 20-30sccm의 유량으로 공급하여 대략 400Å의 두께의 컨택플러그용 금속막의 핵생성층(nuclear layer)(370)을 형성한다.Next, referring to FIG. 5, hydrogen (H₂) gas is supplied on the zirconium boride (ZrB₂) film 350 at a flow rate of 350-450 sccm, and tungsten hexafluoride (WF 6 ) gas is supplied at a flow rate of 20-30 sccm. A nucleation layer 370 of a metal film for contact plugs having a thickness of 400 μs is formed.

핵생성층(370)은 후속 컨택플러그용 금속막 매립공정시 텅스텐(W)막의 성장을 돕는 역할을 한다. 그리고 장벽금속층(360)이 육불화텅스텐(WF6) 가스에 노출되는 시간을 감소시킴으로써 빠른 성장속도를 이용한 육불화텅스텐(WF6) 가스의 어택으로부터 장벽금속층(360)을 보호하는데 있다. 그러나 핵생성층(370)을 너무 두껍게 증착하면, 스텝 커버리지가 좋지 않은 핵생성층(370)의 특성상 컨택홀(330)에 두꺼운 오버행(overhang)을 발생시켜 후속 컨택플러그용 금속막의 매립공정시 육불화텅스텐(WF6) 가스의 공급이 차단되어 우수한 스텝 커버리지를 얻을 수 없게 된다. 즉, 핵생성층(370)은 될 수 있으면 얇게, 그리고 컨택홀(330) 하부에서 골고루 증착이 되도록 하여 컨택플러그용 금속막이 보이드 없이 성장되도록 하고, 오버행이 없이 우수한 스텝 커버리지를 확보할 수 있어야 한다. The nucleation layer 370 serves to help the growth of the tungsten (W) film during the subsequent contact plug metal film embedding process. And is to protect the barrier metal layer (360) is tungsten hexafluoride (WF 6) a barrier metal layer (360) from the attack of tungsten hexafluoride six (WF 6) gas using a rapid growth rate by decreasing the time of exposure to the gas. However, if the nucleation layer 370 is deposited too thick, a thick overhang is generated in the contact hole 330 due to the nature of the nucleation layer 370 having poor step coverage. The supply of tungsten fluoride (WF 6 ) gas is interrupted and excellent step coverage cannot be obtained. That is, the nucleation layer 370 should be as thin as possible and evenly deposited under the contact hole 330 so that the contact plug metal film can be grown without voids and excellent step coverage can be obtained without overhangs. .

이를 위해 종래에는 사일렌(SiH₄)을 환원가스로 이용하던 것을 본 발명에서는 수소(H₂)가스를 환원가스로 이용하고, 육불화텅스텐(WF6) 가스를 공급함으로써 초기 반응속도는 느리지만 스텝 커버리지가 우수하고, 사일렌(SiH₄) 가스를 환원가스로 이용할 경우, 컨택홀(340) 상부에 오버행이 발생하는 것을 방지할 수 있어 우수한 매립 특성을 얻을 수 있다. 상술한 바와 같이 종래에는, 수소(H₂)가스를 환원가스로 하는 조건 하에서 진행하면 느린 초기 반응속도로 인하여 장벽금속층(360)에 대한 육불화텅스텐(WF6) 가스의 어택이 발생하게 되나 본 발명에서는 붕화지르코늄(ZrB₂)막(350)이 배리어 역할을 함으로써 어택이 발생하지 않는다.To this end, in the present invention, the use of silen (SiH₄) as a reducing gas in the present invention by using hydrogen (H₂) gas as the reducing gas, by supplying tungsten hexafluoride (WF 6 ) gas, the initial reaction rate is slow but step coverage In this case, when the SiH₄ gas is used as the reducing gas, the overhang may be prevented from occurring in the upper portion of the contact hole 340, thereby obtaining excellent landfill characteristics. As described above, in the prior art, when the hydrogen (H 2) gas is used as the reducing gas, the attack of the tungsten hexafluoride (WF 6 ) gas to the barrier metal layer 360 occurs due to the slow initial reaction rate. In the zirconium boride (ZrB₂) film 350 serves as a barrier, no attack occurs.

다음에 도 6을 참조하면, 컨택홀(330) 및 붕화지르코늄(ZrB₂)막(350)을 매립하도록 핵생성층(370)을 성장시켜 컨택플러그용 금속막(380)을 형성한다. 여기서 컨택플러그용 금속막(380)은 수소(H₂)가스를 환원가스로 하여 3500-4500sccm의 유량으로 공급하고, 육불화텅스텐(WF6) 가스를 200-300sccm의 유량으로 공급하여 대략 3600Å의 두께로 형성한다. 이처럼 수소(H₂)가스를 환원가스로 하여 핵생성층(370)을 성장시켜 컨택플러그용 금속막(380) 매립공정을 진행할 수 있는 이유는 비정질성 붕화지르코늄(ZrB₂)막(350)의 우수한 배리어 특성 때문이다. Next, referring to FIG. 6, the nucleation layer 370 is grown to fill the contact hole 330 and the zirconium boride (ZrB₂) film 350 to form a contact plug metal film 380. Here, the contact plug metal film 380 supplies hydrogen (H₂) gas as a reducing gas at a flow rate of 3500-4500 sccm, and supplies a tungsten hexafluoride (WF 6 ) gas at a flow rate of 200-300 sccm to have a thickness of approximately 3600 kPa. To form. The reason why the nucleation layer 370 can be grown by using hydrogen (H₂) gas as a reducing gas and the reason why the contact plug metal film 380 can be buried is an excellent barrier of the amorphous zirconium boride (ZrB₂) film 350. Because of its characteristics.

지금까지 설명한 바와 같이, 본 발명에 따른 반도체소자의 금속컨택 형성방법에 의하면, 장벽금속층을 비정질성 금속을 포함하는 제2 금속막을 포함하여 형성함으로써 배리어 특성을 향상시킬 수 있다. 또한 비정질성 금속의 우수한 배리어 특성으로 수소(H₂) 가스를 환원가스로 이용하여 우수한 컨택저항과 스텝 커버리지를 얻을 수 있는 효과가 있다. As described so far, according to the method for forming a metal contact of the semiconductor device according to the present invention, the barrier property can be improved by forming the barrier metal layer including the second metal film containing the amorphous metal. In addition, it is possible to obtain excellent contact resistance and step coverage by using hydrogen (H₂) gas as a reducing gas as an excellent barrier property of amorphous metal.

Claims (6)

도전막패턴이 형성되어 있는 반도체 기판 상에 층간절연막을 형성하는 단계;Forming an interlayer insulating film on the semiconductor substrate on which the conductive film pattern is formed; 상기 층간절연막을 선택적으로 제거하여 상기 도전막패턴의 소정영역을 노출시키는 컨택홀을 형성하는 단계; Selectively removing the interlayer insulating film to form a contact hole exposing a predetermined region of the conductive film pattern; 상기 컨택홀 및 층간절연막 전면에 제1 금속막을 형성하는 단계;Forming a first metal film over the contact hole and the interlayer insulating film; 상기 제1 금속막 위에 붕화지르코늄(ZrB₂)막을 형성하는 단계;Forming a zirconium boride (ZrB₂) film on the first metal film; 상기 붕화지르코늄(ZrB₂)막 및 컨택홀을 매립하도록 컨택플러그용 금속막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 금속컨택 형성방법.And forming a contact plug metal film so as to fill the zirconium boride (ZrB₂) film and the contact hole. 제1항에 있어서,The method of claim 1, 상기 제1 금속막은 티타늄(Ti) 또는 탄탈륨(Ta)을 포함하는 것을 특징으로 하는 반도체 소자의 금속컨택 형성방법.And the first metal film comprises titanium (Ti) or tantalum (Ta). 제1항에 있어서,The method of claim 1, 상기 붕화지르코늄(ZrB₂)막은 원거리 플라즈마 증착(RPECVD)방법을 이용하여 형성하는 것을 특징으로 하는 반도체 소자의 금속컨택 형성방법.The zirconium boride (ZrB₂) film is a metal contact forming method of a semiconductor device, characterized in that formed by using a remote plasma deposition (RPECVD) method. 제1항에 있어서,The method of claim 1, 상기 제1 금속막 및 붕화지르코늄(ZrB₂)막을 형성하는 단계는, 인-시츄로 진행하는 것을 특징으로 하는 반도체 소자의 금속컨택 형성방법.The forming of the first metal film and the zirconium boride (ZrB₂) film may include forming a metal contact in a semiconductor device. 제1항에 있어서, 컨택플러그용 금속막을 형성하는 단계는,The method of claim 1, wherein the forming of the contact plug metal film comprises: 상기 붕화지르코늄(ZrB₂)막 상에 핵생성층을 형성하는 단계; 및Forming a nucleation layer on the zirconium boride (ZrB₂) film; And 상기 핵생성층을 성장시키는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 금속컨택 형성방법.The method of claim 1, further comprising growing the nucleation layer. 제1항에 있어서, The method of claim 1, 상기 컨택플러그용 금속막을 형성하는 단계는, 수소(H₂)가스를 육불화텅스텐(WF6) 가스의 환원가스로 공급하는 것을 특징으로 하는 반도체 소자의 금속컨택 형성방법.The forming of the contact plug metal film may include supplying hydrogen (H 2) gas to a reducing gas of tungsten hexafluoride (WF 6 ) gas.
KR1020050058769A 2005-06-30 2005-06-30 Method for fabricating metal interconnect in semiconductor device KR100687879B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050058769A KR100687879B1 (en) 2005-06-30 2005-06-30 Method for fabricating metal interconnect in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050058769A KR100687879B1 (en) 2005-06-30 2005-06-30 Method for fabricating metal interconnect in semiconductor device

Publications (2)

Publication Number Publication Date
KR20070003042A true KR20070003042A (en) 2007-01-05
KR100687879B1 KR100687879B1 (en) 2007-02-27

Family

ID=37869946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050058769A KR100687879B1 (en) 2005-06-30 2005-06-30 Method for fabricating metal interconnect in semiconductor device

Country Status (1)

Country Link
KR (1) KR100687879B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343354A (en) * 1992-06-09 1993-12-24 Sony Corp Close contact layer of semiconductor device and forming method for metal plug
KR100571626B1 (en) * 1999-07-27 2006-04-17 주식회사 하이닉스반도체 Method for forming metal wire using zirconiumdiboride layer as diffusion barrier

Also Published As

Publication number Publication date
KR100687879B1 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
US6509601B1 (en) Semiconductor memory device having capacitor protection layer and method for manufacturing the same
KR100648252B1 (en) Method of forming a tungsten layer and method of forming a semicondcutor device using the same
US20020132472A1 (en) Method for forming metal plug
US20020135071A1 (en) Integrated circuit device contact plugs having a liner layer that exerts compressive stress thereon and methods of manufacturing same
KR101225642B1 (en) Method for formation of contact plug of semiconductor device using H2 remote plasma treatment
JP2002141348A (en) Method and equipment for forming film and method of manufacturing semiconductor device
JP2006210634A (en) Semiconductor memory device and its manufacturing method
KR100618869B1 (en) Semiconductor device including capacitor and method for fabricating the same
US8008774B2 (en) Multi-layer metal wiring of semiconductor device preventing mutual metal diffusion between metal wirings and method for forming the same
KR100543458B1 (en) Method Of Forming Conductive Structure of Semiconductor Device
KR100687879B1 (en) Method for fabricating metal interconnect in semiconductor device
JP2008305921A (en) Semiconductor device and manufacturing method therefor
KR100732758B1 (en) Method for fabricating metal interconnect in semiconductor device
KR101082097B1 (en) Capacitor of semiconductor device and method for forming the same
KR100629961B1 (en) Method for forming a metal contact in semiconductor device
US5930670A (en) Method of forming a tungsten plug of a semiconductor device
KR100607756B1 (en) Method for manufacturing a tungsten contact electrode of semiconductor device
KR20060058583A (en) Conductive structure, method of manufacturing the conductive structure, semiconductor device including the conductive structure and method of manufacturing the semiconductor device
KR100613348B1 (en) Method of forming a metal wiring layer having barrier metal layer by homogeneous deposition
KR960006436B1 (en) Manufacturing method of contact plug of semiconductor device
KR100729905B1 (en) Method of manufacturing a capacitor in semiconductor device
KR100800136B1 (en) Method for fabricating semiconductor device
KR100587594B1 (en) Method for forming metal wiring semiconductor device
KR20000066420A (en) Method of forming a metal contact for semiconductor device
KR100464652B1 (en) Method for forming capacitor of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110126

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee