KR20060119025A - A manufacturing method and device for the production of mixed beverage with high hardness and mineral by using deep sea water or ground sea water - Google Patents

A manufacturing method and device for the production of mixed beverage with high hardness and mineral by using deep sea water or ground sea water Download PDF

Info

Publication number
KR20060119025A
KR20060119025A KR1020050041539A KR20050041539A KR20060119025A KR 20060119025 A KR20060119025 A KR 20060119025A KR 1020050041539 A KR1020050041539 A KR 1020050041539A KR 20050041539 A KR20050041539 A KR 20050041539A KR 20060119025 A KR20060119025 A KR 20060119025A
Authority
KR
South Korea
Prior art keywords
nanofiltration
water
reverse osmosis
mineral
production
Prior art date
Application number
KR1020050041539A
Other languages
Korean (ko)
Other versions
KR100663084B1 (en
Inventor
김우구
안효원
김충환
윤재경
오정익
조용진
Original Assignee
한국수자원공사
진해개발주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사, 진해개발주식회사 filed Critical 한국수자원공사
Priority to KR1020050041539A priority Critical patent/KR100663084B1/en
Publication of KR20060119025A publication Critical patent/KR20060119025A/en
Application granted granted Critical
Publication of KR100663084B1 publication Critical patent/KR100663084B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • A23L2/74Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/51Concentration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/15Inorganic Compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/31Mechanical treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/50Concentrating, enriching or enhancing in functional factors

Abstract

A method for making mineral-containing beverage from deep sea water or ground sea water is provided to obtain mineral-containing beverage having various levels of hardness and containing no harmful substances such as heavy metals. The method for making high-hardness mineral-containing beverage comprises the steps of: (a) collecting and pretreating deep sea water or ground sea water, and treating the water with the first nanofiltration membrane to obtain nanofiltered water having a reduced amount of divalent ions; (b) treating the nanofiltered water of step (a) with a reverse osmosis membrane to obtain desalted water; (c) treating the nanofiltered water of step (a) with the second nanofiltration membrane to obtain high-hardness mineral-enriched water in which divalent ions are concentrated; and (d) mixing the desalted water of step (b) with the mineral-enriched water of step (c).

Description

해양 심층수 혹은 지하암반해수로부터 고경도·미네랄 혼합음료 제조방법 및 이를 위한 제조장치{A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water}A manufacturing method and device for the production of mixed beverage with high hardness and mineral by using deep sea water or ground sea water}

도 1은 경도·미네랄성분 조정공정 순서도이고,1 is a flowchart of a hardness and mineral component adjusting process,

도 2는 나노여과법에 의한 미네랄성분의 분리농축 모식도이며,Figure 2 is a schematic diagram of the separation and concentration of mineral components by nanofiltration,

도 3은 역삼투법에 의한 탈염 및 미네랄분리 모식도이고,3 is a schematic diagram of desalination and mineral separation by reverse osmosis;

도 4는 나노여과와 역삼투장치를 이용한 고경도 미네랄 혼합음료 제조 공정도이며,Figure 4 is a high hardness mineral mixed beverage manufacturing process using nanofiltration and reverse osmosis device,

도 5는 본 발명에 따른 제조방법의 각 단계에서의 여과된 농축수 및 생산수의 특성이다.Figure 5 is a characteristic of the filtered concentrated water and produced water in each step of the production method according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

(1) 원수탱크 (2) 원수공급조절밸브 (1) Raw water tank (2) Raw water supply control valve

(3) 나노여과(NF)공급펌프 (4) 전처리필터(3㎛)(3) Nanofiltration (NF) supply pump (4) Pretreatment filter (3㎛)

(5) 전처리필터(1㎛) (6) 나노여과 필터용 고압펌프(5) Pretreatment filter (1㎛) (6) High pressure pump for nanofiltration filter

(7) 나노여과막 공급수 전기전도도계 (8) 나노여과막 공급수 유량계 (7) Nanofiltration membrane feed water conductivity meter (8) Nanofiltration membrane feed water flow meter

(9) 나노여과막 모듈 1 (10) 나노여과막 모듈 2(9) Nanofiltration Module 1 (10) Nanofiltration Module 2

(11) 나노여과막 모듈 3 (12) 나노여과막 모듈 1의 농축수관(11) Nanofiltration membrane module 3 (12) Concentrated water pipe of nanofiltration membrane module 1

(13) 나노여과막 모듈 2의 농축수관 (14) 공급수관 (13) Concentrated water pipe of nanofiltration membrane module 2 (14) Supply water pipe

(15) 나노여과막 1차 생산수의 나노여과막 공급관 (15) Nanofiltration membrane supply pipe of nanofiltration membrane primary production water

(16) 나노여과막 1차 생산수 나노여과막 공급조절밸브 (16) Nanofiltration membrane primary production water nanofiltration membrane supply control valve

(17) 원수관 (17) water pipe

(18) 나노여과막 농축수 바이패스 관 (18) nanofiltration membrane concentrated water bypass tube

(19) 나노여과막 농축수 저장밸브 (19) Nanofiltration Concentrated Water Storage Valve

(20) 나노여과막 농축수 탱크 (20) Nanofiltration Membrane Concentrate Tank

(21) 나노여과막 최종농축수관 (21) Nanofiltration membrane concentrate tube

(22) 나노여과막 생산수 전기전도도계 (22) Nanofiltration membrane production water conductivity

(23) 나노여과막 생산수 유량계 (23) Nanofiltration membrane production water flow meter

(24) 나노여과막 최종생산수관 (24) Nanofiltration membrane final production pipe

(25) 나노여과막 생산수 유량조절밸브 (25) Nanofiltration membrane production water flow control valve

(26) 나노여과막생산수탱크 (26) Nano filtration membrane production water tank

(27) 역삼투 공급펌프 (27) Reverse Osmosis Supply Pump

(28) 역삼투 전처리필터(3㎛)(28) Reverse Osmosis Pretreatment Filter (3㎛)

(29) 역삼투 전처리필터(1㎛)(29) Reverse Osmosis Pretreatment Filter (1㎛)

(30) 역삼투용 고압펌프(30) High pressure pump for reverse osmosis

(31) 역삼투공급수유량계 (31) Reverse Osmosis Supply Water Flow Meter

(32) 역삼투공급수 전기전도도계 (32) Reverse Osmosis Supply Water Conductivity Meter

(33) 역삼투막 모듈1(33) Reverse Osmosis Membrane Module 1

(34) 역삼투막 모듈2(34) Reverse Osmosis Membrane Module 2

(35) 역삼투막 모듈3(35) Reverse Osmosis Membrane Module 3

(36) 역삼투막 모듈1의 농축수관 (36) Concentrated water pipe of reverse osmosis membrane module 1

(37) 역삼투막 모듈2의 농축수관(37) Concentrated water pipe of reverse osmosis membrane module 2

(38) 역삼투 최종농축수 유량계 (38) Reverse Osmosis Final Concentrated Water Flow Meter

(39) 역삼투 농축수by-pass 관 (39) reverse osmosis concentrate by-pass tube

(40) 역삼투 농축수탱크 (40) Reverse Osmosis Concentrated Tanks

(41) 역삼투 농축수관 (41) Reverse Osmosis Concentrated Water Pipe

(42) 역삼투 농축수 저장조절밸브 (42) Reverse Osmosis Concentrated Water Storage Control Valve

(43) 역삼투 생산수 전기전도도계 (43) Reverse Osmosis Produced Water Conductivity Meter

(44) 역삼투 생산수 유량계 (44) Reverse Osmosis Produced Water Flow Meter

(45) 역삼투 생산수관(45) Reverse Osmosis Production Pipe

(46) 역삼투 생산수저장조절밸브 (46) Reverse Osmosis Production Water Storage Control Valve

(47) 역삼투 생산수by-pass 관 (47) reverse osmosis production water by-pass tube

(48) 역삼투 생산수탱크(48) Reverse Osmosis Production Water Tank

(49) 나노여과막 농축수 및 역삼투생산수혼합관 (49) Nanofiltration membrane concentrated water and reverse osmosis production water mixing pipe

(50) 역삼투생산수혼합조절밸브 (50) Reverse Osmosis Production Water Mixing Valve

(51) 나노여과 필터 농축수혼합조절밸브(51) Nanofiltration Filter Concentrated Mixing Valve

(52) 최종 혼합생산수탱크 (52) Final Mixed Production Tank

본 발명은 해양심층수 및 지하암반해수로부터 고경도·미네랄 혼합음료의 제조방법과 이를 제조하기 위한 제조장치에 관한 것이다.The present invention relates to a method for producing a high hardness and mineral mixed beverage from deep seawater and subterranean rock water and a manufacturing apparatus for producing the same.

현재 사용하고 있는 수돗물은 오염된 하천이나 호소수를 여러 수단을 구축하여 정수한 것이다. 이 한번 오염된 수원을 원래로 되돌리기에는, 방대한 에너지와 시간이 필요하게 되지만, 다행히도, 우리나라를 비롯한 많은 나라에서는 지구면적의 약 71%를 점유하는 해양에 접해 있으며, 그 수원을 적극적으로 이용 할 수가 있다. The tap water currently in use is purified by contaminating rivers or lakes by various means. To restore this polluted source back to its original state requires enormous energy and time, but fortunately, many countries, including Korea, are in contact with the ocean, which occupies about 71% of the earth's area. have.

일반적으로 해수를 먹는 물로 사용하기 위한 공정은 해수담수화기술로서 역삼투법, 증발법 등이 널리 이용되어지고 있다. 특히 해수담수화법에서는 역삼투법이 폭넓게 사용되어지고 있지만 역삼투 생산수의 경우 미네랄성분이 충분히 존재하지 않는 문제가 있다.In general, reverse osmosis, evaporation, and the like have been widely used as a seawater desalination technique. In particular, the reverse osmosis method is widely used in the seawater desalination method, there is a problem that the mineral component is not present sufficiently in the case of reverse osmosis produced water.

본 발명과 연관된 고경도·미네랄혼합음료 제조 가능한 대상해수는 일반해수(표층수), 해양심층수 및 지하암반해수로 분류할 수 있다. 해양심층수는 ‘태양광이 도달하지 않는 수심 200m 이상의 깊은 바다에 존재하여 수온이 연중 2 ℃ 이하로 안정되어 있는 청정한 해수’로 정의된다. 또, 지하암반해수는 ‘연안지역의 지 층심도 수백 미터에 침투되어 존재하며 양수시에 지층을 통과하여 토출하므로 해양심층수 및 표층수와는 비교되는 수질특성을 가진 해수’로 정의할 수 있다. The seawater that can produce the high hardness and mineral mixed beverage associated with the present invention can be classified into general seawater (surface water), deep seawater and underground rock seawater. Deep sea water is defined as 'clean sea water with a stable temperature below 2 ° C throughout the year because it exists in a deep sea of more than 200m deep that sunlight does not reach.' In addition, the underground rocky seawater can be defined as' seawater that has penetrated hundreds of meters of coastal area and is discharged through the ground at the time of pumping.

한편, 해양심층수 및 지하암반해수는 여러 종류의 미네랄성분이 함유되어 있으며 특히 칼슘, 마그네슘의 경도성분은 지표수에 비해 다량 함유되어 있으며, 최근 자연순환형의 지속가능한 대체수자원으로 인식되어지고 있으며, 특히 해양심층수에 대해서 여러 산업분야에 적용이 기대되어지고 있으며, 특히 유용한 경도 및 미네랄 성분인 칼슘, 마그네슘을 비롯한 미네랄 부족 등에 유용한 천연성분을 공급할 수 있는 음용수의 공급원으로 그 기대가 상당히 크다. On the other hand, deep seawater and subterranean seawater contain various kinds of minerals, especially hardness of calcium and magnesium is higher than that of surface water, and it is recently recognized as a sustainable alternative water resource of natural circulation type. Deep seawater is expected to be applied to various industrial fields, and the expectation is very high as a source of drinking water that can supply natural ingredients useful for minerals such as calcium and magnesium, which are particularly useful hardness and minerals.

그러나 해양심층수 및 지하암반해수의 경우 염분이 상당한 비중을 차지하고 있어 염분을 분리해야 하는 어려움이 있으며, 염분을 분리하는 과정에서 유용한 경도 및 미네랄 성분인 칼슘, 마그네슘 등도 함께 제거되는 문제가 있어 음료로서 상용화 되어 있지 못한 실정이다.However, in the case of deep seawater and underground rock seawater, salt has a significant proportion, which makes it difficult to separate salts, and it is commercialized as a drink because it removes calcium, magnesium, etc., which are useful hardness and minerals in the process of separating salts. It is not done.

따라서 해양심층수 및 지하암반해수 등으로부터 각종 유용한 미네랄을 함유하면서 먹는 물 수질기준을 만족시키기에 적합하면서도 고농도의 경도·미네랄성분을 함유한 혼합음료의 생산이 가능한 새로운 기술개발이 절실히 요구되고 있다. Therefore, there is an urgent need for the development of new technologies capable of producing mixed beverages containing high concentrations of hardness and minerals, while being suitable for satisfying the drinking water quality standards while containing various useful minerals from deep seawater and underground rock and seawater.

경도·미네랄 조정에 의한 음료 제조방법은 나노여과와 역삼투의 기술로 구성되어진다. 일본공개특허공보 제2002-29237호에서는 해양심층수를 이온교환막과 역삼투막을 이용하여 담수와 농축 심층수와 농축 미네랄 및 농축 소그물을 제조하는 방법에 공지되어 있으나, 상기의 제조방법은 국내의 먹는샘물 기준(경도 500mg/L이하, TDS 500mg/L이하)을 만족시키는 음료로 제조하기에는 한계가 있으며, 또한 제조장치가 복잡하고 운전비용이 비싼 단점이 있다.The beverage preparation method by hardness and mineral adjustment consists of the technique of nanofiltration and reverse osmosis. In Japanese Laid-Open Patent Publication No. 2002-29237, it is known to prepare freshwater, concentrated deep water, concentrated minerals, and concentrated small nets by using deep water, ion exchange membranes, and reverse osmosis membranes for marine deep water. (Hardness 500mg / L or less, TDS 500mg / L or less) There is a limit to the production of beverages, there is also a disadvantage that the manufacturing apparatus is complicated and expensive operating costs.

일본의 경우, 해양심층수를 이용한 경도·미네랄조정기술이 보유하고 있지만, 단순히 역삼투법의 농축수와 생산수의 혼합에 의해서 혼합음료를 생산하고 있고, 관련제품의 국내에서의 수입되어 유통되기도 하였지만, 국내 먹는물 수질기준을 만족시킬 수 없는 제품이 대부분이므로 수입유통이 어렵다. 고농도의 경도·미네랄 혼합음료의 생산은 현행 먹는물 수질기준을 만족시킬 수 있는 공정개발이 필요한 상황이며, 이를 통한 산업의 발전도 기대된다. In Japan, although deep and mineral adjustment technology using deep sea water is possessed, mixed drinks are produced by simply mixing the concentrated and produced water by reverse osmosis, and related products are imported and distributed in Korea. Most of the products can not meet the drinking water quality standards, so import distribution is difficult. The production of high-concentration hardness-mineral mixed beverages requires the development of a process that can satisfy the current drinking water quality standards.

이에 역삼투 공정의 전단에서 나노여과공정을 통해서 해수원수를 처리하여 염분을 통과시키면서 중금속 등의 유해물질들은 제거한 생산수를 농축하고 역삼투로 처리한 탈염수를 혼합하여 고경도 미네랄혼합음료가 생산할 수 있는 기술을 개발하였다. At the front end of the reverse osmosis process, seawater is treated through the nanofiltration process and salt water is passed through, and the harmful substances such as heavy metals are concentrated and the demineralized water mixed with reverse osmosis can be produced to produce high-hardness mineral mixed drinks. Developed technology.

본 발명의 목적은 해양심층수 또는 지하암반해수 등의 해수로부터 고경도 미네랄 성분을 나노여과막으로 여과하여 2가 이온성분이 감소된 나노여과 생산수를 제조하고, 상기 나노여과 생산수를 역삼투막에 의하여 1가 이온이 감소된 역삼투 생산수를 제조하고, 나노여과 생산수를 2차 나노여과 필터로 여과하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하여 제조된 역삼투 생산수와 미네랄 농축수를 혼합하여 다양한 종류의 고경도·미네랄 혼합음료의 제조하는 방법을 제공하는 것 이며, 또한 상기 고경도·미네랄 혼합음료를 제조하기 위한 콤팩트하고 경제적인 해양 심층수 혹은 지하 암반 해수로부터 고경도·미네랄 혼합음료를 제조하는 장치를 제공하는 것이다.An object of the present invention is to produce a nano-filtration production water reduced divalent ionic components by filtering the high-hardness mineral components from the seawater such as deep seawater or underground rock seawater to the nanofiltration membrane, the nanofiltration production water by reverse osmosis membrane 1 Reverse osmosis production and mineral concentrates prepared by producing reverse osmosis production water with reduced ions, and nanofiltration production water were filtered with a secondary nanofiltration filter to produce high hardness mineral concentrates with concentrated divalent ions. It is to provide a method for producing a variety of high-hardness, mineral mixed drinks by mixing the mixture, and also to prepare the high-hardness, mineral mixed drinks from the compact and economical deep sea water or underground hard rock seawater mixed It is to provide a device for producing a beverage.

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 고경도·미네랄 혼합음료의 제조방법은 a) 해양 심층수 또는 지하 암반 해수를 취하여 전처리하고 1차 나노여과막으로 여과하여 2가 이온성분이 감소된 나노여과 생산수를 제조하는 단계; b) 상기 a) 단계에서 여과된 상기 나노여과 생산수를 역삼투막에 의하여 1가 이온이 감소된 역삼투 생산수를 제조하는 단계; c) 상기 a) 단계에서 여과된 나노여과 생산수를 2차 나노여과막으로 여과하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하는 단계; d) 상기 b) 단계에서 제조된 역삼투 생산수와 c) 단계에서 제조된 미네랄 농축수를 혼합하는 단계; 를 특징으로 한다.In order to achieve the above object, the manufacturing method of the high-hardness / mineral mixed beverage according to the present invention comprises a) pretreatment by taking deep ocean water or underground rock seawater, and filtering by primary nanofiltration membrane to reduce divalent ion component. Preparing the production water; b) preparing the reverse osmosis production water in which monovalent ions are reduced by the reverse osmosis membrane of the nanofiltration production water filtered in step a); c) filtering the nanofiltration production water filtered in step a) with a secondary nanofiltration membrane to prepare a high hardness mineral concentrated water in which divalent ions are concentrated; d) mixing the reverse osmosis production water prepared in step b) and the mineral concentrate water prepared in step c); It is characterized by.

또한 본 발명에 따른 고경도·미네랄 혼합음료의 제조장치는 해양 심층수 또는 지하 암반 해수를 취하여 저장하는 원수탱크; 상기 원수탱크와 연결되는 전처리필터; 상기 전처리 필터와 연결되는 나노여과막 모듈; 나노여과막 모듈에 의하여 제조되는 2가 이온성분이 감소된 나노여과 생산수를 저장하는 나노여과 생산수 저장탱크; 상기 나노여과 생산수 저장탱크와 연결되는 역삼투막 모듈; 상기 역삼투막에 의하여 생산되는 1가 이온이 감소된 역삼투 생산수 저장탱크; 상기 나노여과 생산수 저장탱크와 전처리 필터와 상기 나노여과막 모듈 사이의 도관과 연결되는 나 노여과 생산수 순환관; 상기 나노여과 생산수 저장탱크로부터 나노여과 생산수 순환관을 통하여 나노여과 생산수를 상기 나노여과막 모듈에 의하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하여 저장하는 고경도 미네랄 농축수 저장탱크; 상기 역삼투 생산수 저장탱크와 미네랄 농축수 저장탱크를 연결하여 역삼투 생산수와 미네랄 농축수를 혼합하여 저장하는 고경도·미네랄 혼합음료 저장탱크; 으로 구성되는 것을 특징으로 한다.In addition, the apparatus for producing a high hardness and mineral mixed beverage according to the present invention is a raw water tank for taking and storing deep sea water or underground rock seawater; A pretreatment filter connected to the raw water tank; A nanofiltration membrane module connected to the pretreatment filter; A nanofiltration production water storage tank for storing nanofiltration production water having reduced divalent ionic components produced by the nanofiltration membrane module; A reverse osmosis membrane module connected to the nanofiltration production water storage tank; Reverse osmosis production water storage tank is reduced monovalent ions produced by the reverse osmosis membrane; A nanofiltration production water circulation pipe connected to the conduit between the nanofiltration production water storage tank and the pretreatment filter and the nanofiltration membrane module; High hardness mineral concentrated water storage tank for preparing and storing the high hardness mineral concentrated water in which divalent ions are concentrated by the nanofiltration membrane module from the nanofiltration production water storage tank through the nanofiltration production water circulation pipe ; A high hardness and mineral mixed beverage storage tank for connecting the reverse osmosis production water storage tank and the mineral concentrated water storage tank to mix and store the reverse osmosis production water and the mineral concentrated water; Characterized in that consists of.

이하 본 발명을 도면을 참고로 하여 설명한다.Hereinafter, the present invention will be described with reference to the drawings.

도 1은 본 발명에 따른 제조방법의 고경도 미네랄성분 조정공정 순서도이고, 도 2는 나노여과법에 의한 미네랄성분의 분리농축 모식도이며, 도 3은 역삼투법에 의한 탈염 및 미네랄분리 모식도이고, 도 4는 나노여과와 역삼투장치를 이용한 고경도 미네랄 혼합음료 제조 공정도이며, 도 5는 본 발명에 따른 제조방법의 각 단계에서의 여과된 농축수 및 생산수의 특성을 분석한 것이다.Figure 1 is a high hardness mineral component adjustment process flow chart of the manufacturing method according to the present invention, Figure 2 is a schematic diagram of the separation and concentration of the mineral component by the nanofiltration method, Figure 3 is a desalination and mineral separation schematic diagram by the reverse osmosis method, Figure 4 Process diagram of manufacturing a high hardness mineral mixed beverage using nanofiltration and reverse osmosis device, Figure 5 is the analysis of the characteristics of the filtered and concentrated water at each step of the production method according to the present invention.

본 발명에 따른 고경도·미네랄 혼합음료의 제조방법은 하기의 단계를 거친다.The method for producing a high hardness and mineral mixed beverage according to the present invention goes through the following steps.

해양 심층수 또는 지하 암반 해수를 취하여 부유물 등을 제거하기 위하여 전처리 필터를 이용하여 해수 원수의 전처리를 하게 된다. 전처리는 2단계로 진행될 수 있으며, 본 발명에서는 3㎛ 전처리 필터와 1㎛ 전처리 필터를 사용하였으며, 전처리 된 공급수는 나노여과고압펌프에 의하여 1차 나노여과막으로 이송되어 1차 나 노여과막의 여과에 의하여 2가 이온성분이 감소된 나노여과 생산수가 제조된다. Pretreatment of raw seawater is performed by using a pretreatment filter in order to remove deep seawater or underground rocky seawater. The pretreatment may be performed in two stages. In the present invention, a 3 μm pretreatment filter and a 1 μm pretreatment filter were used, and the pretreated feedwater was transferred to the primary nanofiltration membrane by a nanofiltration high pressure pump to filter the primary nanofiltration membrane. The nanofiltration production water is reduced by the divalent ionic component is produced.

본 발명에서 적용되는 나노여과막에 의한 나노여과는 통상의 역삼투막에 비해 저압으로 운전되는 역삼투막의 일종으로서 본 발명에서 사용되는 나노여과막은 수중에서 하전을 띄고 있으므로 이온의 하전에 따라 특징이 있는 제거특성을 이용하여 1가 이온과 2가 이온을 제거하는 원리를 적용한 것으로, Na, K, Cl 같은 1가 이온성분은 통과시키면서 Ca, Mg 등의 2가 이온성분은 농축시키게 된다. Nanofiltration by the nanofiltration membrane applied in the present invention is a kind of reverse osmosis membrane which is operated at a lower pressure than the conventional reverse osmosis membrane. By applying the principle of removing monovalent ions and divalent ions, divalent ions such as Ca, Mg, etc. are concentrated while passing through monovalent ions such as Na, K and Cl.

도 2는 나노여과막를 통과한 해수 중의 2가 이온성분이 농축된 나노여과 농축수와 나노여과 생산수에서의 농도비를 모식화한 것으로서, 해수 중에 존재하는 칼슘, 마그네슘 등의 2가 양이온성분들은 나노여과 생산수 중에는 낮은 농도로 존재하게 되나 나노여과 농축수에는 많이 존재한다. 반면에, 나노여과 생산수 중에는 나트륨, 칼륨 등의 1가 성분은 해수 원수성분과 거의 유사하게 존재하며 나노여과 농축수 중에는 높게 존재한다. 해수가 원수인 본 발명의 경우에는 나노여과막을 통하여 생산되는 나노여과 생산수에 1가 이온 이외에도 적절한 양의 2가 이온이 포함되어 있어야 하므로 본 발명에 따른 제조방법에서 사용된는 나노여과막은 역삼투막을 채용하여 사용되며, 통상 사용되는 역삼투막은 50 내지 60kgf/cm2의 범위에서 사용되는 것인데 반하여 본 발명에서 나노여과막으로 사용되는 역삼투막은 해수기준으로 10 내지 5kgf/cm2범위의 운전압력으로 운전되는 역삼투막이 바람직하며, 이때 생산수 회수율이 40 내지 60%인 것이 더욱 바람직하다. FIG. 2 is a schematic representation of the concentration ratios of nanofiltration concentrated water and nanofiltration production water in which divalent ions are concentrated in the seawater passing through the nanofiltration membrane, and divalent cationic components such as calcium and magnesium present in the seawater are nanofiltration. It is present at low concentrations in the production water, but is present in many nanofiltration concentrates. On the other hand, the monovalent components such as sodium and potassium in the nanofiltration production water are almost similar to the raw seawater components and are high in the nanofiltration concentrated water. In the present invention where seawater is raw water, the nanofiltration membrane used in the production method according to the present invention employs a reverse osmosis membrane, since an appropriate amount of divalent ions must be included in the nanofiltration production water produced through the nanofiltration membrane. Reverse osmosis membranes that are commonly used are those used in the range of 50 to 60kgf / cm 2 , whereas reverse osmosis membranes used as nanofiltration membranes in the present invention are operated at operating pressures ranging from 10 to 5kgf / cm 2 based on seawater. Preferably, the production water recovery is more preferably 40 to 60%.

생산수 회수율이 10 내지 20 %일 경우 양의 2가 이온 분리능이 떨어져서 생 산수가 고경도 미네랄음료로 적용하기에 적합하지 않게 된다.If the production water recovery rate is 10 to 20%, the amount of divalent ion separation is poor, so that the production water is not suitable for use as a hard mineral drink.

상기 나노여과막으로부터 생산된 나노여과 생산수는 역삼투막에 의하여 탈염과정을 거치게 되는데, 역삼투는 반투과성막을 통해 삼투압이상의 압력으로 각종 염분, 유기물질을 분리하는 방법으로서 일반적으로 해수담수화에 적용되는 기술로 본 발명에 따른 역삼투막의 운전압력은 40 내지 100kgf/cm2으로 운전되는 것이 바람직하며, 이때 역삼투막에 의하여 대부분의 이온들이 분리되므로 생산되는 역삼투 생산수는 도 3에서 역삼투에 의한 해수원수가 통과한 후의 농축수와 생산수에서의 이온성분의 농도비를 나타낸 모식도에 도시된 바와 같이 이온성분의 농도는 극히 낮게 되어 역삼투 분리에 의해서는 1가 이온이 감소되어 염분이 거의 없고 기타 미네랄성분도 거의 함유되어 있지 않는 물인 역삼투 생산수가 생산된다.The nanofiltration production water produced from the nanofiltration membrane is subjected to a desalination process by a reverse osmosis membrane. Reverse osmosis is a method of separating various salts and organic substances at a pressure greater than osmotic pressure through a semipermeable membrane, and is generally applied to seawater desalination. The operating pressure of the reverse osmosis membrane according to the invention is preferably operated at 40 to 100kgf / cm 2 , at this time, since most of the ions are separated by the reverse osmosis membrane produced reverse osmosis water produced by the reverse osmosis in Figure 3 As shown in the schematic diagram showing the concentration ratio of the ionic components in the concentrated water and the produced water, the concentration of the ionic components becomes extremely low, and the monovalent ions are reduced by reverse osmosis separation, resulting in almost no salt and almost other mineral components. Reverse osmosis production water, which is not water, is produced.

또한 상기 1차 나노여과막에 의하여 생산된 나노여과 생산수의 일부는 2차 나노여과막로 여과하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하게 된다.In addition, a portion of the nanofiltration production water produced by the primary nanofiltration membrane is filtered through a secondary nanofiltration membrane to prepare a high hardness mineral concentrated water in which divalent ions are concentrated.

고경도 미네랄 농축수는 2회 이상의 나노여과 단계를 거쳐 2가 이온이 충분히 농축되도록 하는 것이 바람직하다. 또한, 나노여과막 모듈이 복수로 구비하여 각각의 나노여과막 모듈의 나노여과 생산수 배출구가 병렬로 연결되도록 하여 나노여과 생산수를 각각의 나노여과막 모듈로부터 제조되도록 하고, 각 나노여과막 모듈의 미네랄 농축수 배출구를 직렬로 연결되도록 하여 미네랄 농축수가 각각의 나노여과막 모듈로 통과하여 최종 나노여과막 모듈로부터 배출되도록 함으로서 해수 원수가 경제적으로 활용되도록 한다.The high hardness mineral concentrated water is preferably subjected to two or more nanofiltration steps to sufficiently concentrate the divalent ions. In addition, a plurality of nanofiltration membrane modules are provided so that the nanofiltration production water outlet of each nanofiltration membrane module is connected in parallel so that the nanofiltration production water is produced from each nanofiltration membrane module, and mineral concentrate water of each nanofiltration membrane module. The outlets are connected in series to allow mineral concentrate water to pass through each nanofiltration membrane module and to be discharged from the final nanofiltration membrane module for economic utilization of seawater.

나노여과 생산수를 제조하는 1차 나노여과막과 미네랄 농축수를 제조하는 2차 나노여과막은 동일한 사양으로서 사용가능하므로 1차 나노여과로 생산수를 제조한 후 다시 상기 1차 나노여과를 2차 나노여과의 역할로 전환시켜 배치식으로 사용하는 것도 가능하다.Since the primary nanofiltration membrane for preparing nanofiltration water and the secondary nanofiltration membrane for preparing mineral concentrated water can be used as the same specifications, the primary nanofiltration is again performed after preparing the production water using primary nanofiltration. It is also possible to switch to the role of filtration and use it batchwise.

나노여과와 역삼투에 의해서 생산되어진 나노여과 2차농축수와 역삼투생산수는 혼합조절밸브를 구비하여 적절히 배합비율을 조정함으로서 소비자의 기호와 음용 목적에 적합한 최종 고경도·미네랄음료를 제조하게 된다.The nanofiltration secondary concentrated water and reverse osmosis produced water produced by nanofiltration and reverse osmosis are equipped with a mixing control valve to adjust the mixing ratio appropriately to produce the final high hardness and mineral beverage suitable for consumer's preference and drinking purpose. do.

본 발명에 따른 고경도 미네랄 혼합음료 제조방법에 적합한 제조장치는 도 4의 나노여과와 역삼투장치를 이용한 고경도 미네랄 혼합음료 제조 공정도에 도시된 바와 같이 해양 심층수 또는 암반 지하 해수를 취하여 저장하는 원수탱크; 상기 원수탱크와 연결되는 전처리필터; 상기 전처리 필터와 연결되는 나노여과막 모듈; 나노여과막 모듈에 의하여 제조되는 2가 이온성분이 감소된 나노여과 생산수를 저장하는 나노여과 생산수 저장탱크; 상기 나노여과 생산수 저장탱크와 연결되는 역삼투막 모듈; 상기 역삼투막 모듈에 의하여 생산되는 탈염된 역삼투 생산수 저장탱크; 상기 나노여과 생산수 저장탱크와 나노여과 장치 전처리 필터와 상기 나노여과막 모듈 사이의 도관과 연결되는 나노여과 생산수 순환관; 상기 나노여과 생산수 저장탱크로부터 나노여과 생산수 순환관을 통하여 나노여과 생산수를 상기 나노여과막 모듈에 의하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하여 저장하는 고경도 미네랄 농축수 저장탱크; 상기 역삼투 생산수 저장탱크와 미네랄 농축수 저 장탱크를 연결하여 역삼투 생산수와 미네랄 농축수를 혼합하여 저장하는 고경도·미네랄 혼합음료 저장탱크로 구성된다.The manufacturing apparatus suitable for the high hardness mineral mixed beverage manufacturing method according to the present invention is raw water for taking and storing deep ocean water or rock underground seawater as shown in the manufacturing process diagram of the high hardness mineral mixed beverage using the nanofiltration and reverse osmosis apparatus of FIG. Tank; A pretreatment filter connected to the raw water tank; A nanofiltration membrane module connected to the pretreatment filter; A nanofiltration production water storage tank for storing nanofiltration production water having reduced divalent ionic components produced by the nanofiltration membrane module; A reverse osmosis membrane module connected to the nanofiltration production water storage tank; Desalted reverse osmosis production water storage tank produced by the reverse osmosis membrane module; A nanofiltration production water circulation pipe connected to the conduit between the nanofiltration production water storage tank, the nanofiltration device pretreatment filter, and the nanofiltration membrane module; High hardness mineral concentrated water storage tank for preparing and storing the high hardness mineral concentrated water in which divalent ions are concentrated by the nanofiltration membrane module from the nanofiltration production water storage tank through the nanofiltration production water circulation pipe ; The reverse osmosis production water storage tank and the mineral concentrated water storage tank is connected to the high hardness, mineral mixed beverage storage tank for mixing and storing the reverse osmosis production water and mineral concentrated water.

앞서 언급한 바와 같이 본 발병에 따른 제조장치는 나노여과 생산수를 제조하는 1차 나노여과막과 미네랄 농축수를 제조하는 2차 나노여과막은 동일한 사양으로서 사용가능하므로 1차 나노여과로 생산수를 제조한 후 다시 상기 1차 나노여과를 2차 나노여과의 역할로 전환시켜 배치식으로 사용하는 것을 특징으로 하며, 이를 위하여 앞서 언급한 바와 같이 나노여과 생산수 저장탱크와 전처리 필터와 상기 나노여과막 모듈 사이의 도관과 연결되는 나노여과 생산수 순환관이 구비되어 운전시 적절한 밸브의 조작으로 여과 공정을 선택하게 된다.As mentioned above, in the manufacturing apparatus according to the present invention, the first nanofiltration membrane for preparing nanofiltration water and the second nanofiltration membrane for preparing mineral concentrated water can be used as the same specifications. Afterwards, the primary nanofiltration is converted into a role of secondary nanofiltration and used in a batch manner. As described above, between the nanofiltration production water storage tank, the pretreatment filter, and the nanofiltration membrane module. The nanofiltration production water circulation pipe is connected to the conduit to select the filtration process by operating the appropriate valve during operation.

또한 나노여과막 모듈은 복수로 구비하고, 각각의 나노여과막 모듈의 나노여과 생산수 배출구를 병렬로 연결하여 나노여과 생산수 저장탱크로 유입되는 나노여과 생산수 도관과 각 나노여과막 모듈의 미네랄 농축수 배출구를 직렬로 연결하며, 이러한 모듈의 구성은 미네랄 농축수 저장탱크로 유입되는 도관을 구비하고, 또한 상기 나노여과막의 최종 위치에 배치된 나노여과막 모듈로부터 농축된 나노여과 농축수가 배출되도록 고경도 미네랄 농축수 저장탱크와 상기 최종 위치에 배치된 나노여과막 모듈 사이에 최종 나노여과 농축수를 배출하는 바이패스관을 구비한다. 상기의 구성은 원수를 경제적으로 활용되도록 할 뿐 만 아니라 고경도의 미네랄 농축수를 효과적으로 생산되도록 하고, 장치의 구성을 콤팩트하게 하는 장점이 있다.In addition, the nanofiltration membrane module is provided with a plurality, and the nanofiltration production water conduit flowing into the nanofiltration production water storage tank by connecting the nanofiltration production water outlets of each nanofiltration membrane module in parallel and the mineral concentrate outlet of each nanofiltration membrane module. In series, and the configuration of the module includes a conduit introduced into the mineral concentrate storage tank, and the high hardness mineral concentrate so that the concentrated nanofiltration concentrate is discharged from the nanofiltration membrane module disposed at the final position of the nanofiltration membrane. And a bypass tube for discharging the final nanofiltration concentrated water between the water storage tank and the nanofiltration membrane module disposed at the final location. The above configuration not only makes the raw water economically utilized, but also has the advantage of effectively producing the mineral hardened water of high hardness and making the configuration of the device compact.

또한 상기 역삼투막 모듈 역시 복수로 구비하며, 각각의 역삼투막 모듈의 역삼투 생산수 배출구를 병렬로 연결하여 역삼투 생산수 저장탱크로 유입되는 역삼투 생산수 도관과 각 역삼투막 모듈의 역삼투 농축수 배출구를 직렬로 연결하여 역삼투 농축수 저장탱크로 유입되는 도관을 구비하고, 최종 위치에 배치된 역삼투막 모듈로부터 배출된 역삼투 농축수가 배출되도록 최종 위치에 배치된 역삼투막 모듈 후단에 역삼투 농축수 저장탱크가 구비되는 것이 바람직하다.In addition, the reverse osmosis membrane module is also provided with a plurality, the reverse osmosis production water conduit to the reverse osmosis production water storage tank by connecting the reverse osmosis production water outlet of each reverse osmosis membrane module and the reverse osmosis membrane water outlet of each reverse osmosis membrane module A conduit flows into the reverse osmosis membrane storage tank connected in series, and the reverse osmosis membrane storage tank is located at the rear end of the reverse osmosis membrane module disposed at the final position so that the reverse osmosis membrane water discharged from the reverse osmosis membrane module disposed at the final position is discharged. It is preferred to be provided.

이하 본 발명에 따른 고경도·미네랄혼합음료의 제조 단계를 예를 들어 상세히 설명한다.Hereinafter, the manufacturing steps of the high hardness and mineral mixed beverage according to the present invention will be described in detail.

도 4에 도시된 바와 같이 해양심층수 혹은 지하암반해수의 원수를 원수탱크(1)에 집수되고 나노여과공급펌프(3)에 의해 전처리 필터3㎛(4)와 전처리 필터1㎛(5)로 공급되어지며 전처리 된 공급수는 나노여과 고압펌프(6)에 의해 나노여과 공급수라인(14)을 통해 나노여과막 모듈로 공급된다. 공급수의 유량 및 TDS는 공급수관(14)의 공급수의 유량계(8)와 TDS계(7)에 의해서 측정된다. 나노여과막 모듈은 총 3개로 구성되며 나노여과막 모듈 1(9)의 나노여과 생산수가 나노여과막 모듈 1의 농축수관(12)을 통해 나노여과막 모듈 2(10)로 공급되고, 나노여과막 모듈 2(10)의 나노여과 농축수는 나노여과막 모듈 2의 농축수관(13)을 통해서 나노여과막 모듈 3(11)으로 공급되어 여과된 생산수는 나노여과 최종생산수관(24)을 통해서 나노여과 생산수 탱크(26)로 이동·저장된다. 나노여과 생산수의 생산유량 및 전기전도도는 나노여과 최종 생산수의 유량계(23)와 TDS계(22)에 의해서 측정된다. 한편, 나노여과 1차 농축수는 원수 중의 공존금속물질 등이 농축될 우려가 있으므로 나노여과최종농축수관(21)의 나노여과농축수 저장밸브(19)를 닫고 나노여과 농축수 바이패스관(18)으로 흘려보내어 버린다. 나노여과 생산수 탱크(26)에 나노여과 생산수를 가득 채운 후에는 역삼투 공급밸브(17)를 잠근 후에 나노여과 1차생산수 나노여과 공급조절밸브(16)을 열어 나노여과 1차생산수 나노여과공급관(15)을 통해 나노여과 1차 생산수를 공급한다. 이 때, 원수탱크의 원소가 유입되는 것을 방지하기 위해 원수공급 조절밸브(2)는 잠근다. 나노여과 1차생산수는 나노여과 공급펌프(3)에 의해 나노여과고압펌프(6)에 의해 나노여과 공급수관(14)을 통해 나노여과막 모듈로 공급한다. 나노여과 1차생산수의 공급유량 및 TDS는 공급수관(14)의 나노여과공급수유량계(8)와 TDS계(7)에 의해서 측정된다. 나노여과막 모듈을 통과한 후의 나노여과 2차 생산수는 나노여과 최종 생산수관(24)을 통해서 나노여과 생산수 탱크(26)로 이동되어 저장된다. 나노여과 2차 최종생산수의 생산유량 및 TDS는 나노여과 최종생산수 유량계(23)와 TDS계(22)에 의해서 측정된다. 여기서, 나노여과 2차 농축수는 나노여과 최종농축수관(21)의 나노여과농축수저장밸브(19)를 열어 나노여과농축수탱크(20)에 저장한다. 일정량의 나노여과 2차농축수를 확보한 후에는 나노여과 고압펌프(6)의 속도를 서서히 줄여 끈 후에 나노여과공급펌프(3)을 끈다. As shown in FIG. 4, raw water of deep seawater or subterranean rock water is collected in the raw water tank 1 and supplied to the pretreatment filter 3 μm 4 and the pretreatment filter 1 μm 5 by the nanofiltration pump 3. The pretreated feed water is supplied to the nanofiltration membrane module through the nanofiltration feed water line 14 by the nanofiltration high pressure pump 6. The flow rate of the feed water and the TDS are measured by the flow meter 8 and the TDS meter 7 of the feed water of the feed water pipe 14. The nanofiltration membrane module consists of three parts, and the nanofiltration product of the nanofiltration membrane module 1 (9) is supplied to the nanofiltration membrane module 2 (10) through the concentrated water pipe 12 of the nanofiltration membrane module 1, and the nanofiltration membrane module 2 (10) ), And the filtered water is supplied to the nanofiltration membrane module 3 (11) through the concentrated water pipe (13) of the nanofiltration membrane module 2, and the filtered water is filtered through the nanofiltration final water pipe (24). 26) is moved to and saved. The production flow rate and electrical conductivity of the nanofiltration production water are measured by the flowmeter 23 and the TDS meter 22 of the nanofiltration final production water. On the other hand, the nanofiltration primary concentrated water may be concentrated in the coexistent metal material in the raw water, so close the nanofiltration concentrate storage valve 19 of the nanofiltration final concentration pipe 21 and the nanofiltration concentrated water bypass pipe (18). I send it off). After the nanofiltration production water tank 26 is filled with the nanofiltration production water, the reverse osmosis feed valve 17 is closed, and then the nanofiltration primary production water nanofiltration supply control valve 16 is opened. The primary nanofiltration water is supplied through the nanofiltration supply pipe 15. At this time, the raw water supply control valve (2) is closed in order to prevent the element of the raw water tank is introduced. The nanofiltration primary production water is supplied to the nanofiltration membrane module through the nanofiltration supply water pipe 14 by the nanofiltration high pressure pump 6 by the nanofiltration supply pump 3. The feed flow rate and TDS of the nanofiltration primary production water are measured by the nanofiltration feed flow meter 8 and the TDS meter 7 of the feed water pipe 14. After passing through the nanofiltration membrane module, the nanofiltration secondary production water is transferred to and stored in the nanofiltration production tank 26 through the nanofiltration final production pipe 24. The production flow rate and TDS of the nanofiltration secondary final product water are measured by the nanofiltration final product water flow meter 23 and the TDS meter 22. Here, the nanofiltration secondary concentrated water is stored in the nanofiltration concentrated water tank 20 by opening the nanofiltration concentrated water storage valve 19 of the nanofiltration final concentrated water pipe 21. After securing a certain amount of nanofiltration secondary concentrated water, the speed of the nanofiltration high pressure pump 6 is gradually reduced, and then the nanofiltration supply pump 3 is turned off.

나노여과 2차 농축분리공정을 거친 후에 얻어진 나노여과 생산수를 탈염수로 제조하는 방법은 다음과 같다. 나노여과 1차 생산수 나노여과공급조절밸브(16)를 잠근 후에 역삼투공급밸브(17)를 연다. 역삼투공급펌프(27)에 의해 역삼투 공급수의 전처리 필터(29)3㎛와 전처리 필터1㎛(29)(Hytrex Cateridge Filter)로 공급하고 역삼투용 고압펌프(30)에 의해서 역삼투막 모듈로 나노여과 생산수를 공급한다. 나노여과 생산수의 공급유량 및 TDS는 공급수유량계(31)와 TDS계(32)에 의해서 측 정된다. 역삼투막 모듈의 경우 총 3개로 구성되며 역삼투막 모듈 1(33)의 농축수가 역삼투막 모듈 1의 농축수관(36)을 통해 역삼투막 모듈 2(34)로 공급되고, 역삼투막 모듈 2(34)의 농축수는 역삼투막 모듈 2의 농축수관(37)을 통해서 역삼투막 모듈 3(35)으로 공급되어 여과된 생산수는 역삼투 최종생산수관(45)을 통해서 역삼투 생산수탱크(48)로 이동되어 저장된다. 역삼투막 최종생산수의 생산유량 및 TDS는 역삼투막 최종생산수 유량계(44)와 TDS계(43)에 의해서 측정된다. 한편, 역삼투막 최종농축수는 역삼투 최종농축수관(41)의 역삼투농축수 저장밸브(42)를 닫고 역삼투 농축수 바이패스관(39)으로 흘려서 버린다. The method for preparing nanofiltration water obtained after the nanofiltration secondary concentration separation process using demineralized water is as follows. The nanofiltration primary production water nanofiltration supply control valve 16 is closed, and then the reverse osmosis supply valve 17 is opened. The reverse osmosis feed pump (27) is supplied to the pretreatment filter (29) of the reverse osmosis feed water and the pretreatment filter (1) (29) (Hytrex Cateridge Filter), and the reverse osmosis membrane module is supplied by the reverse osmosis membrane module by the high pressure pump (30). Feed filtration water. The feed flow rate and TDS of the nanofiltration production water are measured by the feed water flow meter 31 and the TDS system 32. The reverse osmosis membrane module is composed of a total of three, and the concentrated water of the reverse osmosis membrane module 1 (33) is supplied to the reverse osmosis membrane module 2 (34) through the concentrated water pipe 36 of the reverse osmosis membrane module 1, and the concentrated water of the reverse osmosis membrane module 2 (34) is reverse osmosis membrane. The produced water filtered and supplied to the reverse osmosis membrane module 3 (35) through the concentrated water pipe 37 of the module 2 is moved to and stored in the reverse osmosis production water tank 48 through the reverse osmosis final production water pipe 45. The production flow rate and TDS of the reverse osmosis membrane final product water are measured by the reverse osmosis membrane final product water flow meter 44 and the TDS system 43. On the other hand, the reverse osmosis membrane final concentrated water closes the reverse osmosis concentrated water storage valve 42 of the reverse osmosis final concentrated water pipe 41 and flows into the reverse osmosis concentrated water bypass pipe 39.

나노여과와 역삼투에 의해서 생산되어진 나노여과 2차농축수와 역삼투생산수는 나노여과 농축수 역삼투 생산수 혼합관(49)에서 역삼투 생산수 혼합조절밸브(50)와 나노여과 농축수 혼합조절밸브(51)을 이용하여 배합비율을 조정됨으로서 최종 고경도·미네랄음료가 제조된다. The nanofiltration secondary concentrated water and reverse osmosis produced water produced by nanofiltration and reverse osmosis are reverse osmosis produced water mixing control valves (50) and nanofiltration concentrated water in a nanofiltration concentrated water reverse osmosis produced water mixing tube (49). By adjusting the mixing ratio using the mixing control valve 51, the final high hardness and mineral beverage is produced.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.

실시예 1Example 1

지하암반해수를 이용한 미네랄음료제조 예Example of Mineral Drink Production Using Underground Rockwater

본 발명의 실시예에서는 전처리 필터는 Hytrex사에서 제조한 Hytrex Cateridge Filter를 사용하였으며, 나노여과막은 역삼투막으로서 TORAY사에서 제조 한 SU-610(공칭탈염율이 55%)을 사용하였고, 역삼투막은 TORAY사에서 제조한 SU-810(공칭탈염율이 99.78%)을 사용하였다.In the embodiment of the present invention, the pretreatment filter used a Hytrex Cateridge Filter manufactured by Hytrex, the nanofiltration membrane was a reverse osmosis membrane, and SU-610 (55% of nominal desalination rate) manufactured by TORAY, was used. SU-810 (nominal desalination rate of 99.78%) was used.

하루 물생산량 10 ㎥ 규모의 나노여과 및 역삼투 파일롯플랜트에 의한 암반지하해수를 원수로 한 경도 233, TDS 500의 미네랄워터 제조공정과 각 단위공정에서의 생산수 및 농축수의 TDS와 경도를 도 5에 나타내었으며, 표 1에는 단위 공정별 운전압력, 투과량 및 여과막별로 회수율을 나타내었다.The TDS and hardness of mineral water manufacturing process of hardness 233, TDS 500 using raw water of rock underground water by 10 ㎥ of nanofiltration and reverse osmosis pilot plant, and the production and concentrated water in each unit process It is shown in 5, Table 1 shows the operating pressure, permeation amount and recovery rate by filtration membrane for each unit process.

지하암반해수는 암반지층 800m에 존재하는 지하해수로서 칼슘성분이 해수성분에 비해서 3.5배, 경도가 1.3배로 함유되어 있으며 미네랄 분리조정대상원수로 적용가능하다. 지하암반해수 원수의 성상 및 경도·미네랄 조정기술에 의한 경도 233mg/L, TDS 500mg/L의 미네랄음료 제조예와 먹는물 수질기준을 표 2에 나타내었다. 먹는 물 수질기준을 만족하면서 경도성분이 먹는물 수질기준치내에서 최대치로 존재하는 미네랄음료의 제조가 가능하며 공존하는 비소 등의 독성금속물질의 제거된 제품생산이 가능하였다. Underground rock and seawater is an underground seawater in 800m of rock mass and contains 3.5 times more calcium and 1.3 times more hardness than seawater. Table 2 shows the preparation of mineral beverages with hardness 233mg / L and TDS 500mg / L and the drinking water quality standards according to the characteristics, hardness and mineral adjustment technology of underground rock and seawater. It is possible to manufacture mineral beverages that satisfy the drinking water quality standards and have maximum hardness within the drinking water quality standard and to remove products of toxic metals such as arsenic.

[표 1] 단위 공정별 운전압력, 투과량 및 여과막별 회수율[Table 1] Operating pressure, permeation rate and recovery rate by filtration membrane by unit process

Figure 112005025933607-PAT00001
Figure 112005025933607-PAT00001

[표 2] 미네랄음료 제조예와 먹는물 수질기준[Table 2] Preparation example of mineral drink and drinking water quality standards

Figure 112005025933607-PAT00002
Figure 112005025933607-PAT00002

상기 결과를 통하여 알 수 있듯이, 해수 중에 존재하는 천연 경도·미네랄성분을 분리 농축하여 미네랄음료제조에 매우 적합한 기술이다. 특히, 해양심층수 혹은 지하암반해수를 이용한 미네랄음료제조에 있어서 본 발명에서의 나노여과-역삼투조합에 의한 미네랄분리농축기술이 적용함에 효과적이며, 미네랄성분들이 다량 함유된 음료제조가 가능하여짐으로서 미네랄부족현상이 심한 현대인들에게 유용한 음료 및 식품으로 제공되는 효과가 있게 된다. As can be seen from the above results, by separating and concentrating the natural hardness and mineral components present in the sea water is a very suitable technology for the production of mineral drinks. Particularly, in the mineral beverage production using deep seawater or subterranean rock water, it is effective to apply the mineral separation and concentration technology by the nanofiltration-reverse osmosis combination according to the present invention, and it is possible to manufacture a beverage containing a large amount of mineral components. It is effective to provide drinks and foods useful to modern people with severe mineral deficiency.

Claims (10)

a) 해양 심층수 또는 지하암반해수를 취하여 전처리하고 1차 나노여과막으로 여과하여 2가 이온성분이 감소된 나노여과 생산수를 제조하는 단계;a) taking a deep seawater or subterranean seawater and pretreating and filtering with a primary nanofiltration membrane to produce nanofiltration production water having reduced divalent ionic components; b) 상기 a) 단계에서 여과된 상기 나노여과 생산수를 역삼투막에 의하여 탈염된 역삼투 생산수를 제조하는 단계;b) preparing the reverse osmosis production water desalted by the reverse osmosis membrane of the nanofiltration production water filtered in step a); c) 상기 a) 단계에서 여과된 나노여과 생산수를 2차 나노여과막으로 여과하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하는 단계;c) filtering the nanofiltration production water filtered in step a) with a secondary nanofiltration membrane to prepare a high hardness mineral concentrated water in which divalent ions are concentrated; d) 상기 b) 단계에서 제조된 역삼투 생산수와 c) 단계에서 제조된 미네랄 농축수를 혼합하는 단계;d) mixing the reverse osmosis production water prepared in step b) and the mineral concentrate water prepared in step c); 를 특징으로 하는 고경도·미네랄 혼합음료의 제조방법.Method for producing a high hardness, mixed mineral drink characterized in that. 제 1항에 있어서,The method of claim 1, c) 단계에서 2회 이상의 나노여과 단계를 거쳐 2가 이온이 농축된 고경도 미네랄 농축수를 제조하는 것을 특징으로 하는 고경도·미네랄 혼합음료의 제조방법.c) a method of producing a high hardness and mineral mixed beverage, characterized in that to prepare a high hardness mineral concentrated water in which divalent ions are concentrated through two or more nanofiltration steps. 제 2항에 있어서,The method of claim 2, 나노여과 생산수를 제조하는 1차 나노여과막을 미네랄 농축수를 제조하는 2 차 나노여과막으로 사용하는 것을 특징으로 하는 고경도·미네랄 혼합음료의 제조방법.A method for producing a high hardness / mineral mixed beverage, wherein the primary nanofiltration membrane for producing nanofiltration water is used as a secondary nanofiltration membrane for producing mineral concentrated water. 제 3항에 있어서,The method of claim 3, wherein 나노여과막은 10 내지 5kgf/cm2의 운전압력으로 운전되며 생산수 회수율이 40 내지 60%인 역삼투막인 것을 특징으로 하는 고경도·미네랄 혼합음료의 제조방법.Nanofiltration membrane is a method of producing a high hardness, mineral mixed drink, characterized in that the reverse osmosis membrane is operated at an operating pressure of 10 to 5kgf / cm 2 and the production water recovery is 40 to 60%. 해양 심층수 또는 암반 지하 해수를 취하여 저장하는 원수탱크;Raw water tank which takes and stores deep ocean water or rock underground water; 상기 원수탱크와 연결되는 전처리 필터;A pretreatment filter connected to the raw water tank; 상기 전처리 필터와 연결되는 나노여과막 모듈;A nanofiltration membrane module connected to the pretreatment filter; 나노여과막 모듈에 의하여 제조되는 2가 이온성분이 감소된 나노여과 생산수를 저장하는 나노여과 생산수 저장탱크;A nanofiltration production water storage tank for storing nanofiltration production water having reduced divalent ionic components produced by the nanofiltration membrane module; 상기 나노여과 생산수 저장탱크와 연결되는 역삼투막 모듈;A reverse osmosis membrane module connected to the nanofiltration production water storage tank; 상기 역삼투막 모듈에 의하여 생산되는 1가 이온이 감소된 역삼투 생산수 저장탱크;Reverse osmosis production water storage tank is reduced monovalent ions produced by the reverse osmosis membrane module; 상기 나노여과 생산수 저장탱크와 전처리막과 상기 나노여과막 모듈 사이의 도관과 연결되는 나노여과 생산수 순환관;A nanofiltration production water circulation pipe connected to the conduit between the nanofiltration production water storage tank and the pretreatment membrane and the nanofiltration membrane module; 상기 나노여과 생산수 저장탱크로부터 나노여과 생산수 순환관을 통하여 나노여과 생산수를 상기 나노여과막 모듈에 의하여 2가 이온이 농축된 고경도 미네랄 농축수를 제조하여 저장하는 고경도 미네랄 농축수 저장탱크;High hardness mineral concentrated water storage tank for preparing and storing the high hardness mineral concentrated water in which divalent ions are concentrated by the nanofiltration membrane module from the nanofiltration production water storage tank through the nanofiltration production water circulation pipe ; 상기 역삼투 생산수 저장탱크와 미네랄 농축수 저장탱크를 연결하여 역삼투 생산수와 미네랄 농축수를 혼합하여 저장하는 고경도·미네랄 혼합음료 저장탱크;A high hardness and mineral mixed beverage storage tank for connecting the reverse osmosis production water storage tank and the mineral concentrated water storage tank to mix and store the reverse osmosis production water and the mineral concentrated water; 으로 구성되는 것을 특징으로 하는 고경도·미네랄 혼합음료 제조장치.High hardness, mineral mixed beverage production apparatus characterized in that consisting of. 제 5항에 있어서,The method of claim 5, 나노여과막은 10 내지 5kgf/cm2의 운전압력으로 운전되며 생산수 회수율이 40 내지 60%인 역삼투막인 것을 특징으로 하는 고경도·미네랄 혼합음료 제조장치.Nanofiltration membrane is a high hardness, mineral mixed beverage production apparatus characterized in that the operating osmotic pressure of 10 to 5kgf / cm 2 and the reverse osmosis membrane of the production water recovery rate 40 to 60%. 제 6항에 있어서,The method of claim 6, 나노여과막 모듈이 복수로 구비되며, 각각의 나노여과막 모듈의 나노여과막 생산수 배출구를 병렬로 연결하여 나노여과막 생산수 저장탱크로 유입되는 나노여과막 생산수 도관과 각 나노여과막 모듈의 미네랄 농축수 배출구를 직렬로 연결하여 미네랄 농축수 저장탱크로 유입되는 도관을 구비하는 것을 특징으로 하는 고경 도·미네랄 혼합음료 제조장치.A plurality of nanofiltration membrane modules are provided, and the nanofiltration membrane production water outlets of each nanofiltration membrane module are connected in parallel to connect the nanofiltration membrane production water conduit flowing into the nanofiltration membrane production water storage tank and the mineral concentrate outlet of each nanofiltration membrane module. High hardness, mineral mixed beverage production apparatus characterized in that it comprises a conduit flowing in the mineral concentrated water storage tank connected in series. 제7항에 있어서, The method of claim 7, wherein 상기 나노여과막의 최종 위치에 배치된 나노여과막 모듈로부터 농축된 나노여과 농축수가 배출되도록 고경도 미네랄 농축수 저장탱크와 상기 최종 위치에 배치된 나노여과막 사이에 최종 나노여과 농축수를 배출하는 바이패스관을 구비하는 것을 특징으로 하는 고경도·미네랄 혼합음료 제조장치.Bypass tube for discharging the final nanofiltration concentrated water between the high hardness mineral concentrate storage tank and the nanofiltration membrane disposed in the final position to discharge the concentrated nanofiltration concentrated water from the nanofiltration membrane module disposed at the final position of the nanofiltration membrane High hardness, mixed mineral beverage production apparatus characterized in that it comprises a. 제 6항에 있어서,The method of claim 6, 상기 역삼투막 모듈이 복수로 구비되며, 각각의 역삼투막 모듈의 역삼투 생산수 배출구를 병렬로 연결하여 역삼투 생산수 저장탱크로 유입되는 역삼투 생산수 도관과 각 역삼투막 모듈의 역삼투 농축수 배출구를 직렬로 연결하여 역삼투 농축수 저장탱크로 유입되는 도관을 구비하는 것을 특징으로 하는 고경도·미네랄 혼합음료 제조장치.The reverse osmosis membrane module is provided in plural, and the reverse osmosis production water conduit introduced into the reverse osmosis production water storage tank by connecting the reverse osmosis production water outlet of each reverse osmosis membrane module and the reverse osmosis concentrated water outlet of each reverse osmosis membrane module in series. High hardness, mineral mixed beverage production apparatus characterized in that it comprises a conduit introduced into the reverse osmosis concentrated water storage tank by connecting to. 제 7항에 있어서, The method of claim 7, wherein 최종 위치에 배치된 역삼투막 모듈로부터 배출된 역삼투 농축수가 배출되도 록 최종 위치에 배치된 역삼투막 모듈 후단에 역삼투 농축수 저장탱크가 구비되는 것을 특징으로 하는 고경도·미네랄 혼합음료 제조장치.A high hardness, mineral mixed beverage production apparatus, characterized in that the reverse osmosis concentrated water storage tank is provided at the rear end of the reverse osmosis membrane module disposed in the final position to discharge the reverse osmosis concentrated water discharged from the reverse osmosis membrane module disposed in the final position.
KR1020050041539A 2005-05-18 2005-05-18 A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water KR100663084B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050041539A KR100663084B1 (en) 2005-05-18 2005-05-18 A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050041539A KR100663084B1 (en) 2005-05-18 2005-05-18 A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water

Publications (2)

Publication Number Publication Date
KR20060119025A true KR20060119025A (en) 2006-11-24
KR100663084B1 KR100663084B1 (en) 2007-01-02

Family

ID=37705941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050041539A KR100663084B1 (en) 2005-05-18 2005-05-18 A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water

Country Status (1)

Country Link
KR (1) KR100663084B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367477B1 (en) * 2012-05-30 2014-02-26 한국해양과학기술원 Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
CN111072106A (en) * 2018-10-19 2020-04-28 日东电工株式会社 Water treatment system and water treatment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639848B1 (en) * 2013-12-31 2016-07-15 한국해양과학기술원 The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
KR101831864B1 (en) * 2016-05-19 2018-04-16 재단법인 제주테크노파크 System and method of desalination of lava seawater and extraction valuable mineral from lava seawater
KR102165767B1 (en) * 2019-09-20 2020-10-14 강성종 Lava sea mineral control system with mineral content control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191331A (en) 2000-12-26 2002-07-09 Shizuoka Prefecture Method for producing soft drinking water utilizing deep sea water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367477B1 (en) * 2012-05-30 2014-02-26 한국해양과학기술원 Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
CN111072106A (en) * 2018-10-19 2020-04-28 日东电工株式会社 Water treatment system and water treatment method

Also Published As

Publication number Publication date
KR100663084B1 (en) 2007-01-02

Similar Documents

Publication Publication Date Title
Quist-Jensen et al. Membrane technology for water production in agriculture: Desalination and wastewater reuse
Ogunbiyi et al. Sustainable brine management from the perspectives of water, energy and mineral recovery: A comprehensive review
EP1019325B1 (en) Process for desalination of sea water, having increased product yield and quality
Van der Bruggen et al. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry
Greenlee et al. Reverse osmosis desalination: water sources, technology, and today's challenges
KR100963536B1 (en) Method of generating fresh water and fresh-water generator
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
US20060157409A1 (en) Optimal high recovery, energy efficient dual fully integrated nanofiltration seawater reverse osmosis desalination process and equipment
US20060157410A1 (en) Fully integrated NF-thermal seawater desalination process and equipment
CN102659272A (en) Novel membrane-process sea water desalination and fresh water and salt preparation system and technique
KR100663084B1 (en) A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
KR200400448Y1 (en) A Manufacturing Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
M’nif et al. Coupling of membrane processes for brackish water desalination
EP3292082A1 (en) Removal of nitrates from ground water
Khedr Membrane methods in tailoring simpler, more efficient, and cost effective wastewater treatment alternatives
Hung et al. Membrane processes and their potential applications for fresh water provision in Vietnam.
Gilron et al. Brine treatment and high recovery desalination
Agboola et al. Assessment of the performance of osmotically driven polymeric membrane processes
Brião et al. Is nanofiltration better than reverse osmosis for removal of fluoride from brackish waters to produce drinking water?
Glueckstern et al. Advanced concept of large seawater desalination systems for Israel
CN201284253Y (en) Nano filter membrane bitter brine desalting system apparatus
Darwish et al. Needed seawater reverse osmosis pilot plant in Qatar
EP1614660A1 (en) Fully integrated NF-thermal seawater desalination process and equipment therefor
Pathak et al. Membrane technology for brine management and valuable resource recovery
Kukučka et al. Groundwater nanofiltration process efficiency improvement with additional concentrate membrane treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121206

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141218

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee