KR20060112445A - Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver - Google Patents

Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver Download PDF

Info

Publication number
KR20060112445A
KR20060112445A KR1020050034907A KR20050034907A KR20060112445A KR 20060112445 A KR20060112445 A KR 20060112445A KR 1020050034907 A KR1020050034907 A KR 1020050034907A KR 20050034907 A KR20050034907 A KR 20050034907A KR 20060112445 A KR20060112445 A KR 20060112445A
Authority
KR
South Korea
Prior art keywords
photocatalyst
metal fiber
silver nano
solution
immobilized
Prior art date
Application number
KR1020050034907A
Other languages
Korean (ko)
Inventor
김응조
백남준
임정빈
김대봉
정원용
Original Assignee
나노솔루션주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노솔루션주식회사 filed Critical 나노솔루션주식회사
Priority to KR1020050034907A priority Critical patent/KR20060112445A/en
Publication of KR20060112445A publication Critical patent/KR20060112445A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • D06M11/42Oxides or hydroxides of copper, silver or gold
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A manufacturing method of metal fiber to which photocatalytic particles and nanosilver particles are immobilized so that the metal fiber is usefully used when removing volatile organic compounds and bacteria in wastewater or purified water treatment, or air purification is provided. A manufacturing method of metal fiber to which photocatalyst and nanosilver are immobilized comprises: a first step of dip coating or spray coating a metal fiber that is made of SUS304 stainless steel and has an outer diameter of 1 to 1,000 mum with a polycarbosilane solution, and drying and firing the polycarbosilane solution coated metal fiber; a second step of dip coating or spray coating the metal fiber of the first step with a photocatalytic solution, and drying the photocatalytic solution coated metal fiber; a third step of dip coating or spray coating the metal fiber of the second step with a nanosilver solution, and drying the nanosilver solution coated metal fiber; and a fourth step of drying the metal fiber of the second step or the third step at 50 to 250 deg.C for 4 to 200 deg.C so that photocatalyst and nanosilver are floated on the surface of the metal fiber, and firing the metal fiber at 400 deg.C for 4 hours or more.

Description

광촉매·은나노가 고정화된 금속섬유의 제조방법{Manufacturing method of Metal fiber immobilized by photocatalyst·nanosilver}Manufacturing method of Metal fiber immobilized by photocatalystnanosilver

도 1. 광촉매·은나노 고정화 금속섬유의 제조방법 Figure 1. Manufacturing method of photocatalyst and silver nano immobilized metal fiber

도 2. 본 발명의 실시예 1,2,3의 전처리 코팅후 금속섬유의 표면상태Figure 2. Surface state of the metal fiber after the pretreatment coating of Examples 1,2,3 of the present invention

도 3. 본 발명의 실시예 4,5,6의 광촉매 고정화 금속섬유의 표면상태 Figure 3. Surface state of the photocatalyst immobilized metal fiber of Examples 4, 5, 6 of the present invention

도 4. 본 발명의 실시예 7,8의 광촉매 고정화 금속섬유의 표면상태4. Surface state of the photocatalyst immobilized metal fiber of Example 7,8 of the present invention

도 5. 본 발명의 실시예 9의 광촉매 은나노 고정화 금속섬유의 표면상태5. Surface state of the photocatalyst silver nano immobilized metal fiber of Example 9 of the present invention

도 6. 금속섬유의 표면상태6. Surface state of metal fiber

본 발명은 수처리나 대기처리와 같은 환경정화를 위한 광촉매·은나노가 고정화된 금속섬유 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 폐수나 정수처리 또는 공기 정화에 있어 유기화합물과 세균을 처리하는 방법으로서 유용하게 사용될 수 있는 광촉매 입자와 은나노 입자를 금속섬유에 고정화한 금속섬유 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to metal fibers immobilized with photocatalysts and silver nanoparticles for environmental purification, such as water treatment or air treatment, and more particularly, to methods of treating organic compounds and bacteria in wastewater, water purification or air purification. The present invention relates to a metal fiber obtained by immobilizing photocatalyst particles and silver nanoparticles on a metal fiber, and a method of manufacturing the same.

일반적으로 수중에 존재하는 각종 오염물질을 제거하기 위하여 침전법, 활성 탄 흡착법, 물리화학적 처리법, 전기산화법, 생물화학적 처리법 등이 사용되고 있지만, 오염물질의 완전분해가 이루어지지 않거나, 첨가한 화학물질로 인해 2차 오염믈질이 발생하거나, 혹은 시설비 및 운전비의 부담이 크거나, 과도한 부지면적이 필요하다는 등의 단점이 있다. Generally, sedimentation method, activated carbon adsorption method, physicochemical treatment method, electrooxidation method, and biochemical treatment method are used to remove various contaminants present in water, but they are not completely decomposed or added chemicals. Due to this, there are disadvantages such as secondary pollution quality, high burden of facility cost and operation cost, and excessive land area.

이러한 단점들을 극복하기 위하여 기존의 산화제보다 더욱 강력한 산화력을 가지고 있는 OH 라디칼을 이용하여 수중에 함유되어 있는 유기물을 이산화탄소, 물 또는 염화수소 등과 같은 인체에 무해한 화합물로 분해, 전환하는 고도산화처리방법이 사용되고 있다. 고도산화처리방법에는 자외선이나 오존 또는 광촉매 등이 사용된다. 특히 인체에 유해한 세균 및 바이러스를 제거하기 위해 자외선법이나 오존법이 많이 적용되어 왔으나, 254nm 파장의 자외선으로 살균시키는 자외선법은 램프 하나만으로는 만족할 만한 효율을 얻지 못하는 단점이 있고 오존법은 처리가능한 유기물이 한정되어 있을 뿐만아니라 잔류오존으로 인한 인체 유해성이 문제가 되며, 시스템의 비대화와 부지면적의 증가로 현장적용에 많은 어려움이 있다. In order to overcome these disadvantages, advanced oxidation treatment method is used to decompose and convert organic substances contained in water into harmless compounds such as carbon dioxide, water or hydrogen chloride by using OH radical which has more powerful oxidizing power than conventional oxidizing agents. have. Ultraviolet oxidation, ultraviolet ray, ozone or photocatalyst is used in the method. In particular, UV or ozone methods have been applied to remove bacteria and viruses harmful to the human body. However, UV light sterilization with ultraviolet rays at 254nm wavelength does not provide satisfactory efficiency with only one lamp. This is not only limited, but also harmful to humans due to residual ozone is a problem, and there are many difficulties in applying the site due to the enlargement of the system and the increase of the land area.

이에 비해 광촉매법은 에너지원인 자외선램프만 있으면 어떠한 화학첨가물 없이 유기물과 세균이 동시에 제거되며 효율이 높아 소요부지면적도 작다는 장점이 있다. TiO2, CdS, ZnO, SnO2 등은 일정한 띠간격 이상의 에너지를 가진 빛을 받았을때 전자와 정공이 생성되며, 이들은 각각 환원반응과 산화반응을 일으킬 수 있다. 이들 모두 광촉매에 속하지만 대부분이 분자구조가 불안정하기 때문에 전자와 정공의 움직임이 활발한 아나타제형 이산화티타늄(TiO2) 광촉매가 널리 사용되고 있다("미국특허 제6,022,824호" ). 아나타제형 이산화티타늄 광촉매에 띠간격 3.0∼3.2ev 이상, 365nm이하의 광에너지를 조사시키면 가전대로부터 전도대로 전자가 전이되고, 이때 발생되는 전자와 정공은 광촉매 표면으로 확산, 이동하여 전자는 환원과정을 유발하고, 정공은 흡착된 수용물질과 반응하여 OH라디칼 및 O2 슈퍼옥사이드 라디칼을 생성하므로써 유기오염물질의 분자결합을 분해하게 된다. 즉 자외선의 광에너지(hv)가 광촉매 결합에너지(Band gap energy)보다 같거나 그 이상이 되면 광촉매의 가전자대(Valence band)에서 전자가 방출되게 된다. 이러한 광촉매의 전자·전공 반응 메카니즘으로 오염유기화합물의 분자구조를 분해할 수 있는 OH라디칼을 생성할 수 있으며, 전자·전공의 발생과 동시에 재결합현상도 발생하므로 분리와 결합이 동시에 이루어진다. 이러한 전자·전공의 재결합 반응은 생성된 전공과 전자가 공간 전하층에서 서로 반대방향으로 움직이게 함으로써 긍극적으로 전자와 전공의 재결합을 방지하는 효과를 나타내게 된다. 이에 따라 전공과 전자가 촉매반응에 참여할 수 있는 가능성이 커지므로 이와같은 현상은 불균일계 광촉매 반응에 있어서 중요한 요소라고 할 수 있다. On the other hand, the photocatalyst method has the advantage that the organic material and bacteria are removed at the same time without any chemical additives as long as the ultraviolet lamp is an energy source, and the efficiency is high and the required area is small. TiO2, CdS, ZnO, SnO2, etc. generate electrons and holes when they receive light with a certain band gap energy, which can cause reduction and oxidation reactions, respectively. All of these belong to photocatalysts, but most of them are unstable in molecular structure, and thus, anatase type titanium dioxide (TiO2) photocatalysts with active electron and hole movements are widely used ("US Pat. No. 6,022,824"). When anatase-type titanium dioxide photocatalyst is irradiated with light energy with band interval of 3.0 ~ 3.2ev or more and 365nm or less, electrons are transferred from the consumer electronics to the conduction band, and the generated electrons and holes diffuse and move to the surface of the photocatalyst. The holes react with the adsorbed sorbents to produce OH radicals and O2 superoxide radicals, thereby decomposing the molecular bonds of the organic contaminants. That is, when the ultraviolet light energy (hv) is equal to or greater than the photocatalytic bond energy (Band gap energy), electrons are emitted from the valence band of the photocatalyst. The electron and electroreaction mechanism of the photocatalyst can generate OH radicals that can decompose the molecular structure of the contaminated organic compound. This recombination reaction of electrons and electrons has an effect of ultimately preventing electrons and holes from recombination by causing the generated holes and electrons to move in opposite directions in the space charge layer. This increases the possibility that the major and electron can participate in the catalytic reaction, such a phenomenon can be said to be an important factor in the heterogeneous photocatalytic reaction.

상기 설명한 광촉매 수처리 시스템관련 선행기술을 살펴보면 다음과 같다. Looking at the prior art related to the photocatalytic water treatment system described above is as follows.

공개번호 특2001-0067693 "공기부상형 광촉매 수처리장치", 특2002-0092291 "티타늄과 공기의 산화를 이용한 수처리장치", 특2003-0087801 "초음파와 광촉매를 이용한 수처리장치 및 수처리방법", 등록번호 10-0390652 "광촉매 반응을 이용한 폐수의 처리방법", 공고번호 10-0205443 "광촉매를 이용한 폐수처리 장치", 등록번호 10-0392070 "Sol-gel법으로 고정화되어진 지지체를 광촉매로 사용하는 폐수처리 시스템", 등록번호 10-0438668 "광촉매반응식 수처리장치", 특2003-42725 "고정화 광촉매 제조방법"등이 있다. Publication No. 2001-0067693 "Air Float Type Photocatalytic Water Treatment Apparatus", Patent 2002-0092291 "Water Treatment Apparatus Using Oxidation of Titanium and Air," Patent 2003-0087801 "Water Treatment Apparatus and Water Treatment Method Using Ultrasonic Waves and Photocatalyst", Registration No. 10-0390652 "Method of Treating Wastewater Using Photocatalytic Reaction", Publication No. 10-0205443 "Wastewater Treatment System Using Photocatalyst", Registration No. 10-0392070 "Wastewater Treatment System Using Support Fixed by Sol-gel Method as Photocatalyst "Registration No. 10-0438668" Photocatalytic Reaction Water Treatment Apparatus ", Japanese Patent No. 2003-42725," Method for Manufacturing Immobilized Photocatalyst ", and the like.

선행기술 대부분은 광촉매를 분말형, 구슬형, 실린더형 혹은 하니컴형의 세라믹, 유리, 실리카겔, 제올라이트, 활성탄과 같은 무기질 담체에 광촉매를 담지하여 사용하는데 이들의 표면적이 한정되어 있어 표면반응을 하는 광촉매로서는 효율이 제한될 수 밖에 없다. 그리고 대부분 공극이 작아 과도한 압력강하를 유발해 처리량을 줄여야 하거나 운전비가 상승하는 단점이 있다. 또한 담체와 광촉매의 결합력이 약해 장시간 운전하거나 큰 유속에서는 광촉매가 담체로부터 탈리되어 배출되는 경우가 발생되기도 하고 담체자체의 강도가 약해 부숴지는 현상이 나타나기도 한다. 뿐만아니라 고정형이기 때문에 반응기 형태에 따른 적절한 변환이 용이하지 않고 하중이 커서 설치 및 운영상에 어려운 점이 많다. 한편 담체에 가려 자외선이 미치지 못하는 구역에서는 광촉매에 의한 정화작용이 일어나지 못하는 것은 물론 바이오매스에 대한 살균력이 없어 혐기발효가 발생할 가능성도 있다. Most of the prior art uses a photocatalyst on an inorganic carrier such as powder, bead, cylinder or honeycomb ceramic, glass, silica gel, zeolite, activated carbon, and the photocatalyst having a surface reaction due to its limited surface area. The efficiency is inevitably limited. In addition, most of the air gap is small, causing excessive pressure drop to reduce the throughput or increase the operating cost. In addition, the binding force between the carrier and the photocatalyst is weak, so that a long operation or a large flow rate may cause the photocatalyst to be detached from the carrier and discharged, or the strength of the carrier itself may be weak. In addition, due to the fixed type, proper conversion according to the reactor type is not easy, and the load is large, and thus there are many difficulties in installation and operation. On the other hand, in the area where ultraviolet rays do not reach the carrier, the purification effect by the photocatalyst does not occur, and there is a possibility that anaerobic fermentation may occur due to the lack of bactericidal power against biomass.

무기질 이외의 다른 소재는 담체로 사용하기가 매우 곤란한데, 예로 기계적 성질이나 성형성이 상대적으로 우수한 금속을 담체를 사용하지 못하는 이유는 금속표면에 광촉매 및 은나노를 고정화하게 되면 고정화시에 열부식이 발생하고 사용중에도 지속적으로 갈바닉 부식이 발생하여 금속 담체의 강도가 현저히 약화되고 특히, 금속 담체에 고정화된 광촉매 및 은나노의 부착안정성이 저하되어 광촉매의 탈리가 단시간내 발생하기 때문이다.Materials other than inorganic materials are very difficult to use as carriers. For example, metals with relatively good mechanical properties or moldability cannot be used as carriers. If the photocatalyst and silver nano are immobilized on the metal surface, thermal corrosion may occur during immobilization. This is because galvanic corrosion occurs continuously during use, and the strength of the metal carrier is significantly weakened, and in particular, the adhesion stability of the photocatalyst and silver nanoparticles immobilized on the metal carrier is lowered, resulting in desorption of the photocatalyst in a short time.

따라서, 본 발명의 기술적 과제는 강도가 강하면서도 공극과 표면적이 크고 작업상의 용이성을 부여할 수 있는 무정형의 담체를 제공하는 것으로써, 스테인레스 재질의 금속섬유의 담체를 사용하고, 담체로써의 활성표면적 증대를 위하여 금속섬유 외경사이즈를 1∼1,000㎛ 범위의 것을 사용하고, 금속섬유에 광촉매 및 은나노를 직접 코팅할 경우는 열부식 및 지속적인 갈바닉 부식이 발생하므로, 폴리카보실란 용액으로 금속섬유 표면을 전처리 코팅하여 금속표면을 무기계 표면으로 전환하여 고정화시 발생하는 열부식 및 지속적인 갈바닉 부식을 제거하고, 무기계 표면으로 전환된 금속섬유에 광촉매를 강력한 결합력으로 고정화하고, 자외선이 없는 곳에서도 살균작용을 할 수 있는 기능성을 부가하기 위하여 은나노가 추가로 고정화된 담체를 제공하는 것이다.Accordingly, the technical problem of the present invention is to provide an amorphous carrier capable of imparting strength and porosity and surface area, and providing ease of operation, by using a stainless steel metal carrier, and using an active surface area as a carrier. In order to increase the size of metal fiber outer diameter in the range of 1 ~ 1,000㎛, and direct coating of photocatalyst and silver nano to metal fiber, thermal corrosion and continuous galvanic corrosion occur, so pretreatment of the surface of metal fiber with polycarbosilane solution By coating, the metal surface is converted to inorganic surface to remove thermal corrosion and continuous galvanic corrosion generated during immobilization, and the photocatalyst is immobilized with strong bonding force on the metal fiber converted to inorganic surface, and sterilization can be performed even in the absence of UV light. In order to add the functionality that silver nano is further immobilized carrier To.

상기 기술적 과제를 달성하기 위하여 본 발명은 SUS304 스테인레스 스틸 재질로 된 외경 1∼1,000㎛의 금속섬유 표면에 광촉매와 은나노가 고정화된 진밀도 1.0 g/㎤ ∼ 5.0 g/㎤ 인 불규칙한 망목상 금속섬유의 제조방법을 제공하며, SUS304 스테인레스 스틸 재질로 된 외경 1∼1,000㎛의 금속섬유는 도면6의 전자현미경 사진과 같다.In order to achieve the above technical problem, the present invention provides an irregular meshed metal fiber having a true density of 1.0 g / cm 3 to 5.0 g / cm 3 in which photocatalyst and silver nano are fixed on a metal fiber surface having an outer diameter of 1 to 1,000 μm made of SUS304 stainless steel. It provides a manufacturing method, the metal fiber of the outer diameter of 1 ~ 1,000㎛ made of SUS304 stainless steel is as shown in the electron microscope picture of Figure 6.

본 발명의 구현예에 있어서, 상기 광촉매·은나노 고정화 금속섬유는, 금속섬유 1g당 광촉매 함량 0.1 ∼ 25 mg, 은나노 함량 0.001 ∼ 1.0 mg 이 고정화된 것이 바람직하다.In an embodiment of the present invention, the photocatalyst / silver nano immobilized metal fiber is preferably a photocatalyst content of 0.1 to 25 mg, silver nano content of 0.001 to 1.0 mg per 1 g of the metal fiber is immobilized.

본 발명의 일 구현예에 있어서, 상기 광촉매/은나노 고정화 금속섬유의 제조 방법은,In one embodiment of the present invention, the photocatalyst / silver nano-immobilized metal fiber manufacturing method,

(a) SUS304 스테인레스 스틸 재질로 된 외경 1∼1,000㎛의 섬유상 금속표면을 전처리하여 부식을 방지하고 금속표면의 접착력을 증대시키는 단계(a) pre-treating a fibrous metal surface having an outer diameter of 1 to 1,000 μm made of SUS304 stainless steel to prevent corrosion and increase adhesion to the metal surface;

(b) 금속섬유 1g당 광촉매 함량 0.1 ∼ 25 mg를 코팅하기 위한 0.5 ∼ 15 %의 광촉매 용액을 제조하여 광촉매를 금속섬유에 고정화하는 단계(b) preparing a photocatalyst solution of 0.5 to 15% for coating a photocatalyst content of 0.1 to 25 mg per gram of metal fiber to immobilize the photocatalyst on the metal fiber;

(c) 금속섬유 1g당 은나노 함량 0.001 ∼ 1.0 mg 를 코팅하기 위한 0.05 ∼ 1.5%의 은나노 용액을 이용하여 은나노를 금속섬유에 고정화하는 단계(c) immobilizing the silver nanoparticles on the metal fibers using a 0.05-1.5% silver nano solution for coating 0.001 to 1.0 mg of silver nanoparticles per gram of metal fiber;

(d) 금속섬유 표면과 고정화 물질 (광촉매·은나노) 간의 결합력을 강화하고 코팅층 표면위로 광촉매·은나노를 부상(aging)시키는 단계(d) strengthening the bonding force between the surface of the metal fiber and the immobilization material (photocatalyst / silver nano) and aging the photocatalyst / silver nanoparticle on the surface of the coating layer;

(e) 광촉매·은나노 고정화된 금속섬유를 필요에 따라 성형하는 단계를 포함하는 것이 바람직하다.(e) It is preferable to include forming a photocatalyst and silver nano immobilized metal fiber as needed.

이하, 본 발명에 따른 고정화 금속섬유 및 그 제조방법에 대하여 상세히 설명한다.Hereinafter, an immobilized metal fiber and a method of manufacturing the same according to the present invention will be described in detail.

(a) 금속섬유에 광촉매 용액을 고정화하거나 은나노 용액을 고정화 함에 있어 부식을 방지하고 광촉매·은나노의 균일한 분포와 함께 접착력을 부여하기 위해 반드시 전처리 단계를 수행한다. THF (Tetrahydrofurane) 또는 오렌지오일과 같은 천연오일 용제 100 중량% 기준에 PCS (Polycarbosilane)를 0.5 중량% ∼ 10 중량% 혼합하여 PCS용액을 제조하고 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 다시 400℃의 소성로 (furnace)에서 4시간 이상 소성하여 금속표면이 전처리된 금속섬유 (pre coating metal fiber)를 제조한다.(a) A pretreatment step must be carried out to fix the photocatalyst solution on the metal fiber or to fix the silver nano solution to prevent corrosion and to impart adhesion with a uniform distribution of photocatalyst and silver nano. A PCS solution is prepared by mixing 0.5% to 10% by weight of PCS (Polycarbosilane) based on 100% by weight of a natural oil solvent such as THF (Tetrahydrofurane) or orange oil and dipping the metal fibers therein or spraying them onto the surface of the metal fibers. It is dried for about 1 hour in a dry oven at 80 to 100 ° C. and then fired at 400 ° C. for more than 4 hours to prepare a pre-coated metal fiber.

(b) (a)에서 조제된 것과 같은 조성의 PCS용액에 Ti-butoxide를 혼합하여 광촉매 코팅액을 만든 후 (a)와 같은 방식으로 전처리된 금속섬유를 dipping하거나 표면에 spray하고 80∼100℃의 dry oven에서 1시간 이상 건조하여 50㎚ 이하 크기의 광촉매를 금속섬유 1g당 광촉매 함량 0.1 ∼ 25 mg 농도로 함유한 광촉매가 고정화된 금속섬유 (metal fiber immobilized by photocatalyst)를 제조한다.(b) Ti-butoxide is mixed with PCS solution prepared in (a) to make a photocatalyst coating solution, and then dipping or spraying the pretreated metal fiber on the surface in the same manner as (a) and After drying for more than 1 hour in a dry oven to prepare a photocatalyst (metal fiber immobilized by photocatalyst) containing a photocatalyst having a size of 50 nm or less at a concentration of 0.1 to 25 mg photocatalyst content per 1 g of metal fiber.

(c) 적당한 농도의 질산은을 물에 녹인 용액에 계면활성제를 첨가하여 은이온를 생성하고 하이드라진 등으로 환원시켜 50㎚이하 크기의 은나노를 20∼50,000ppm 농도로 함유한 은나노 용액을 제조한다. 이를 (b)의 소성 (furnace)전의 광촉매 고정화 금속섬유에 dipping하거나 표면에 spray하고 80∼100℃의 dry oven에서 1시간 이상 건조하여 광촉매와 은나노가 고정화된 금속섬유(metal fiber immobilized by photocatalyst·nanosilver)를 제조한다. 만약 광촉매의 기능이 필요하지 않을 경우에는 (a)의 전처리된 금속섬유를 은나노 용액에 dipping하거나 표면에 spray하고 이를 80∼100℃의 dry oven에서 1시간 이상 건조하여 은나노가 고정화된 금속섬유(metal fiber immobilized by photocatalyst)를 제조한다.(c) A silver nano solution was prepared by adding a surfactant to a solution in which silver nitrate was dissolved in water to generate silver ions, and then reduced with hydrazine to prepare a silver nano solution containing 20 to 50,000 ppm of silver nano particles having a size of 50 nm or less. The metal catalyst was immobilized by photocatalyst and nanosilver by dipping it onto the photocatalyst immobilized metal fiber before (b) or spraying it on the surface and drying it in a dry oven at 80 to 100 ° C. for at least 1 hour. ). If the function of the photocatalyst is not necessary, the pretreated metal fiber of (a) is dipping into the silver nano solution or sprayed on the surface and dried in a dry oven at 80-100 ° C for at least 1 hour to fix the silver nano metal (metal). fiber immobilized by photocatalyst).

(d) 광촉매와 금속표면, 은나노와 금속표면, 혹은 광촉매 및 은나노와 금속표면과의 결합력을 강화하고 코팅층 광촉매나 은나노를 표면위로 부상시키기 의하여 (b), (c)에서 각각 제조된 세가지의 고정화된 금속섬유를 습식건조로에서 80℃∼ 100℃에서 6시간 이상 건조하여 광촉매나 은나노를 표면위로 부상시키고, 금속표면과의 강력한 접착력을 위하여 400℃ 소성로 (furnace)에서 4시간 이상 소성한 다. 상기와 같은 습식건조 조건은 이산화티타늄 또는 은나노 결정체의 성장 방향이 코팅층 내부에서 외부(표면)로 향할 수 있도록 조정된 것이므로 금속섬유와 결정체 사이의 내부 응력발생을 현저히 감소시키게 되어 금속섬유와 코팅층의 결합력이 강력하게 될 뿐만 아니라, 광촉매나 은나노 대부분이 코팅층 내부가 아닌 코팅층 표면위에 존재하게 되어 활성이 획기적으로 증대된다.(d) the three immobilizations prepared in (b) and (c), respectively, by strengthening the bonding force between the photocatalyst and the metal surface, silver nano and the metal surface, or the photocatalyst and silver nano and the metal surface, and by floating the coating layer photocatalyst or silver nanoparticle on the surface. The dried metal fibers were dried at 80 ° C. to 100 ° C. for at least 6 hours in a wet drying furnace to float photocatalysts or silver nanoparticles on the surface, and fired at 400 ° C. for 4 hours in a furnace for strong adhesion to metal surfaces. The wet drying conditions are adjusted so that the growth direction of the titanium dioxide or silver nanocrystals can be directed from the inside of the coating layer to the outside (surface), thereby significantly reducing the internal stress between the metal fibers and the crystals, thereby bonding the metal fibers with the coating layer. In addition to being strong, most photocatalysts or silver nanoparticles are present on the surface of the coating layer rather than inside the coating layer, thereby greatly increasing the activity.

(e) 소성후 금속 표면 위로 부상된 과량의 나노입자나 이물질이 반응기내에서 혼입되지 않도록 상온에서 물로 수차례 세척한 후 적용될 반응기의 형태와 필요 압력 강하범위에 맞도록 수작업 또는 기계적으로 광촉매·은나노가 고정화된 금속섬유를 성형한다.(e) Photocatalyst and silver nano-manufactured manually or mechanically to meet the type and required pressure drop of the reactor to be applied after washing several times with water at room temperature to prevent excess nanoparticles or foreign substances floating on the metal surface after firing. Mold the immobilized metal fibers.

다음에 실시예로서 본 발명을 더욱 상세히 설명한다.Next, the present invention will be described in more detail by way of examples.

실시예. 1 : 폴리카보실란 함유량에 따른 코팅표면평가Example. 1: Evaluation of coating surface according to polycarbosilane content

상기 (a)와 같이 광촉매·은나노를 고정화 함에 있어, 전처리 단계중 THF (Tetrahydrofurane)용제 100 중량% 기준에 PCS (Polycarbosilane ; 일본카본사)를 0.05 중량% 혼합용액으로 코팅하며, 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 다시 400℃의 furnace에서 4시간 가량 소성할 수 있다. In immobilizing the photocatalyst and silver nano as shown in (a) above, 100% by weight of THF (Tetrahydrofurane) solvent is coated with 0.05% by weight of a mixed solution of PCS (Polycarbosilane; Nippon Carbon Co., Ltd.) during the pretreatment step, and the metal fiber is coated thereon. Dipping or spraying onto metal fiber surface It can be dried for about 1 hour in a dry oven at 80 to 100 ℃ and then fired for 4 hours in a furnace at 400 ℃.

실시예. 2 : 폴리카보실란 함유량에 따른 코팅표면평가Example. 2: Evaluation of coating surface according to polycarbosilane content

상기 (a)와 같이 광촉매·은나노를 고정화 함에 있어, 전처리 단계중 THF (Tetrahydrofurane)용제 100 중량% 기준에 PCS (Polycarbosilane ; 일본카본사)를 0.1 중량% 혼합용액으로 코팅하며, 금속섬유를 여기에 dipping하거나 금속섬유 표 면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 다시 400℃의 furnace에서 4시간 가량 소성할 수 있다. In immobilizing the photocatalyst and silver nano as described in (a) above, 100% by weight of a THF (Tetrahydrofurane) solvent is coated with 0.1% by weight of a mixed solution of PCS (Polycarbosilane; Nippon Carbon Co., Ltd.) during the pretreatment step, and metal fibers are coated thereon. Dipping or spraying on metal fiber surface It can be dried for about 1 hour in a dry oven at 80 to 100 ℃ and then fired for 4 hours in a furnace at 400 ℃.

실시예. 3 : 폴리카보실란 함유량에 따른 코팅표면평가Example. 3: Evaluation of coating surface according to polycarbosilane content

상기 (a)와 같이 광촉매·은나노를 고정화 함에 있어, 전처리 단계중 THF (Tetrahydrofurane)용제 100 중량% 기준에 PCS (Polycarbosilane ; 일본카본사)를 10 중량% 혼합용액으로 코팅하며, 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 다시 400℃의 furnace에서 4시간 가량 소성할 수 있다. In immobilizing the photocatalyst and silver nano as shown in (a) above, 100% by weight of THF (Tetrahydrofurane) solvent is coated with PCS (Polycarbosilane; Nippon Carbon Co., Ltd.) with a 10% by weight mixed solution, and the metal fibers are coated on it. Dipping or spraying onto metal fiber surface It can be dried for about 1 hour in a dry oven at 80 to 100 ℃ and then fired for 4 hours in a furnace at 400 ℃.

실시예. 4 : 티타늄부톡사이드와 폴리카보실란의 첨가량에 따른 표면코팅Example. 4: surface coating according to the addition amount of titanium butoxide and polycarbosilane

상기 실시예. 2와 같이 제조한 전처리된 금속섬유를 기본으로, 다음과 같은 물성 조절로 코팅평가를 실시해보았다. THF(Tetrahydrofurane)를 전체중량부 100 중량%로 계산하여 PCS (Polycarbosilane)를 전체중량부 0.1 중량% 함량으로 용액에 Ti-butoxide를 전체중량부 2 중량%로 혼합하여 전처리된 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 폴리카보실란 내에 포함된 티타늄부톡사이드를 표면부상에 의하여 금속표면으로 부상시키기 위하여 90℃에서 6시간 정치시켜 외각 표면에 티타늄옥사이드 함량이 최대가 되게 한 후, 400℃의 furnace에서 4시간 가량 소성할 수 있다. Example above. Based on the pretreated metal fiber prepared as 2, the coating evaluation was performed by the following physical property control. THF (Tetrahydrofurane) was calculated as 100% by weight of total weight, and PCS (Polycarbosilane) was mixed with 0.1% by weight of total weight of Ti-butoxide in the solution by 2% by weight of total weight of the pretreated metal fiber. Or spray onto the surface of the metal fiber. After drying for about 1 hour in a dry oven at 80-100 ℃, the titanium butoxide contained in polycarbosilane was allowed to stand at 90 ℃ for 6 hours to float to the metal surface by surface injury. After firing, it can be fired for about 4 hours in a furnace at 400 ° C.

실시예. 5 : 티타늄부톡사이드와 폴리카보실란의 첨가량에 따른 표면코팅Example. 5: surface coating according to the addition amount of titanium butoxide and polycarbosilane

상기 실시예. 2와 같이 제조한 전처리된 금속섬유를 기본으로, 다음과 같은 물성조절로 코팅평가를 실시해보았다. THF(Tetrahydrofurane)를 전체중량부 100 중량%로 계산하여 PCS (Polycarbosilane)를 전체중량부 0.1 중량% 함량으로 용액에 Ti-butoxide를 전체중량부 4 중량%로 혼합하여 전처리된 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 폴리카보실란 내에 포함된 티타늄부톡사이드를 표면부상에 의하여 금속 표면으로 부상시키기 위하여 90℃에서 100시간 정치시켜 외각 표면에 티타늄옥사이드 함량이 최대가 되게 한 후, 400℃의 furnace에서 4시간 가량 소성할 수 있다. Example above. Based on the pretreated metal fiber prepared as 2, the coating evaluation was performed by the following physical property control. THF (Tetrahydrofurane) was calculated as 100% by weight of total weight, and PCS (Polycarbosilane) was mixed with 0.1% by weight of total weight of Ti-butoxide in the solution by 4% by weight of total weight of the pretreated metal fiber. Or spray onto the surface of the metal fiber. After drying for about 1 hour in a dry oven at 80 to 100 ° C, the titanium butoxide contained in polycarbosilane was left to stand at 90 ° C for 100 hours to float to the metal surface by surface injury. After firing, it can be fired for about 4 hours in a furnace at 400 ° C.

실시예. 6 : 티타늄부톡사이드와 폴리카보실란의 첨가량에 따른 표면코팅Example. 6: Surface coating according to the addition amount of titanium butoxide and polycarbosilane

상기 실시예. 2와 같이 제조한 전처리된 금속섬유를 기본으로, 다음과 같은 물성조절로 코팅평가를 실시해보았다. THF(Tetrahydrofurane)를 전체중량부 100 중량%로 계산하여 PCS (Polycarbosilane)를 전체중량부 0.1 중량% 함량으로 용액에 Ti-butoxide를 전체중량부 50 중량%로 혼합하여 전처리된 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후 폴리카보실란 내에 포함된 티타늄부톡사이드를 표면부상에 의하여 금속 표면으로 부상시키기 위하여 90℃에서 100시간 정치시켜 외각 표면에 티타늄옥사이드 함량이 최대가 되게 한 후, 400℃의 furnace에서 4시간 가량 소성할 수 있다. Example above. Based on the pretreated metal fiber prepared as 2, the coating evaluation was performed by the following physical property control. THF (Tetrahydrofurane) is calculated as 100 parts by weight of total weight, and PCS (Polycarbosilane) is mixed with 0.1% by weight of total weight of Ti-butoxide in the solution by 50% by weight of total weight of the pretreated metal fiber. Or spray onto the surface of the metal fiber. After drying for about 1 hour in a dry oven at 80 to 100 ° C, the titanium butoxide contained in polycarbosilane was left to stand at 90 ° C for 100 hours to float to the metal surface by surface injury. After firing, it can be fired for about 4 hours in a furnace at 400 ° C.

실시예. 7 : 티타늄이소프로프로폭사이드와 폴리카보실란의 첨가량에 따른 표면코팅Example. 7: Surface coating according to the addition amount of titanium isopropoxide and polycarbosilane

상기 실시예. 2와 같이 제조한 전처리된 금속섬유를 기본으로, 다음과 같은 물성조절로 코팅평가를 실시해보았다. THF(Tetrahydrofurane)를 전체중량부 100 wt%로 계산하여 PCS (Polycarbosilane)를 전체중량부 0.1 중량% 함량으로 용액에 Ti-Isopropoxide를 전체중량부 4 중량%로 혼합하여 전처리된 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한 후, 추가로 90℃에서 100시간 정치시켜 폴리카보실란 내에 포함된 티타늄부톡사이드가 표면부상(phase transfer) 에 의하여 금속섬유 표면 위에 티타늄옥사이드 함량이 최대가 되게 한 후, 400℃의 furnace에서 4시간 가량 소성할 수 있다. Example above. Based on the pretreated metal fiber prepared as 2, the coating evaluation was performed by the following physical property control. THF (Tetrahydrofurane) was calculated as 100 parts by weight of total weight, PCS (Polycarbosilane) was mixed with 0.1% by weight of total weight of Ti-Isopropoxide in solution by 4% by weight of total weight of the pretreated metal fiber. Or spray onto the surface of the metal fiber. After drying for about 1 hour in a dry oven at 80 to 100 ° C., the mixture was allowed to stand at 90 ° C. for 100 hours, whereby titanium butoxide contained in the polycarbosilane had a titanium oxide content on the surface of the metal fiber by phase transfer. After maximization, firing can be performed for about 4 hours in a furnace at 400 ° C.

실시예. 8 : 티타늄에톡사이드와 폴리카보실란의 첨가량에 따른 표면코팅Example. 8: Surface coating according to the addition amount of titanium ethoxide and polycarbosilane

상기 실시예. 2와 같이 제조한 전처리된 금속섬유를 기본으로, 다음과 같은 물성조절로 코팅평가를 실시해보았다.THF(Tetrahydrofurane)를 전체중량부 100 중량%로 계산하여 PCS (Polycarbosilane)를 전체중량부 0.1 중량% 함량으로 용액에 Ti-Ethoxide를 전체중량부 4 중량%로 혼합하여 전처리된 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후, 추가로 90℃에서 100시간 정치시켜 폴리카보실란 내에 포함된 티타 늄부톡사이드가 표면부상(phase transfer) 에 의하여 금속섬유 표면 위에 티타늄옥사이드 함량이 최대가 되게 한 후, 400℃의 furnace에서 4시간 가량 소성할 수 있다. Example above. Based on the pretreated metal fibers prepared as shown in Fig. 2, the coating properties were evaluated by the following physical property control. The total weight of the tetrahydrofurane (THF) was calculated as 100% by weight, and the total weight of PCS (Polycarbosilane) was 0.1% by weight. Ti-Ethoxide is mixed with 4 wt% of the total weight in the solution by dipping the pretreated metal fiber into it or sprayed onto the metal fiber surface. After drying for about 1 hour in a dry oven at 80 to 100 ° C., the mixture was allowed to stand at 90 ° C. for 100 hours, whereby titanium butoxide contained in the polycarbosilane had a titanium oxide content on the surface of the metal fiber by phase transfer. After reaching this maximum, it can be fired for about 4 hours in a furnace at 400 ° C.

실시예. 9 : 티타늄부톡사이드와 폴리카보실란의 코팅후 나노실버 첨가량에 따른 표면코팅Example. 9: surface coating according to the amount of nano silver added after coating of titanium butoxide and polycarbosilane

상기 실시예. 2와 같이 제조한 전처리된 금속섬유를 기본으로, 다음과 같은 물성조절로 코팅평가를 실시해보았다.THF(Tetrahydrofurane)를 전체중량부 100 중량%로 계산하여 PCS (Polycarbosilane)를 전체중량부 0.1 중량% 함량으로 용액에 Ti-Ethoxide를 전체중량부 4 중량%로 혼합하여 전처리된 금속섬유를 여기에 dipping하거나 금속섬유 표면에 spray한다. 이를 80∼100℃의 dry oven에서 1시간 가량 건조한후, 추가로 90℃에서 100시간 정치시켜 폴리카보실란 내에 포함된 티타늄부톡사이드가 표면부상(phase transfer) 에 의하여 금속섬유 표면 위에 티타늄옥사이드 함량이 최대가 되게 한 후, 400℃의 furnace에서 4시간 가량 소성한 광촉매가 고정화된 금속섬유에 전체중량부 100 중량%로 하는 입자사이즈 50nm 이하의 1,000 ppm 은나노졸을 dipping하거나 금속섬유 표면에 spray하여 이를 80∼100℃의 dry oven에서 1시간 건조후, 400℃의 furnace에서 4시간 가량 소성할 수 있다. Example above. Based on the pretreated metal fibers prepared as shown in Fig. 2, the coating properties were evaluated by the following physical property control. The total weight of the tetrahydrofurane (THF) was calculated as 100% by weight, and the total weight of PCS (Polycarbosilane) was 0.1% by weight. Ti-Ethoxide is mixed with 4 wt% of the total weight in the solution by dipping the pretreated metal fiber into it or sprayed onto the metal fiber surface. After drying for about 1 hour in a dry oven at 80 to 100 ° C., the mixture was allowed to stand at 90 ° C. for 100 hours, whereby the titanium butoxide contained in the polycarbosilane had a titanium oxide content on the surface of the metal fiber by phase transfer. After maximizing, 1,000 ppm silver nanosol having a particle size of 50 nm or less, which is 100 wt% of total weight, is dipping or sprayed on the surface of the metal fiber to the metal fiber to which the photocatalyst calcined for about 4 hours in a furnace at 400 ° C. is immobilized. After drying for 1 hour in a dry oven at 80 to 100 ℃, it can be fired for about 4 hours in a furnace at 400 ℃.

실험예. 1Experimental Example One

상기 실시된 실시예. 1, 2, 3 의 전처리된 금속섬유의 표면상태는 도면2와 같이 실시예.1에서의 폴리카보실란 0.05 중량% 에서는 표면이 불균일하게 코팅되어지는 현상이 발생하였으며, 실시예.2, 실시예.3 폴리카보실란 0.1 중량% 와 폴리카보실란 10 중량% 에서는 표면상태의 일정함을 볼 수 있었다.The above embodiment. The surface conditions of the pretreated metal fibers of 1, 2, and 3 are as shown in Fig. 2. In 0.05 wt% of polycarbosilane in Example 1, the surface was unevenly coated. .3 At 0.1 wt% of polycarbosilane and 10 wt% of polycarbosilane, surface condition was found to be constant.

실험예. 2 Experimental Example 2

상기 실시된 실시예. 실시예.4, 실시예.5, 실시예.6 에서의 표면 전자현미경 측정사진은 도면3과 같으며, 티타늄부톡사이드를 고정화하는 공정에서의 금속섬유의 표면 전자현미경 사진으로 관찰을 하면 실시예. 4, 5 에서는 티타늄부톡사이드가 균일하게 고정화됨을 확인할 수 있으며, 실시예. 6 에서는 티타늄부톡사이드의 과량코팅으로 표면상태가 불균형 상태가 발생하였으며, 표면마모가 발생됨을 확인할 수 있다.The embodiment carried out above. The surface electron micrographs of Examples 4, 5, and 6 are the same as those of Fig. 3, and when observed with the surface electron micrographs of the metal fibers in the process of immobilizing the titanium butoxide. . In 4 and 5 it can be seen that the titanium butoxide is uniformly fixed, Example. In Figure 6, the overcoating of titanium butoxide caused the surface condition to be unbalanced, and it can be seen that surface abrasion occurred.

실험예. 3Experimental Example 3

상기 실시된 실시예.7, 8 에서의 표면 전자현미경 측정사진은 도면4와 같으며, 티타늄이소프로폭사이드와 티타늄에톡사이드를 고정화하는 공정에서의 금속섬유의 표면 전자현미경 사진으로 관찰을 하면 티타늄이소프로폭사이드와 티타늄에톡사이드가 균일하게 고정화됨을 확인할 수 있다. The surface electron microscope measurement photographs of Examples 7 and 8 are the same as those of Fig. 4, and when observed with the surface electron microscope images of the metal fibers in the process of immobilizing titanium isopropoxide and titanium ethoxide. It can be seen that titanium isopropoxide and titanium ethoxide are uniformly immobilized.

실험예. 4Experimental Example 4

실시예.9 에서는 입자사이즈 50nm 이하의 1,000 ppm 은나노졸을 dipping하거 나 금속섬유 표면에 spray하여 이를 80∼100℃의 dry oven에서 1시간 건조후 400℃의 furnace에서 4시간 소성하여 표면을 관찰하여 도면5와 같이 은 입자가 균일하게 코팅되었음을 확인할 수 있다.In Example 9, 1,000 ppm silver nanosol having a particle size of 50 nm or less was dipping or sprayed onto the surface of metal fiber, which was dried for 1 hour in a dry oven at 80 to 100 ° C, and then fired for 4 hours in a furnace at 400 ° C to observe the surface. As shown in FIG. 5, the silver particles may be uniformly coated.

실험예. 5Experimental Example 5

실시예.9 공정의 광촉매·은나노가 고정화된 금속섬유를 이용하여 금속섬유 100g을 1L 광반응기 내부에 삽입하고 오렌지G 아조다이(시그마사)를 20mg/L 농도로 투입하며, 20W UV-A BLB (sankyo사;일본) 램프를 광원으로하여 오렌지G 아조다이의 분해정도를 1차 반응속도상수로 표시하였고, 일반세균에 대한 살균평가를 실시하였으며, 램프를 OFF 하고서 은나노의 살균효과로 인하여 99.9% 살균효과를 나타낼 수 있었으며, 일반세균의 살균평가를 표1과 같이 나타내보았다. Example 9 Using a photocatalyst and a silver nano-fixed metal fiber in a process, 100 g of metal fiber was inserted into a 1 L photoreactor and orange G azodai (Sigma) was added at a concentration of 20 mg / L, and 20 W UV-A BLB (Sankyo Co., Ltd.) The degree of decomposition of orange G azodai was indicated as the first reaction rate constant using a lamp as a light source, and a sterilization evaluation was performed for general bacteria.The lamp was turned off and 99.9% due to the sterilization effect of silver nano. The bactericidal effect could be obtained and the bactericidal evaluation of general bacteria was shown in Table 1.

금속섬유투입량  Metal Fiber Input UV-A BLB Lamp UV-A BLB Lamp 살균력 Bactericidal power 분해정도Resolution 염료분해속도상수 (분-1)Dye decomposition rate constant (min -1 ) 염료분해 반감기(분)Dye decomposition half life (min) 100g   100 g ON ON 99.9% 99.9% 0.03 0.03 23       23 OFF  OFF 99.9% 99.9% - - - -

(1) 본 발명의 광촉매·은나노 고정화 금속섬유는 섬유의 직경이 마이크로미터 크기이므로 기존의 다른 담체에 비해 표면적이 훨씬 넓고 이에 따라 단위부피당 고정화할 수 있는 광촉매와 은나노 양이 많기 때문에 유기물분해 처리와 살균,항균 능역이 뛰어나다.(1) The photocatalyst and silver nano immobilized metal fiber of the present invention has a much larger surface area than other conventional carriers because the diameter of the fiber is micrometer, and accordingly, the amount of photocatalyst and silver nano that can be immobilized per unit volume is increased. Excellent sterilization and antibacterial activity.

(2) 광촉매·은나노 고정화 금속섬유는 공극률이 커서 압력강하가 상대적으로 작기 때문에 같은 처리량 기준으로 운전비가 저렴하고 동일 설비규모로 처리할 수 있는 처리량이 훨씬 크기 때문에 투자비가 작다.(2) The photocatalyst and silver nano immobilized metal fiber has a large porosity, so the pressure drop is relatively small. Therefore, the operation cost is low based on the same throughput, and the investment cost is small because the throughput can be processed on the same equipment scale.

(3) 광촉매·은나노 고정화 금속섬유는 유연성을 가져 반응기 형태에 따라 쉽게 변환할 수 있고 하중도 작아 설치, 운영 및 교환이 용이하다.(3) Photocatalyst and silver nano immobilized metal fiber has flexibility and can be easily converted according to the type of reactor and its load is easy to install, operate and exchange.

(4) 반응기내의 무광구역 (다른 설치물에 자외선이 가려 광촉매의 효과가 없는 구역) 에서 나타날 수 있는 균의 번식에 의한 혐기성 발효도 은나노의 강력한 살균, 항균력으로 억제할 수 있다.(4) Anaerobic fermentation by propagation of bacteria that can occur in the matt zone (the zone where ultraviolet rays are covered by other installations and thus no photocatalytic effect) can be suppressed by strong sterilization and antibacterial activity of silver nano.

(5) 기존의 담체에 비해 금속섬유는 강도가 매우 강할 뿐만 아니라 광촉매 및 은나노가 강력하게 고정화되어 탈리되지 않기 때문에 금속섬유에서 떨어져 나온 입자에 의한 2차오염을 배제할 수 있으며 이에 따라 운전 시간의 연장에 의해 교환이나 보수 주기가 길어져 경제적으로도 큰 장점이 있다. (5) Compared with the conventional carrier, the metal fiber has not only a very strong strength but also the photocatalyst and silver nano are strongly immobilized and are not detached, thereby eliminating secondary pollution caused by particles falling from the metal fiber. The replacement and repair period is prolonged by extension, which is economically advantageous.

Claims (6)

1단계로, SUS304 스테인레스 스틸 재질로 된 외경 1∼1,000㎛의 금속섬유를 폴리 카본실란 용액으로 딥코팅 (dip coating) 또는 스프레이 코팅 (spray coating) 후 건조, 소성하고,  In the first step, metal fibers having an outer diameter of 1 to 1,000 μm made of SUS304 stainless steel are dried and baked after dip coating or spray coating with a polycarbon silane solution. 2단계로, 1단계의 금속섬유를 광촉매 용액으로 딥코팅 및 스프레이 코팅후 건조하고,  In the second step, the metal fiber of step 1 is dried after dip coating and spray coating with a photocatalyst solution, 3단계로, 2단계의 금속섬유를 은나노 용액으로 딥코팅 및 스프레이 코팅후 건조하고,  In step 3, the metal fiber of step 2 is dried after dip coating and spray coating with silver nano solution, 4단계로, 2단계 또는 3단계의 금속섬유를 50 ∼ 250℃에서 4 ∼ 200 시간 건조하여 광촉매·은나노표면를 표면에 부상 시킨후, 400℃ 에서 4시간 이상 소성하는 것을 특징으로 하는 광촉매·은나노가 고정화된 금속섬유의 제조방법  In the fourth step, the photocatalyst and silver nanoparticles are dried at 400 ° C for at least 4 hours after the metal fibers of step 2 or 3 are dried at 50 to 250 ° C for 4 to 200 hours to float the photocatalyst and silver nanosurface on the surface. Method of manufacturing immobilized metal fiber 제1항의 1단계에 있어서, 폴리카본실란 용액은 전체 중량부 100중량% 기준으로, 용매 90 ∼ 99.9 중량%, 폴리카보실란 0.1 ∼ 10 중량%을 사용함을 특징으로 하는 광촉매·은나노가 고정화된 금속섬유의 제조방법   The photocatalyst and silver nano-immobilized metal according to claim 1, wherein the polycarbon silane solution uses 90 to 99.9 wt% of solvent and 0.1 to 10 wt% of polycarbosilane based on 100 wt% of the total weight. Fiber manufacturing method 제 1항의 2단계에 있어서, 광촉매 용액은 전체중량부 100 중량% 기준으로, 티타늄부톡사이드, 티타늄이소프로폭사이드, 티타늄에톡사이드 중에 선택한 티타늄알콕사이드 2 ∼ 50 중량%, 용매 40 ∼ 90 중량%, 폴리카보실란 0.1 ∼ 10 중량%를 사용함을 특징으로 하는 광촉매·은나노가 고정화된 금속섬유의 제조방법  The photocatalyst solution of claim 1, wherein the photocatalyst solution is based on 100% by weight of the total weight of titanium alkoxide selected from titanium butoxide, titanium isopropoxide, and titanium ethoxide; , A method for producing a photocatalyst / silver nano-immobilized metal fiber, characterized in that 0.1 to 10% by weight of polycarbosilane is used. 제 1항의 3단계에 있어서, 은나노 용액은 은나노 입자의 크기가 50nm이하이며, 은 나노 입자의 농도가 100 ∼ 5,000ppm 로 용매에 분산된 은나노 용액을 사용함을 특징으로 하는 광촉매·은나노가 고정화된 금속섬유의 제조방법  The photocatalyst / silver nano-immobilized metal according to claim 3, wherein the silver nano solution uses a silver nano solution dispersed in a solvent having a silver nano particle size of 50 nm or less and a silver nano particle concentration of 100 to 5,000 ppm. Fiber manufacturing method 제 2항, 제 3항, 제 4항에 있어서, 용매는 테트라하이드로퓨란, 오렌지오일, 식물성 천연오일, 메틸에틸케톤, 이소프로필알콜, 메틸에틸케톤, 메탄올, 에탄올 중에 선택된 1종 또는 2종이상 혼합하여 사용하는 것을 특징으로 하는 광촉매·은나노가 고정화된 금속섬유의 제조방법  The solvent according to claim 2, 3 or 4, wherein the solvent is selected from tetrahydrofuran, orange oil, vegetable natural oil, methyl ethyl ketone, isopropyl alcohol, methyl ethyl ketone, methanol and ethanol. Method for producing a metal catalyst immobilized photocatalyst, silver nano, characterized in that used by mixing 제 1항의 4단계에 있어서, 광촉매·은나노의 표면부상을 위하여 90 ∼ 100℃에서 80 ∼ 100 시간을 건조하는 것을 특징으로 하는 광촉매·은나노가 고정화된 금속섬유의 제조방법 The method for producing a photocatalyst / silver nano-immobilized metal fiber according to claim 4, wherein the photocatalyst / silver nano-immobilized metal fiber is dried for 80 to 100 hours at 90 to 100 ° C. for surface injury of the photocatalyst and silver nano.
KR1020050034907A 2005-04-27 2005-04-27 Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver KR20060112445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050034907A KR20060112445A (en) 2005-04-27 2005-04-27 Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050034907A KR20060112445A (en) 2005-04-27 2005-04-27 Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver

Publications (1)

Publication Number Publication Date
KR20060112445A true KR20060112445A (en) 2006-11-01

Family

ID=37620727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050034907A KR20060112445A (en) 2005-04-27 2005-04-27 Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver

Country Status (1)

Country Link
KR (1) KR20060112445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798954B1 (en) * 2007-01-19 2008-01-30 이영주 Metal fiber for anion generater and production method
US9844767B2 (en) 2015-08-28 2017-12-19 Korea Institute Of Science And Technology Catalyst filter comprising nano metallic catalyst sprayed on the surface of support
KR101948578B1 (en) * 2017-10-11 2019-05-08 (주) 에스에스에이치 Thermal acid generator and thermosetting resin comprising the same
KR20240095626A (en) 2022-12-16 2024-06-26 배경아 Mesh Type Photocatalytic Module and Photocatalytic Reacter using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798954B1 (en) * 2007-01-19 2008-01-30 이영주 Metal fiber for anion generater and production method
US9844767B2 (en) 2015-08-28 2017-12-19 Korea Institute Of Science And Technology Catalyst filter comprising nano metallic catalyst sprayed on the surface of support
KR101948578B1 (en) * 2017-10-11 2019-05-08 (주) 에스에스에이치 Thermal acid generator and thermosetting resin comprising the same
KR20240095626A (en) 2022-12-16 2024-06-26 배경아 Mesh Type Photocatalytic Module and Photocatalytic Reacter using the same

Similar Documents

Publication Publication Date Title
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
Mondal et al. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review
Youji et al. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study
Li et al. Surface hydroxylation of TiO2/g-C3N4 photocatalyst for photo-Fenton degradation of tetracycline
CN103373750A (en) Light source device for removing organic matters and heavy metal ions by visible light and preparation method thereof
Mouele et al. Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/CN-TiO2 supported nanocatalyst
CN104226287A (en) Preparation method of nano titanium dioxide photocatalyst thin film
KR20060112445A (en) Manufacturing method of metal fiber immobilized by photocatalyst.nanosilver
KR20150109191A (en) Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same
CN111804144A (en) Double-unit UV photocatalytic oxidation reaction device
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
Zangeneh et al. Degradation of linear alkyl benzene using an immobilized nano tio2 photocatalytic reactor: process analysis and modeling
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
KR20160039135A (en) A Photocatalytic Filter for Efficient Removal of Mixed Gas and Manufacturing Method thereof
US8343282B2 (en) Photocatalytic auto-cleaning process of stains
CN112547050A (en) Manganese dioxide titanium dioxide composite catalyst and preparation method and application thereof
JPH10180118A (en) Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance
CN202621182U (en) Photocatalyst carrier adopting porous ceramic plate
CN211384527U (en) Photocatalysis deodorization device
KR101668694B1 (en) Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same
KR101046313B1 (en) Preparation method of nano-metal doped metal oxides catalysts and thereof catalysts
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
CN111437803A (en) Nano TiO with grain size less than 10nm2Method for preparing a coating structure
KR20150143216A (en) Anti-bacterial filter using photocatalyric sol of oxidation-reduction reaction
KR20040045167A (en) Photo-catalyst sol and preparation method thereof

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid