KR20060104859A - Electrical isolation method for magnetized conductive powder - Google Patents

Electrical isolation method for magnetized conductive powder Download PDF

Info

Publication number
KR20060104859A
KR20060104859A KR1020050027343A KR20050027343A KR20060104859A KR 20060104859 A KR20060104859 A KR 20060104859A KR 1020050027343 A KR1020050027343 A KR 1020050027343A KR 20050027343 A KR20050027343 A KR 20050027343A KR 20060104859 A KR20060104859 A KR 20060104859A
Authority
KR
South Korea
Prior art keywords
powder particles
silica
conductor powder
coupling agent
powder
Prior art date
Application number
KR1020050027343A
Other languages
Korean (ko)
Other versions
KR100773943B1 (en
Inventor
한명희
송만호
쯔또무 사또
Original Assignee
한명희
송만호
쯔또무 사또
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한명희, 송만호, 쯔또무 사또 filed Critical 한명희
Priority to KR1020050027343A priority Critical patent/KR100773943B1/en
Priority to JP2006097773A priority patent/JP2006283190A/en
Publication of KR20060104859A publication Critical patent/KR20060104859A/en
Application granted granted Critical
Publication of KR100773943B1 publication Critical patent/KR100773943B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Paints Or Removers (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

자성 도전체 분말 입자 표면을 퍼하이드로폴리실라잔 용액으로 피복시키는 공정과, 그 결과 형성된 피막을 상온에서 산화시켜 상기 도전체 입자 표면에 실리카막을 형성시키는 공정으로 이루어진 자성 도전체 분말 입자의 전기 절연 방법이 제공된다. 상기 실리카막이 피복된 도전체 분말 입자는 유기 바인더 및 실란계 커플링제와 혼합 후 가압 성형될 수 있다.Coating the surface of the magnetic conductor powder particles with a perhydropolysilazane solution, and oxidizing the resulting film at room temperature to form a silica film on the surface of the conductor particles. This is provided. The silica powder-coated conductor powder particles may be pressure molded after mixing with an organic binder and a silane coupling agent.

자성 도전체 분말 입자, 퍼하이드로폴리실라잔 용액 Magnetic Conductor Powder Particles, Perhydropolysilazane Solution

Description

자성 도전체 분말 입자의 전기 절연 방법{Electrical isolation method for magnetized conductive powder}Electrical isolation method for magnetized conductive powder

본 발명은 자성(磁性) 도전체 분말 입자의 표면을 절연시키는 방법, 특히 자성 도전체 분말 입자 표면을 실리카(SiO2)로 전기 절연시키는 방법에 관한 것이다. The present invention relates to a method of insulating the surface of magnetic conductor powder particles, and in particular to a method of electrically insulating the surface of magnetic conductor powder particles with silica (SiO 2 ).

도전체 분말 입자의 표면에 얇은 실리카막을 형성하여 도전체 분말 입자의 절연성과 내약품성을 부여하기 위한 다수의 방법들이 알려져 있다. 피복하고자 하는 비금속 재료를 물리적 또는 화학적 방법으로 증착하거나 화학 약품에 의한 도전체 분말 입자 표면과의 반응을 통하여 비전도성 재질로 전환시키는 방법 등, 여러 가지 방법이 알려져 있다. 그런데, 이들 종래의 방법 중에서 소요되는 비용과 피복된 비도전체막의 성능을 함께 고려할 때, 실리카 피복법이 가장 선호되며, 실리카 피복 공정에 있어서, 실리카 양이온이 포함된 유기 실리콘 화합물로 도전체(금속) 분말의 표면을 피복한 후에 적절한 산화 공정을 거쳐 무기질의 실리카막으로 전이시키는 방법이 가장 일반적이다. 종래의 방법에서는 주로 테트라에틸오르토실리케이트(teteraethyl orthosilicate;TEOS)이나 테트라메틸오르토실리케이트 (tetramethyl orthosilicate; TMOS) 등의 유기 실리콘 화합물을 출발 물질로 하여 이를 부분 가수 분해 또는 완전 가수 분해시킨 졸(sol) 형태의 액상 물질이 주로 사용되고 있으나, 이들 졸은 유기물을 완전히 제거하여 완전한 실리카 피막으로 전이시키기 위하여 반드시 고온, 예컨대 450℃ 이상으로 산화 처리하여야 할 필요가 있었다. 그러나, 이러한 고온에서는 도전체 분말 자체의 산화를 방지하기 위한 분위기를 따로 마련하지 않으면, 도전체 분말의 표면 산화를 방지할 수 없으므로, 도전체 분말의 특성 변화를 억제하는 것이 불가능하였다. A number of methods are known for forming a thin silica film on the surface of the conductor powder particles to impart insulation and chemical resistance of the conductor powder particles. Various methods are known, such as a method of depositing a nonmetallic material to be coated by a physical or chemical method or converting it into a non-conductive material through reaction with a surface of a conductive powder particle by a chemical. However, considering the cost required among these conventional methods and the performance of the coated non-conductive film together, the silica coating method is most preferred, and in the silica coating process, an organic silicon compound containing a silica cation is used as a conductor (metal). The most common method is to coat the surface of the powder and then transfer it to an inorganic silica film through a suitable oxidation process. In the conventional method, a sol form in which the organic silicon compound such as tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS) is mainly used as a starting material and partially hydrolyzed or completely hydrolyzed thereof. Although sol is mainly used, these sols must be oxidized to a high temperature, for example, 450 ° C. or higher, in order to completely remove organic matter and transfer it to a complete silica film. However, at such a high temperature, surface oxidation of the conductor powder cannot be prevented unless an atmosphere for preventing oxidation of the conductor powder itself is separately provided. Therefore, it is impossible to suppress the change of the properties of the conductor powder.

본 발명은 이러한 종래 기술의 결점을 일거에 해결하기 위한 방법을 제공하려는 데에 그 목적이 있다.It is an object of the present invention to provide a method for solving such drawbacks of the prior art at once.

이러한 본 발명의 목적은 도전체 분말 입자의 표면을 퍼하이드로폴리실라잔 (perhydropolysilazane; PHPS) 용액으로 피복하는 공정과, 그 결과 생성된 피막을 상온에서 산화시켜 실리카막을 형성하는 공정의 결합으로 구성되는 것을 특징으로 하는 본 발명의 방법에 의하여 달성된다. 본 발명의 또 하나의 목적은 상기 실리카막이 형성된 도전체 분말 입자를 유기 바인더 및 실란계 커플링제와 혼합하여 자성 도전체 분말 입자의 가압 성형체를 얻는 공정을 더 포함하는 본 발명의 방법에 의하여 달성될 수 있다.The object of the present invention is a combination of a process of coating the surface of the conductor powder particles with a solution of perhydropolysilazane (PHPS) and a process of oxidizing the resulting film at room temperature to form a silica film. It is achieved by the method of the invention, characterized in that. Another object of the present invention is to be achieved by the method of the present invention further comprising the step of mixing the conductive powder particles formed with the silica film with an organic binder and a silane coupling agent to obtain a press molded body of magnetic conductor powder particles. Can be.

상기 퍼하이드로폴리실라잔(PHPS)은 탄소(C)를 포함하지 않고 Si-H, N-H 및 Si-N만으로 구성되어 있는 "-(SiH2NH)-"을 반복 단위로 하는 완전한 무기 폴리머이며, 클라리안트 재팬 카부시키카이샤[Clariant (Japan) K.K.]에 의하여 AQUAMICA

Figure 112005017276990-PAT00001
라는 상품명으로 시판되고 있다. 이 제품은 주성분이 PHPS, 유기 용매, 미량의 촉매를 함유하는 제품이다. 유기 용매는 사용 목적에 따라 선택되는데, 케톤, 알콜 또는 에스테르 등과 같이 물에 용해되는 용매는 사용할 수 없고, 크실렌 등의 고비점 방향족 용매가 주로 사용된다. 또한, 촉매는 수분과의 반응을 촉진시킬 수 있는 것들이 선택되지만, 현재 시판 중인 것은 주로 아민계 촉매가 미량 첨가되어 있는 것이다. 주성분인 상기 PHPS는 불활성 분위기하에 고온 (약 450℃) 소성하면, 촉매 작용에 의하여 대기 중의 수분 및 산소와 반응하여 탈수소화 반응을 일으켜 치밀한 고순도의 비결정질 실리카를 형성할 수 있는 화합물이다. 이러한 성질 때문에, PHPS는 최근에 방오(防汚), 방식(防蝕), 내열 피막 재료 등으로 이용되고 있다. The perhydropolysilazane (PHPS) is a complete inorganic polymer containing "-(SiH 2 NH)-" which is composed of only Si-H, NH, and Si-N, not containing carbon (C), and repeating units, AQUAMICA by Clariant Japan Kabushikaisha [Clariant (Japan) KK]
Figure 112005017276990-PAT00001
It is marketed under the brand name. This product contains PHPS, organic solvent and trace catalyst as main components. The organic solvent is selected according to the purpose of use, and solvents dissolved in water such as ketones, alcohols or esters cannot be used, and high boiling aromatic solvents such as xylene are mainly used. In addition, the catalyst is selected to be capable of promoting the reaction with water, but commercially available is mainly the addition of a small amount of the amine catalyst. The main component, PHPS, is a compound capable of forming dense, high-purity amorphous silica when calcined at high temperature (about 450 ° C.) under an inert atmosphere and reacting with moisture and oxygen in the air by catalytic action to cause dehydrogenation. Because of these properties, PHPS has recently been used as antifouling, anticorrosion, heat resistant coating materials and the like.

본 발명에서는 상기 PHPS 용액 (AQUAMICA

Figure 112005017276990-PAT00002
용액)을 자성 도전체 분말 입자에 피복함으로써, 피복 후 실리카로의 전이에 필요한 소성 온도를 획기적으로 낮출 수 있고, 이에 따라 도전체 분말 입자가 산화되는 등의 부작용을 예방할 수 있었다. In the present invention, the PHPS solution (AQUAMICA
Figure 112005017276990-PAT00002
By coating the magnetic conductor powder particles with the solution), the firing temperature required for transition to silica after coating can be drastically lowered, thereby preventing side effects such as oxidation of the conductor powder particles.

일반적으로, 도전체 분말 입자 표면에 실리카막을 형성하기 위하여 사용되고 있는 예컨대 통상의 Si계 유기 화합물(알콕시드) 졸의 경우, 아래의 반응식 1로 나타내는 바와 같이, 가수 분해 반응에 의하여 형성된 하이드록사이드(수산화물) 형태의 실리콘 화합물로부터 졸 내의 환경에 따라 아래의 반응식 2a 및 2b의 반응을 통하여 실리카막이 형성된다.In general, in the case of, for example, a conventional Si-based organic compound (alkoxide) sol which is used to form a silica film on the surface of a conductor powder particle, as shown in Scheme 1 below, a hydroxide formed by a hydrolysis reaction ( From the silicon compound in the form of hydroxide), a silica film is formed through the reactions of Schemes 2a and 2b below depending on the environment in the sol.

Figure 112005017276990-PAT00003
Figure 112005017276990-PAT00003

Figure 112005017276990-PAT00004
Figure 112005017276990-PAT00004

Figure 112005017276990-PAT00005
Figure 112005017276990-PAT00005

상기 각 반응식에 있어서, M은 Si 금속 이온이고, R는 알킬기이다. In each said reaction formula, M is Si metal ion and R is an alkyl group.

상기 반응식 2a 및 2b에서는 Si-O 결합의 형성과 함께 물과 알콜이 부산물로 생성되는데, 이들 물과 알콜은 450℃ 이상의 소성 온도에서 기체 상태로 완전히 제거되므로, 완전한 실리카막으로의 전이가 가능한 것이다.In Schemes 2a and 2b, water and alcohol are produced as by-products with the formation of Si—O bonds, and these water and alcohols are completely removed in a gaseous state at a firing temperature of 450 ° C. or higher, so that the transition to a complete silica film is possible. .

반면에, 본발명에 의한 PHPS 용액은 상온에서 다음 반응식 3에 따라 공기 중의 수분 및/또는 산소와의 반응으로 산화되어 실리카막을 형성한다.On the other hand, the PHPS solution according to the present invention is oxidized by reaction with moisture and / or oxygen in air according to the following Reaction Scheme 3 at room temperature to form a silica film.

-(SiH 2 NH)- + 2H 2 O (+O 2 )

Figure 112005017276990-PAT00006
SiO 2 + NH 3 + 2H 2 -(SiH 2 NH)-+ 2H 2 O (+ O 2 )
Figure 112005017276990-PAT00006
SiO 2 + NH 3 + 2H 2

필요에 따라, 상기 반응식 3의 반응 속도를 증가시키고자 하는 경우에는, 반 응계를 PHPS의 비점 (용매인 크실렌의 비점: 약 137∼144℃) 이상, 즉 150∼450℃ 정도의 저온으로 가열하여도 좋다.If necessary, in order to increase the reaction rate of Scheme 3, the reaction system is heated to a low temperature of PHPS boiling point (boiling point of solvent xylene: about 137 to 144 占 폚), that is, about 150 to 450 占 폚. Also good.

Si-알콕사이드계 유기 금속 화합물을 피복 기재로 사용하는 종래의 방법과 상기 PHPS의 무기 폴리머를 피복 기재로 사용하는 본 발명의 방법을 비교할 경우에 가장 큰 차이점은 Si-O 결합의 생성에 수반되는 부산물이 물 및 알콜 등의 액체가 아니라 기체라는 점이다. 따라서, 본 발명의 방법에 의하면, 동일 온도에서 실리카막의 형성 속도가 매우 빠르며, 액체 부산물이 기화되어 제거될 때 야기될 수 있는 실리카막의 치밀성이 저하되는 등의 문제가 발생되지 않는다. 이러한 이유 때문에, 본 발명에 의하면, 동일한 두께(예컨대, ∼500Å)의 실리콘막이 형성된 자성 도전체 분말 입자의 절연 저항과 고온 방치시의 안정성이 종래의 방법에 의한 실리카막이 형성된 자성 도전체 분말 입자의 성형체에 비하여 크게 증대되는 것이다. When comparing the conventional method using the Si-alkoxide-based organometallic compound as the coating substrate and the method of the present invention using the inorganic polymer of the PHPS as the coating substrate, the biggest difference is the by-products involved in the production of Si-O bonds. This is a gas, not a liquid such as water and alcohol. Therefore, according to the method of the present invention, the formation rate of the silica film is very fast at the same temperature, and problems such as deterioration of the density of the silica film, which may be caused when the liquid by-products are vaporized and removed, do not occur. For this reason, according to the present invention, the insulation resistance of the magnetic conductor powder particles having the same thickness (for example, ˜500 kPa) and the magnetic conductor powder particles having the silica film formed by the conventional method in terms of stability at high temperature standstill are obtained. It is greatly increased compared with the molded body.

이하, 본 발명의 방법의 준비 및 실시 공정에 대하여 설명하겠다. Hereinafter, the preparation and implementation steps of the method of the present invention will be described.

1) 자성 도전체 금속 분말(평균 입경 10-1 ~ 10-2 ㎛)의 평균 입경으로부터 계산된 비표면적 또는 실제 측정된 비표면적과 금속 분말 표면에 형성시키고자 하는 실리카 피막과 두께로부터 금속 분말 대비 피복 용액의 중량비를 결정한다.1) Compared with the metal powder from the specific surface area calculated from the average particle diameter of the magnetic conductor metal powder (average particle diameter 10 -1 to 10 -2 μm) or the specific measured surface area and silica film and thickness to be formed on the metal powder surface. Determine the weight ratio of the coating solution.

2) 결정된 중량비에 따라 금속 분말과 피복액(AUUAMICA

Figure 112005017276990-PAT00007
용액)을 혼합한다.2) metal powder and coating liquid according to the determined weight ratio (AUUAMICA)
Figure 112005017276990-PAT00007
Solution).

3) 피복액과 금속 분말의 혼합물을 피복액의 비점 이하(상온 ~ 50℃)에서 천천히 저어주면서 용제를 증발시킨다.3) The solvent is evaporated while slowly stirring the mixture of the coating liquid and the metal powder below the boiling point of the coating liquid (room temperature ~ 50 ° C).

4) 용제가 증발된 후 100 ~ 250℃에서 10 ~ 60분간 열처리하여 피복된 피막 을 실리카로 전이시킨다. 4) After evaporation of the solvent, heat-treat at 100 ~ 250 ℃ for 10 ~ 60 minutes to transfer the coated film to silica.

5) 실리카로 피복된 금속 분말에 금속 분말의 중량 대비 1 ~ 7%의 변성 페놀/에폭시 바인더와 금속 분말의 중량 대비 0.1 ~ 1%의 커플링제를 혼합한다. 바인더는 금속 분말과의 균일한 혼합을 용이하게 하기 위하여 아세톤/ㅔ탄올 혼합 용제에 녹인 상태의 액체로 사용한다. 5) A metal powder coated with silica is mixed with a modified phenol / epoxy binder of 1-7% by weight of the metal powder and a coupling agent of 0.1-1% by weight of the metal powder. The binder is used as a liquid dissolved in an acetone / butanol mixed solvent in order to facilitate uniform mixing with the metal powder.

6) 실리카로 피복된 금속 분말, 바인더 용액 및 커플링제의 혼합물을 바인더 용액의 비점 이하(상온 ~ 50℃)에서 천천히 저어주면서 용제를 증발 제거한다.6) The solvent is evaporated off while stirring the mixture of the metal powder, the binder solution, and the coupling agent coated with silica slowly below the boiling point of the binder solution (at room temperature to 50 ° C).

7) 용제의 증발 제거 후, 100 ~ 250℃에서 10 ~ 60분간 열처리하여 바인더 용액 내에 잔류하는 유기 용제를 완전히 제거한다.7) After evaporation removal of the solvent, heat treatment at 100 ~ 250 ℃ for 10 to 60 minutes to completely remove the organic solvent remaining in the binder solution.

8) 이상과 같은 방법으로 준비된 바인더 혼합물을 체가름하여 입경 50 ~ 150 ㎛의 그래뉼로 만든다. 그래뉼로 만드는 작업은 가압 성형시 몰드 내에서의 분발의 흐름을 좋게 해주어 성형체의 밀도를 균일하게 하는 데 도움이된다.8) The binder mixture prepared in the above manner is sieved to form granules having a particle diameter of 50 to 150 μm. The granulating operation helps to improve the flow of the powder in the mold during press molding, which helps to uniform the density of the molded body.

9) 적정량의 분말을 적절한 몰드 내에 투입하여 1.0 ~ 2.0 GPa로 가압 성형한 다음 몰드로부터 빼내어 120 ~ 180℃의 온도에서 20 ~ 60분간 경화하여 성형체를 완성한다.9) Put the appropriate amount of powder into the appropriate mold, press molding at 1.0 ~ 2.0 GPa, remove it from the mold and cure for 20 to 60 minutes at the temperature of 120 ~ 180 ℃ to complete the molded body.

상기 1) ~ 4)의 공정은 양산시의 분말 처리에서는 분무 건조로를 이용하여 일괄 처리가 가능하고, 5) ~ 7)의 공정도 양산시의 대량 분말 처리에서는 분무 건조로를 이용하여 일괄 처리가 가능하다. The process of 1) to 4) can be collectively processed using a spray drying furnace in the mass treatment at the time of mass production, and the process of 5) to 7) can be collectively processed using the spray drying furnace in the mass powder treatment at the time of mass production.

본 발명을 실시함에 있어서, PHPS의 사용량은 피복시키고자 하는 자성 도전체 분말 입자의 종류, 입도, 사용 목적 등에 따라 적절히 조절되어야 하는 것이지 만, 일반적으로 자성 도전체 분말 입자의 단위 중량에 대하여 0.5 ~ 1.5%의 양이 적절하다. 0.5% 미만의 경우에는 분말 표면에 형성되는 절연막이 너무 얇아 균일하게 형성되기 어려워지므로절연막으로서의 기능이 추약해지고, 1.5%를 초과하는 경우에는 분말 자체의 자성 특성을 크게 저하시키게되므로 좋지 않다.In the practice of the present invention, the amount of PHPS used should be appropriately adjusted according to the type, particle size, purpose of use, etc. of the magnetic conductor powder particles to be coated, but in general, 0.5 to 0.5 unit weight of the magnetic conductor powder particles. An amount of 1.5% is appropriate. If it is less than 0.5%, the insulating film formed on the surface of the powder is so thin that it is difficult to form uniformly, so that the function as an insulating film is weakened, and if it exceeds 1.5%, the magnetic properties of the powder itself are greatly deteriorated.

본 발명에서는 상기 실리카막이 피복된 자성 도전체 분말 입자에 기지의 유기 바인더 용액과 에폭시 기능성 실란(예컨대, 3-글리시독시프로필트리에톡시실란) 또는 아미노 기능성 실란(예컨대, N-2(아미노에틸) 3-아미노프로필트리메톡시실란)을 단독 또는 혼합한 기지의 적절한 커플링제를 혼합하여 소정의 몰드에서 가압 성형 함으로써, 각개 도전체 분말 입자가 전기적ㆍ자기적 특성을 변경시키는 일이 없이 전기적으로 부도체인 성형체를 얻을 수 있다. 본 발명에 있어서, 사용 가능한 유기 바인더로서는 페놀 수지, 에폭시 수지, 우레탄 수지, 폴리이미드 수지 등과 같은 열경화성 수지를 들 수 있는데, 이 중에서 페놀 수지 및 에폭시 수지를 사용하는 것이 구득의 용이성, 결합력, 가격면 등에서 유리하다. 유기 바인더의 사용량은 도전체 분말 입자의 단위 중량당 0.5 ~ 5%의 비율이다. 전술한 본 발명에 유용한 커플링제로서는 3-글리시독시프로필트리에톡시실란 또는 N-2(아미노에틸) 3-아미노프로필트리메톡시실란 등의 실란계 커플링제는 사용하고자 하는 유기 바인더의 종류에 따라 적절하게 선택할 수 있다. 이 커플링제는 도전체 분말 입자의 단위 중량에 대하여 0.1 ~ 1%의 비율로 사용할 수 있다. 이와 같이 하여 피복된 자성 도전체 분말 성형체는 자기적 특성은 우수하나 전기 저항이 낮아 그 적용 범위가 제한적이었던 금속 자성체의 활용 범위를 크게 확대시킬 수 있다.In the present invention, a known organic binder solution and an epoxy functional silane (eg, 3-glycidoxypropyltriethoxysilane) or an amino functional silane (eg, N-2 (aminoethyl) ) By mixing a known appropriate coupling agent alone or a mixture of 3-aminopropyltrimethoxysilane) and pressure molding in a predetermined mold, so that each conductive powder particle is electrically changed without altering its electrical and magnetic properties. A molded article that is an insulator can be obtained. In the present invention, usable organic binders include thermosetting resins such as phenol resins, epoxy resins, urethane resins, polyimide resins, and the like. Among them, phenol resins and epoxy resins can be easily used, bonding strength, and price. It is advantageous in the back. The amount of the organic binder used is 0.5 to 5% per unit weight of the conductor powder particles. As the coupling agent useful in the present invention described above, a silane coupling agent such as 3-glycidoxypropyltriethoxysilane or N-2 (aminoethyl) 3-aminopropyltrimethoxysilane may be used for the type of organic binder to be used. Can be selected accordingly. This coupling agent can be used in the ratio of 0.1 to 1% with respect to the unit weight of conductor powder particle. In this way, the coated magnetic conductor powder compact has excellent magnetic properties but has a low electric resistance, thereby greatly expanding the application range of the magnetic metal.

[실시예]EXAMPLE

1. 시료의 준비1. Preparation of Sample

평균 입도가 0.5 ~ 10 ㎛인 건식(乾式) 카르보닐 철 분말 25 g을 PHPS 용액(용매: m-크살렌) 4 g에 침지시킨 다음, 상기 용액의 비점(140℃) 이하의 온도에서 30분 이상 건조하여 용제를 제거한 후, 다시 200℃의 온도에서 30분 이상 유지하여 실리카막이 피복된 카르보닐 철 25.2 g을 얻었다. 이어서, 여기에 유기 바인더로서 페닐 수지 및 에폭시 수지의 혼합 바인더 40% 희석 용액 (용제 = 아세톤+메탄올) 1.3 g 및 커플링제로서 에폭시 실란과 아미노 실란 혼합액 (1:1) 0.1 g을 가하여 충분히 혼합한 후, 80℃에서 용매를 제거한 다음 130℃에서 20분간 유지하여 금속 분말 표면에 피복된 유기 바인더를 부분 경화시켰다. 이어서, 체가름하여 입도 ~100 ㎛의 그래뉼로 만들고, 2.0 Gpa의 성형 조건하에 가압 성형하고 몰드로부터 제거하여 160℃의 온도에서 40분간 경화하여 성형체 시료 1g을 얻었다(시료 1). 대조의 목적으로, 상기 PHPS 용액 대신에 TMOS 졸(고형분 5%) 5.2 g을 사용하여 동일한 공정으로 성형체 1 g을 얻었다(시료 2). 이들 각 성형체의 성형 조건은 다음 표 1에 요약되어 있다. 시료 1 및 2에 있어서, 금속 분말의 중량 증가를 실리카막 중량으로 환산하여 실리카의 이론 밀도로부터 계산한 결과, 각 시료의 피막(실리카)의 두께는 평균 약 500 Å이었다.25 g of dry carbonyl iron powder having an average particle size of 0.5 to 10 μm was immersed in 4 g of a PHPS solution (solvent: m -xalene), and then 30 minutes at a temperature below the boiling point (140 ° C.) of the solution. After the above drying was carried out to remove the solvent, the mixture was further maintained at a temperature of 200 ° C. for at least 30 minutes to obtain 25.2 g of carbonyl iron coated with a silica film. Subsequently, 1.3 g of a 40% dilution solution of a mixed binder of a phenyl resin and an epoxy resin (solvent = acetone + methanol) as an organic binder and 0.1 g of an epoxy silane and an amino silane mixture (1: 1) were added as a coupling agent and sufficiently mixed. The solvent was then removed at 80 ° C. and then held at 130 ° C. for 20 minutes to partially cure the organic binder coated on the metal powder surface. Subsequently, the resultant was sifted into granules having a particle size of ˜100 μm, press-molded under molding conditions of 2.0 Gpa, removed from the mold, and cured at a temperature of 160 ° C. for 40 minutes to obtain 1 g of a molded product sample (sample 1). For control purposes, 1 g of a molded article was obtained in the same process using 5.2 g of TMOS sol (5% solids) instead of the above PHPS solution (Sample 2). The molding conditions of each of these molded bodies are summarized in Table 1 below. In Samples 1 and 2, the weight increase of the metal powder was calculated from the theoretical density of silica in terms of the silica film weight. As a result, the thickness (silica) of each sample was about 500 kPa on average.

도전체 분말Conductor powder 피복액Coating liquid 바인더bookbinder 성형 압력Molding pressure 경화 조건Curing conditions 시료 크기Sample size 시료 1Sample 1 카르보닐 철Carbonyl iron PHPS 용액* PHPS solution * 페놀 수지 또는 에폭시 수지Phenolic Resin or Epoxy Resin 0.5~1.5 Gpa0.5 ~ 1.5 Gpa 120~180℃ 15~60분120 ~ 180 ℃ 15 ~ 60 minutes 8.5 Φ t=1.3 ㎜8.5 Φ t = 1.3 mm 시료 2Sample 2 TMOS 졸TMOS Sol

* AQUAMICA

Figure 112005017276990-PAT00008
용액* AQUAMICA
Figure 112005017276990-PAT00008
solution

2. 시료의 특성 측정2. Measurement of the characteristics of the sample

상기 표 1의 각 시료에 있어서, 유기 바인더 및 실란계 커플링제를 사용하지 않은 경우 (표 2)와, 이들을 사용한 경우 (표 3)의 성형 밀도 및 저항 값을 각각 측정하였다. 밀도는 중량과 부피를 측정하여 계산하였으며, 저항은 시료 양쪽면에 Ag 페이스트를 소정의 넓이로 도포 경화시켜 전극을 형성한 후 LCR 미터를 사용하여 측정하였다.In each sample of Table 1, molding densities and resistance values of (Table 2) and (Table 3) when the organic binder and the silane coupling agent were not used were measured, respectively. The density was calculated by measuring the weight and volume, and the resistance was measured by using an LCR meter after forming an electrode by coating and curing Ag paste to a predetermined width on both sides of the sample.

시 료sample 성형 밀도Molding density 성형 직후의 저항Resistance immediately after molding 경화 완료 후의 저항Resistance after completion of curing 고온 방치 100 시간 후의 저항Resistance after 100 hours of high temperature 1One ~6.2 g/cc~ 6.2 g / cc 300 ㏁/㎜300 mm / mm 250 ㏁/㎜250 mm / mm 10 ㏁/㎜10 mm / mm 22 ~6.2 g/cc~ 6.2 g / cc 6 ㏁/㎜6 mm / mm 4.5 ㏁/㎜4.5 mm / mm 0.1 ㏁/㎜0.1 mm / mm

시 료sample 성형 밀도Molding density 성형 직후의 저항Resistance immediately after molding 경화 완료 후의 저항Resistance after completion of curing 고온 방치 100 시간 후의 저항Resistance after 100 hours of high temperature 33 ~6.2 g/cc~ 6.2 g / cc 1.5 GΩ/㎜1.5 GΩ / mm 1.3 GΩ/㎜1.3 GΩ / mm 1.3 ㏁/㎜1.3 mm / mm 44 ~6.2 g/cc~ 6.2 g / cc 75 ㏁/㎜75 mm / mm 55 ㏁㎜55 mm 1.5 ㏀/㎜1.5 mm / mm

표 2 및 3으로부터 확인할 수 있는 바와 같이, 시료 1 및 2가 동일한 성형 밀도를 나타내는 것은 피복액의 차이에 따른 미세 구조의 피막의 치밀성에 차이가 없다는 사실을 보여주는 것이다. 그러나, 성형 직후 및 경화 완료 후에는 저항뿐만 아니라 전자 제품에 적용시의 고온 신뢰성과 밀접한 관계가 있는 장시간 (100 시간) 고온 방치 후의 저항 값에 있어서, 시료 1은 시료 2보다 현저한 개선을 보이고 있다. 이러한 데이타로부터, 본 발명의 방법에서 사용된 PHPS 용액에 의하여 형성된 실리카막은 종래의 것에 비하여 매우 우수한 절연 특성을 나타낸다는 사실을 알 수 있다.As can be seen from Tables 2 and 3, the samples 1 and 2 exhibiting the same molding density shows that there is no difference in the compactness of the film of the microstructure according to the difference in the coating liquid. However, in the resistance value after long time (100 hours) high temperature standing closely related to not only resistance but also high temperature reliability upon application to electronic products immediately after molding and curing, Sample 1 shows a remarkable improvement over Sample 2. From these data, it can be seen that the silica film formed by the PHPS solution used in the method of the present invention exhibits very good insulating properties compared to the conventional one.

또한, 표 3의 데이타로부터, 피복 재료로서 PHPS 용액을 사용하여 표면에 실리카막을 피복시킨 도전체 분말 입자에 유기 바인더 및 실란계 커플링제를 혼합하여 가압 성형하면, 도전체 분말 입자의 절연 특성은 가일층 증대된다는 사실을 알 수 있다. In addition, from the data in Table 3, when the organic binder and the silane coupling agent are mixed and molded under the conductor powder particles having a silica film coated on the surface by using a PHPS solution as the coating material, the insulating properties of the conductor powder particles are further reduced. It can be seen that the increase.

본 발명에 의한 가압 성형체는 전기적ㆍ자기적 특성은 그대로 유지한 채 전기적으로 부도체인 자성 도전체 분말 입자를 얻을 수 있는 효과가 있다. 따라서, 본 발명에 의하면, 자기적 특성은 우수하지만 전기 저항이 낮아 그 사용 범위에 제약을 받아 왔던 금속 자성체의 활용 범위를 획기적으로 넓힐 수 있게 되었다. The press-molded article according to the present invention has the effect of obtaining magnetic conductor powder particles which are electrically non-conducting while maintaining the electrical and magnetic properties thereof. Therefore, according to the present invention, it is possible to significantly widen the application range of the magnetic metal, which is excellent in magnetic properties but low in electrical resistance and has been restricted in its use range.

Claims (3)

자성 도전체 분말의 표면을 퍼하이드로폴리실라잔(perhydropolysilazane) 용액으로 피복시키는 공정과, 그 결과 도전체 분말 입자 표면에 형성된 피막을 상온에서 산화시켜 실리카막을 형성시키는 공정의 결합을 특징으로 하는 자성(磁性) 도전체 분말 입자의 전기 절연 방법.A magnetic method characterized by combining the process of coating the surface of the magnetic conductor powder with a perhydropolysilazane solution, and consequently oxidizing the film formed on the surface of the conductor powder particles at room temperature to form a silica film. Electrically insulating method of conductive powder particles. 제1항에 있어서, 실리카막이 피복된 도전체 분말 입자를 유기 바인더 및 커플링제와 혼합 후 가압 성형하는 공정을 더 포함하는 것인 방법.The method of claim 1, further comprising a step of mixing the silica powder-coated conductor powder particles with an organic binder and a coupling agent followed by pressure molding. 제2항에 있어서, 유기 바인더는 페놀 수지 및 에폭시 수지이고, 카플링제는 실란계 커플링제인 것인 방법.The method of claim 2, wherein the organic binder is a phenol resin and an epoxy resin and the coupling agent is a silane coupling agent.
KR1020050027343A 2005-03-31 2005-03-31 Electrical isolation method for magnetized conductive powder KR100773943B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050027343A KR100773943B1 (en) 2005-03-31 2005-03-31 Electrical isolation method for magnetized conductive powder
JP2006097773A JP2006283190A (en) 2005-03-31 2006-03-31 Method for electrically insulating powder particle of magnetic conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050027343A KR100773943B1 (en) 2005-03-31 2005-03-31 Electrical isolation method for magnetized conductive powder

Publications (2)

Publication Number Publication Date
KR20060104859A true KR20060104859A (en) 2006-10-09
KR100773943B1 KR100773943B1 (en) 2007-11-07

Family

ID=37405395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050027343A KR100773943B1 (en) 2005-03-31 2005-03-31 Electrical isolation method for magnetized conductive powder

Country Status (2)

Country Link
JP (1) JP2006283190A (en)
KR (1) KR100773943B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845520B1 (en) * 2007-02-08 2008-07-10 연세대학교 산학협력단 Preparation method of core hard ball usable as anisotropic conductivity film
KR100908600B1 (en) * 2007-03-23 2009-07-21 송만호 Coil-embedded circuit board and power module using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468304B1 (en) * 2021-06-01 2022-11-17 한국전자기술연구원 Magnetic dust core and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254305A (en) * 1991-02-06 1992-09-09 Matsushita Electric Ind Co Ltd Manufacture of compound soft magnetic material
JPH11135313A (en) 1997-08-28 1999-05-21 Matsushita Electric Ind Co Ltd R2t17nx magnet material powder, its aggregate, their manufacture, and bond magnet
JP2000034503A (en) 1998-07-17 2000-02-02 Sumitomo Metal Mining Co Ltd Alloy powder for samarium-iron-nitrogen bonded magnet
JP2002313620A (en) 2001-04-13 2002-10-25 Toyota Motor Corp Soft magnetic powder with insulating film, soft magnetic molded body using the same, and their manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845520B1 (en) * 2007-02-08 2008-07-10 연세대학교 산학협력단 Preparation method of core hard ball usable as anisotropic conductivity film
KR100908600B1 (en) * 2007-03-23 2009-07-21 송만호 Coil-embedded circuit board and power module using same

Also Published As

Publication number Publication date
JP2006283190A (en) 2006-10-19
KR100773943B1 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
KR101840187B1 (en) Inorganic polysilazane resin
KR100313383B1 (en) Paint composition containing hydrogen silsesquioxane resin and filler and method for forming film using same
EP3050918B1 (en) Inorganic filler, resin composition comprising the same and heat radiation substrate using the same
EP2206746B1 (en) Composition containing polysilazane compound, which can provide dense siliceous film
JP5088195B2 (en) Insulating film-coated powder and method for producing the same
CN108117811B (en) Graphene-silicon electromagnetic shielding filler and electromagnetic shielding coating
JP4804023B2 (en) Aluminum nitride powder, method for producing the same, and heat conductive material containing the same
CN101381584B (en) Modified organosilicon solvent-free dip varnish and preparation method thereof
CN101381583B (en) High heat conduction organosilicon dip varnish
CN101638517B (en) Organosilicon resin composition
KR101104390B1 (en) Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
CN102838962A (en) Epoxy resin adhesive and preparation method thereof
JPWO2018181697A1 (en) Electrode-forming resin composition, chip-type electronic component, and method of manufacturing the same
CN108203576A (en) Adhesive composition and use thereof in electronics
KR100773943B1 (en) Electrical isolation method for magnetized conductive powder
US6537389B1 (en) Soft magnetic, deformable composite material and process for producing the same
KR20060031678A (en) Process for producing low-k dielectric films
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
KR100977411B1 (en) Manufacturing Method of Polyamideimide/silica hybrid material for coating electrical wire and the material, electrical wire
JP2018120966A (en) Insulating magnetic powder, production method of the same, and powder treatment liquid
CN1759135B (en) Organic siloxane resins and insulating film using the same
US9617456B2 (en) Method of manufacturing ceramic coated graphite
JPS6324624B2 (en)
EP0124037B1 (en) Method for preparing composite ceramic powder
CN117981015A (en) Silanol-based composite composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20101001

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee