KR20060113312A - Method and system of proposing products and contents through analysing patterns of conversation data - Google Patents

Method and system of proposing products and contents through analysing patterns of conversation data Download PDF

Info

Publication number
KR20060113312A
KR20060113312A KR1020050045779A KR20050045779A KR20060113312A KR 20060113312 A KR20060113312 A KR 20060113312A KR 1020050045779 A KR1020050045779 A KR 1020050045779A KR 20050045779 A KR20050045779 A KR 20050045779A KR 20060113312 A KR20060113312 A KR 20060113312A
Authority
KR
South Korea
Prior art keywords
conversation
user
agent
contents
chat
Prior art date
Application number
KR1020050045779A
Other languages
Korean (ko)
Inventor
김경서
Original Assignee
(주)다음소프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다음소프트 filed Critical (주)다음소프트
Priority to KR1020050045779A priority Critical patent/KR20060113312A/en
Priority to PCT/KR2006/002096 priority patent/WO2006129968A1/en
Publication of KR20060113312A publication Critical patent/KR20060113312A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/02User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail using automatic reactions or user delegation, e.g. automatic replies or chatbot-generated messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/07User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail characterised by the inclusion of specific contents
    • H04L51/08Annexed information, e.g. attachments

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Signal Processing (AREA)
  • Finance (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A method and a system for recommending preferred goods/contents through conversation pattern analysis are provided to recommend the preferred goods/contents by storing conversation between the conversational agent and the user, and analyzing the conversation. A conversational agent service server(4) provides a service for offering the conversation between the user and the conversational agent. A conversation database(5) is linked with the conversational agent service server and stores question/answer pairs. A conversation analysis/recommendation server(7) analyzes preference of the user by analyzing the conversation contents between the user and the conversational agent, and recommends the goods or the contents based on the analyzed preference.

Description

대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 방법 및 시스템{METHOD AND SYSTEM OF PROPOSING PRODUCTS AND CONTENTS THROUGH ANALYSING PATTERNS OF CONVERSATION DATA}METHODS AND SYSTEM OF PROPOSING PRODUCTS AND CONTENTS THROUGH ANALYSING PATTERNS OF CONVERSATION DATA}

도 1 내지 도 4는 종래의 대화 에이전트 서비스를 설명하는 도면,1 to 4 are diagrams illustrating a conventional conversation agent service,

도 5는 본 발명에 따른 시스템의 일 예를 설명하는 도면,5 is a view for explaining an example of a system according to the present invention;

도 6은 사용자와 대화 에이전트 사이의 대화 내용의 일 예를 나타내는 도면,6 is a diagram illustrating an example of contents of a conversation between a user and a conversation agent;

도 7은 본 발명에 따라 사용자의 기호가 분석되어 정리되는 형태의 일 예를 나타내는 도면,7 is a view showing an example in which a user's preferences are analyzed and organized according to the present invention;

도 8은 본 발명에 따라 사용자의 분석된 기호를 바탕으로 상품 또는 컨텐츠를 추천하는 예를 나타내는 도면,8 is a view showing an example of recommending a product or content based on the user's analyzed preferences according to the present invention;

도 9는 본 발명에 따라 대화 에이전트가 사용자에게 추천을 하는 과정을 일 예를 설명하는 도면.9 is a diagram illustrating an example of a process of recommending a conversation agent to a user according to the present invention.

본 발명은 대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 방법 및 시스템에 관한 것으로, 특히 사용자와 대화 에이전트 사이의 대화 내용을 분석하여, 사 용자의 기호를 분석하고, 분석된 기호를 바탕으로 상품 또는 콘텐츠를 추천하는, 대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 방법 및 시스템에 관한 것이다.The present invention relates to a method and system for recommending a preferred product and content by analyzing a pattern of a conversation, and in particular, analyzing a content of a conversation between a user and a conversation agent, analyzing a user's preferences, and based on the analyzed preferences. The present invention relates to a method and system for recommending a preferred product and a content through a pattern analysis of a dialogue recommending the content.

대화 에이전트(conversational agent)는 사람과 대화가능한 소프트웨어 에이전트를 의미하는 채팅 로봇으로, 채터보트(chatterbot), 채트보트(chatbot), 채터박스(chatterbox) 등으로 불려진다(위키페디아 백과사전 참조[웹페이지 주소: http://en.wikipedia.org/wiki/Chatterbot]).A conversational agent is a chat robot that means a software agent that can talk to people. It is called chatterbot, chatbot, chatterbox, etc. (see Wikipedia Encyclopedia [Webpage] Address: http://en.wikipedia.org/wiki/Chatterbot]).

도 1은 종래기술의 일 예를 설명하는 도면으로서, A.L.I.C.E. Artificial Intelligence Foundation이 웹사이트 www.alicebot.org를 통해 제공하는 대화 에이전트 Alice가 도시되어 있다. 대화 에이전트 Alice는 "what is a chatter botterbot"라는 질문에 대해 미리 설정되어 있는 응답을 제시하고 있다.1 is a view for explaining an example of the prior art, A.L.I.C.E. Alice is a conversation agent provided by the Artificial Intelligence Foundation through the website www.alicebot.org. The chat agent Alice provides a preset response to the question "what is a chatter botterbot".

도 2는 종래기술의 다른 예를 설명하는 도면으로서, kiwilogic.com이 웹사이트 www.elbot.com을 통해 제공하는 대화 에이전트 Lingubot이 먼저 설정된 주제를 제시하여 대화를 이끌어 가는 방식을 제시하고 있다.FIG. 2 is a view for explaining another example of the related art, and shows a manner in which a dialogue agent Lingubot, which kiwilogic.com provides through a website www.elbot.com, leads a conversation by first presenting a set theme.

도 3은 종래기술의 또다른 예를 설명하는 도면으로서, msn 메신저 상에서 대화 에이전트(email address: simsimi200@hotmial.com)와 채팅하는 화면을 나타내고 있으며, 이러한 서비스는 ismaker사가 웹사이트 www.simsimi.com을 통해 제공하고 있다.3 is a view for explaining another example of the related art, which shows a screen for chatting with a chat agent (email address: simsimi200@hotmial.com) on an msn messenger, and this service is manufactured by ismaker website www.simsimi.com Provided through.

이외에도 www.personalityforge.com을 통해 다양한 대화 에이전트들과 대화할 수 있으며, www.ellaz.com을 통해 대화 에이전트 ella와 대화할 수 있는 등 웹 상에서 다양한 대화 에이전트 서비스가 제공되고 있다.In addition, various chat agent services are available on the web, such as chat with various chat agents through www.personalityforge.com and with chat agent ella through www.ellaz.com.

이러한 대화 에이전트 서비스는 사용자와 사용자간에 채팅이 이루어지는 것이 아니라, 사용자와 대화 에이전트 즉, 대화 로봇과의 사이에서 채팅이 이루어지는 것이며, 주로 대화 로봇이 예상되는 질문/응답의 쌍들을 미리 축적해 둠으로써(패턴 매칭을 통해), 사용자의 질문에 응답할 수 있게 되는 것이다. 예를 들어, 사용자가 "밥 먹었니?"라고 질문하면, 적절한 자연어처리 과정을 거쳐, 질문/응답 쌍들이 저장된 대화 DB로부터 이에 대응하는 응답 "아니요 아직이요"를 찾아 사용자에게 제시함으로써 사용자와 채팅을 하게 되는 것이다.Such a chat agent service is a chat between a user and a chat agent, that is, a chat robot, rather than a chat between the user and the user, and mainly by accumulating the expected question / answer pairs in advance. Through pattern matching), the user's questions can be answered. For example, if a user asks "Have you eaten?", The user goes through the appropriate natural language processing and chats with the user by finding the corresponding response "No yet" from the conversation DB where the question / response pairs are stored. Will be.

도 4는 종래기술의 또다른 예를 설명하는 도면으로서, 여기서 도 3의 대화 에이전트 simsimi가 대화 상대방에게 제품(예: 네트워크 관련 제품)을 추천하고 있다. 그러나 이러한 추천은 대화 상대방의 기호와 관련없이 대화 에이전트 서비스 제공자 또는 제품 광고주에 의해 일방적으로 제안되는 것이므로, 대화 상대방의 관심을 끌거나 제품 광고의 효과를 높이기에는 부족하다.4 is a view for explaining another example of the related art, where the conversation agent simsimi of FIG. 3 recommends a product (eg, a network-related product) to a conversation counterpart. However, since the recommendation is unilaterally suggested by the conversation agent service provider or the product advertiser regardless of the preference of the conversation partner, it is insufficient to attract the conversation partner's attention or increase the effect of the product advertisement.

한편, 일본 공개특허공보 제2003-248681호는 자연어처리 기법을 이용하여 주어진 텍스트로부터 사용자의 기호를 분석하는 방법으로서, 주지의 자연어처리 기법을 이용하여 텍스트를 분석한 다음, 이를 미리 설정된 분석패턴과 비교함으로써 사용자의 기호를 알아내는 방법이 제시되어 있다. On the other hand, Japanese Laid-Open Patent Publication No. 2003-248681 is a method of analyzing a user's preferences from a given text using a natural language processing technique. A method of finding out the user's preferences by comparison is presented.

본 발명은 이러한 점을 감안하여 사용자와 대화 에이전트 사이에서 이루어진 대화를 저장한 후 이를 분석함으로써 선호 상품 및 콘텐츠를 추천할 수 있는 방법 및 시스템을 제공하는 것을 목적으로 한다.In view of the foregoing, an object of the present invention is to provide a method and system for recommending a preferred product and content by storing and analyzing a conversation between a user and a conversation agent.

이를 위해, 본 발명은 대화 에이전트와 대화하고자 하는 사용자의 정보를 대화 분석/추천 서버로 전송하는 제1 단계, 대화 분석/추천 서버가 사용자 정보로부터 분석된 기호를 찾고, 이 분석된 기호와 관련된 추천 내용을 찾아서 전송한 정보를 받는 제2 단계 그리고, 대화 분석/추천 서버가 전송한 정보를 대화 에이전트를 통해 발현하는 제3 단계를 포함하는 것을 특징으로 하는, 대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 방법을 제공한다.To this end, the present invention provides a first step of transmitting information of a user who wants to talk to a chat agent to a chat analysis / recommendation server. And a third step of receiving the information transmitted by searching for the content, and a third step of expressing the information transmitted by the chat analysis / recommendation server through the chat agent. Provide recommendations.

또한 본 발명은 사용자와 대화 에이전트를 통해 대화할 수 있는 서비스를 제공하는 대화 에이전트 서비스 서버, 대화 에이전트 서비스 서버와 연동하며 질문/응답 쌍들을 저장화고 있는 대화 DB, 사용자와 대화 에이전트 사이의 대화 내용을 분석하여 사용자의 기호를 분석하고, 분석된 기호를 바탕으로 상품 또는 콘텐츠를 추천하는 대화 분석/추천 서버를 포함하는 것을 특징으로 하는, 대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 시스템를 제공한다.In addition, the present invention provides a conversation agent service server that provides a service that can communicate with a user through a conversation agent, a conversation DB interoperating with a conversation agent service server and storing question / answer pairs, and a conversation content between the user and the conversation agent. It provides a preference product and content recommendation system through a pattern analysis of the conversation, characterized in that it comprises a dialogue analysis / recommendation server that analyzes the user's preferences, and recommends goods or content based on the analyzed preferences.

이하 도면을 참고로 하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

도 5는 본 발명에 따른 시스템의 일 예를 설명하는 도면으로서, 본 발명은 사용자 컴퓨터(1,2), 네트워크로서의 인터넷(3), 대화 에이전트 서비스 서버(4), 질문/응답 쌍들이 저장된 대화 DB(5)에 더하여, 사용자와 대화 에이전트 사이의 대화 내용을 저장하고 있는 대화 저장 DB(6)와 대화 저장 DB(6)에 저장된 대화를 분석하는 대화 분석/추천 서버(7)를 더 포함한다. 사용자는 사용자 컴퓨터(1)를 통해 인터넷(3)을 거쳐 대화 에이전트 서비스 서버(4)에 접속할 수 있으며, 대화 에이전트 서비스 서버(4)에 의해 제공되는 대화 에이전트와 대화를 행하게 된다. 이 때, 사용자의 질문에 대한 응답은 대화 에이전트 서비스 서버(4)에 의해 질문/응답 쌍들이 저장된 DB(5)로부터 적절한 응답을 찾음으로써 사용자 컴퓨터(1)로 보내진다. 한편, 사용자와 대화 에이전트 사이의 대화 내용은 대화 저장 DB(6)에 저장되고, 대화 분석/추천 서버(7)를 통해 분석된다. 이렇게 분석된 선호 내지는 기호와 관련된 상품 또는 콘텐츠를 이후의 대화 에이전트와의 대화에서 대화 에이전트가 사용자가에게 제시하거나 이메일을 통해 사용자에게 전달할 수 있게 된다.5 is a diagram illustrating an example of a system according to the present invention, in which the present invention is a user computer (1, 2), the Internet (3) as a network, a conversation agent service server (4), a conversation with stored question / answer pairs In addition to the DB 5, it further includes a conversation storage DB 6 storing conversation contents between the user and the conversation agent and a conversation analysis / recommendation server 7 analyzing the conversation stored in the conversation storage DB 6; . The user can connect to the chat agent service server 4 via the Internet 3 via the user computer 1 and have a conversation with the chat agent provided by the chat agent service server 4. At this time, the response to the user's question is sent by the dialog agent service server 4 to the user computer 1 by finding the appropriate response from the DB 5 in which the question / response pairs are stored. Meanwhile, the conversation contents between the user and the conversation agent are stored in the conversation storage DB 6 and analyzed through the conversation analysis / recommendation server 7. The goods or contents related to the analyzed preferences or preferences may be presented to the user or communicated to the user through e-mail in a subsequent conversation with the conversation agent.

이하, 사용자와 대화 에이전트 사이의 대화 내용으로부터 사용자의 기호 또는 선호를 분석하는 방법을 설명한다.Hereinafter, a method of analyzing the user's preferences or preferences from the contents of the conversation between the user and the conversation agent will be described.

이 대화 내용으로부터 본 발명에 따라 사용자의 선호 내지는 기호를 분석하는 일 예를 설명한다. 선호를 분석하는 데는 당업자에게 다양한 방법들이 사용에 될 수 있으며(예: 종래기술로 인용된 일본 공개특허공보 제2003-248681호), 여기서 설명되는 하나의 예로서 이해되어야 한다. 대화에서 자신의 기호나 선호를 이야기할 때 보통 "나는 사과가 좋다", "나는 야구를 좋아해" 등과 같이 "좋다", "좋아하다"라는 말을 사용하게 된다. 따라서, 여기서는 "좋아하다"를 이용하여 대화 내용으로부터 사용자의 기호를 분석하는 방법을 제시한다.An example of analyzing a user's preferences or preferences according to the present invention is described from this dialogue. Various methods may be used by those skilled in the art in analyzing preferences (e.g., Japanese Patent Laid-Open No. 2003-248681, cited in the prior art), and should be understood as one example described herein. When talking about your preferences or preferences in conversation, you usually use the words "good" and "like" such as "I like apples" and "I like baseball." Therefore, the present invention proposes a method of analyzing a user's preference from the contents of conversation using "likes".

도 6은 사용자와 대화 에이전트 사이의 대화 내용의 일 예를 나타내는 도면으로서, 이 대화에서 사용자(대화명 [방문자])는 "안녕, 날씨가 흐리다.", "취미가 뭐니", "나는 야구를 좋아해" 라는 세 문장을 제시하였으며, 자연어처리를 과정을 거쳐 "좋아하다"를 포함하지 않는 앞의 두문장은 제거되고, 세번째 문장으로부터 방문자가 야구를 좋아한다는 것을 알 수 있게 된다. 이러한 사용자 선호 내지는 기호의 분석은 대화 에이전트가 미리 정해진 질문을 사용자에게 제시하고 사용자로부터의 답변을 정리함으로써도 행해질 수 있다.FIG. 6 is a diagram illustrating an example of a conversation between a user and a chat agent, in which the user (dialogue [visitor]) says "hello, the weather is cloudy", "what is a hobby", "I like baseball "Three sentences," the first sentence, which does not contain "likes" after the natural language processing, are removed, and the third sentence shows that the visitor likes baseball. This analysis of user preferences or preferences can also be done by the conversation agent presenting a predetermined question to the user and organizing the answers from the user.

도 7은 본 발명에 따라 사용자의 기호가 분석되어 정리되는 형태의 일 예를 나타내는 도면으로서, 사용자(대화명 [방문자])의 야구에 대해 기호를 가진다는 것이 표시되어 있으며, 바람직하게는 사용자의 다양한 기호를 특정 사용자에 대하여 통합적으로 관리될 수 있으며(예: 사용자의 야구, 스테이크 및 스파게티에 대한 선호가 통합적으로 관리됨), 또한 사용자의 대화를 지속적으로 분석하여 여러번 언급하는 경우에 이를 카운팅할 수 있고(예: 사용자가 야구를 1회, 스테이크를 1회, 스파케티를 3회 언급했음), 특정 기호들을 범주화해서 관리함으로써(예: 야구를 스포츠 범주에 넣고, 스테이크를 음식의 범주에 넣음) 기호 관리를 효율적으로 할 수 있게 되어 있다. 또한, 필요에 따라 사용자에 추가적인 정보 예를 들어, 이메일주소와 같은 정보를 함께 관리함으써, 사용자에게 기호와 관련된 상품 또는 컨텐츠를 추천함에 있어 편의를 구할 수 있게 된다. FIG. 7 is a diagram illustrating an example in which a user's preference is analyzed and organized according to the present invention, and it is indicated that the user has a preference for baseball of the user (dialog [visitor]), and preferably various Symbols can be managed collectively for a specific user (for example, the user's preferences for baseball, stakes, and spaghetti are collectively managed), and can also be counted when the user's conversations are continuously analyzed and mentioned several times. Symbols (e.g. user mentioned 1 baseball, 1 stake, 3 spaghetti) and categorized and managed to categorize certain symbols (e.g. put baseball in sports category, steak in food category) Management can be done efficiently. In addition, by managing additional information, for example, an email address, to the user as needed, it is possible to obtain convenience in recommending products or contents related to preferences to the user.

도 8은 본 발명에 따라 사용자의 분석된 기호를 바탕으로 상품 또는 컨텐츠를 추천하는 예를 나타내는 도면으로서, 도 8의 좌측에는 사용자(대화명 [방문자])가 다시 방문한 경우에 대화 에이전트가 분석된 기호를 바탕으로 응답(예: "방문자님 오늘 XX야구 경기가 있습니다.")을 제시한 예를 나타내고 있으며, 도 8의 우측에는 메신저를 통해 사용자에게 추천(예: "방문자님 오늘 XX야구 경기가 있습니다 ")을 하는 예를 나타내고 있다.FIG. 8 is a diagram illustrating an example of recommending a product or content based on a user's analyzed symbol according to the present invention. On the left side of FIG. 8, a symbol analyzed by a conversation agent when the user (dialog [visitor]) visits again. Based on this example, a response (eg, "Visitor today is XX baseball game") is presented, and the right side of FIG. 8 is recommended to the user via messenger (eg, "Visitor today is XX baseball game"). ") Is shown.

도 9는 본 발명에 따라 대화 에이전트가 사용자에게 추천을 하는 과정을 일 예를 설명하는 도면으로서, 먼저 대화 에이전트 서비스 서버(4)는 사용자의 대화 입력을 받아서(S901), 대화 DB(5)를 통해 이에 대한 응답을 찾는 한편(S902), 사용자 정보(예: 대화명)를 대화 분석/추천 서버(7)로 넘기고(S903), 이 정보를 넘겨 받은 대화 분석/추천 서버(7)는 대화 저장 DB(6) 또는 별도의 DB에 검색하여 사용자에 선호가 분석되어 있는가 검색하여(S904), 사용자에 대한 정보가 없거나 도 7에서와 같이 정리된 정보로부터 분석된 선호가 없는 경우에는 추천 내용이 없다는 정보를 대화 에이전트 서비스 서버(4)로 반환하고(S905), 도 7에서와 같이 정리된 정보에 사용자의 분석된 선호가 존재하는 경우에는 이 선호(예: 야구)와 관련해서 추천할 만한 내용(이러한 내용들은 별도의 DB에 마련될 수 있다)이 있는지를 검색하여(S906), 있는 경우에는 추천 내용을 대화 에이전트 서비스 서버(4)로 반환하고(S907), 없는 경우에는 단계(S905)에서와 마찬가지로 추천 내용이 없다는 정보를 대화 에이전트 서비스 서버(4)로 반환한다(S905). 추천 내용이 없다는 정보를 반환 받는 경우에는 대화 에이전트 서비스 서버(4)는 단계(S902)에서 대화 DB(5)를 통해 검색한 사용자의 입력에 응답을 대화 에이전트의 답변으로 발현하고(S908), 추천 내용을 반환받는 경우에는 대화 에이전트 서비스 서버(4)는 추천 내용만을 발현하거나 대화 DB(5)를 통해 검색한 응답과 함께 발현하는 등 정해진 규칙에 따라 다양하게 대화 에이전트의 답변을 발현할 수 있게 된다(S908).9 is a diagram illustrating an example of a process of recommending a conversation agent to a user according to the present invention. First, the conversation agent service server 4 receives a user's conversation input (S901) and receives a conversation DB 5. While searching for a response (S902), the user information (e.g., a screen name) is passed to the conversation analysis / recommendation server (7) (S903), and the conversation analysis / recommendation server (7) received the information is stored in the conversation DB. (6) Or, if the user is analyzed by searching in a separate DB or not (S904), if there is no information about the user or no preference analyzed from the information as summarized in FIG. Is returned to the conversation agent service server 4 (S905), and if there is an analyzed preference of the user in the organized information as shown in FIG. Contents are separate D If there is no recommendation, it returns to the conversation agent service server 4 (S907), and if there is no recommendation, as in step S905. Information is returned to the dialog agent service server 4 (S905). When the information that there is no recommendation is returned, the conversation agent service server 4 expresses a response to the user's input retrieved through the conversation DB 5 as a response of the conversation agent in step S902 (S908), and recommends. When the content is returned, the conversation agent service server 4 may express the response of the conversation agent in various ways according to a predetermined rule, such as expressing only recommendation contents or expressions with the response retrieved through the conversation DB 5. (S908).

본 실시예에서 단계(S901)에서 사용자의 대화 입력에 의해 위 단계들이 진행 되었지만, 사용자의 대화 입력 대신에 사용자의 대화 에이전트와의 대화 요청에 의해서도 이러한 과정은 이루어질 수 있으며, 이러한 경우에는 단계(S902)의 과정은 생략될 수 있다.In the present exemplary embodiment, the above steps are performed by the user's conversation input in step S901. However, the process may be performed by requesting a conversation with the user's conversation agent instead of the user's conversation input. In this case, step S902. ) May be omitted.

본 발명에 의하면, 대화 에이전트와의 대화 내용을 분석하여 이후의 대화에서 사용자에게 그 기호에 맞춤된 상품 또는 콘텐츠를 제안할 수 있는 맞춘된 형태의 대화 에이전트 서비스를 제공할 있게 된다.According to the present invention, it is possible to provide a customized conversation agent service that can analyze contents of a conversation with a conversation agent and propose a product or content that is customized to a user's preference in a subsequent conversation.

Claims (2)

대화 에이전트와 대화하고자 하는 사용자의 정보를 대화 분석/추천 서버로 전송하는 제1 단계;A first step of transmitting information of a user who wants to talk with a chat agent to a chat analysis / recommendation server; 대화 분석/추천 서버가 사용자 정보로부터 분석된 기호를 찾고, 이 분석된 기호와 관련된 추천 내용을 찾아서 전송한 정보를 받는 제2 단계; 그리고,A second step of the conversation analysis / recommendation server finding a symbol analyzed from the user information, finding recommendation contents related to the analyzed symbol, and receiving the transmitted information; And, 대화 분석/추천 서버가 전송한 정보를 대화 에이전트를 통해 발현하는 제3 단계를 포함하는 것을 특징으로 하는, 대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 방법.And a third step of expressing information transmitted by the chat analysis / recommendation server through a chat agent. 사용자와 대화 에이전트를 통해 대화할 수 있는 서비스를 제공하는 대화 에이전트 서비스 서버;A chat agent service server providing a service for talking with a user through a chat agent; 대화 에이전트 서비스 서버와 연동하며 질문/응답 쌍들을 저장화고 있는 대화 DB;A conversation DB interworking with a conversation agent service server and storing question / answer pairs; 사용자와 대화 에이전트 사이의 대화 내용을 분석하여 사용자의 기호를 분석하고, 분석된 기호를 바탕으로 상품 또는 콘텐츠를 추천하는 대화 분석/추천 서버를 포함하는 것을 특징으로 하는, 대화의 패턴 분석을 통한 선호 상품 및 콘텐츠 추천 시스템.Preference analysis through pattern analysis of the dialogue, characterized in that it comprises a dialogue analysis / recommendation server for analyzing the contents of the conversation between the user and the dialog agent, and recommends goods or content based on the analyzed symbols Product and content recommendation system.
KR1020050045779A 2005-05-30 2005-05-30 Method and system of proposing products and contents through analysing patterns of conversation data KR20060113312A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050045779A KR20060113312A (en) 2005-05-30 2005-05-30 Method and system of proposing products and contents through analysing patterns of conversation data
PCT/KR2006/002096 WO2006129968A1 (en) 2005-05-30 2006-05-30 System and method of analysing a conversation using conversational agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050045779A KR20060113312A (en) 2005-05-30 2005-05-30 Method and system of proposing products and contents through analysing patterns of conversation data

Publications (1)

Publication Number Publication Date
KR20060113312A true KR20060113312A (en) 2006-11-02

Family

ID=37651696

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050045779A KR20060113312A (en) 2005-05-30 2005-05-30 Method and system of proposing products and contents through analysing patterns of conversation data

Country Status (1)

Country Link
KR (1) KR20060113312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135438A2 (en) * 2011-03-30 2012-10-04 Thankuconomy, Llc Methods and systems for incentivizing, exchanging, and tracking expressions of gratitude within a network
KR20140085789A (en) 2012-12-27 2014-07-08 현대엠엔소프트 주식회사 System and method for recommending destination
KR20190103647A (en) 2018-02-28 2019-09-05 엔에이치엔 주식회사 Method for schedule a service based on chat messages

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135438A2 (en) * 2011-03-30 2012-10-04 Thankuconomy, Llc Methods and systems for incentivizing, exchanging, and tracking expressions of gratitude within a network
WO2012135438A3 (en) * 2011-03-30 2012-12-27 Thankuconomy, Llc Methods and systems for incentivizing, exchanging, and tracking expressions of gratitude within a network
KR20140085789A (en) 2012-12-27 2014-07-08 현대엠엔소프트 주식회사 System and method for recommending destination
KR20190103647A (en) 2018-02-28 2019-09-05 엔에이치엔 주식회사 Method for schedule a service based on chat messages

Similar Documents

Publication Publication Date Title
Lew et al. Interactivity in online chat: Conversational contingency and response latency in computer-mediated communication
KR20070018385A (en) Conversational agent service method and system using analysing conversation data
JP5866388B2 (en) System and method for predicting effectiveness of marketing message
Robinson et al. Textual factors in online product reviews: a foundation for a more influential approach to opinion mining
WO2006129968A1 (en) System and method of analysing a conversation using conversational agent
JP7098928B2 (en) Question answer system, question answer method
JP2008052449A (en) Interactive agent system and method
KR101945297B1 (en) Server for producing and providing of chatbot linked with instant messenger
Wigmo et al. Social media marketing: What role can social media play as a marketing tool?
US10366620B2 (en) Linguistic analysis of stored electronic communications
Sevcikova et al. Anyone who wants sex? Seeking sex partners on sex-oriented contact websites
Quintino The impact of chatbot technology attributes on customer experience: an example in telecom
Chen et al. Understanding what determines consumers' expanded use of mobile videophones
KR20060113312A (en) Method and system of proposing products and contents through analysing patterns of conversation data
KR20070018387A (en) Conversational agent service method and system using analysing conversation data
KR20210088824A (en) System for Chatting Using Artificial Intelligence Chat Service and Its Operation Method
KR20070018386A (en) Conversational agent service method and system using analysing conversation data
KR20060117860A (en) Method and system of providing conversational agent service using images
KR20060113313A (en) Method and system of grouping users through analysing patterns of conversation data
Romell et al. Humor as a Social Media Strategy: A mixed-methods research on humor, its types, contingencies, and favorability
KR102026273B1 (en) System for generating script
Solomon Enhancing the consumers' satisfaction using social media analytics within the financial industry of South Africa
Cramer People's responses to autonomous and adaptive systems
Myoung How engagement with influencer marketing campaigns affect the brand performance: a case of stories on Instagram
Gitau An approach for using twitter to perform sentiment analysis in Kenya

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination