KR20060094418A - A method of producting carbon nano fluid using carbon black - Google Patents

A method of producting carbon nano fluid using carbon black Download PDF

Info

Publication number
KR20060094418A
KR20060094418A KR1020050015555A KR20050015555A KR20060094418A KR 20060094418 A KR20060094418 A KR 20060094418A KR 1020050015555 A KR1020050015555 A KR 1020050015555A KR 20050015555 A KR20050015555 A KR 20050015555A KR 20060094418 A KR20060094418 A KR 20060094418A
Authority
KR
South Korea
Prior art keywords
carbon
nanofluid
nanoparticles
carbon black
distilled water
Prior art date
Application number
KR1020050015555A
Other languages
Korean (ko)
Inventor
신영민
최선홍
이성봉
최유진
Original Assignee
티티엠주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티티엠주식회사 filed Critical 티티엠주식회사
Priority to KR1020050015555A priority Critical patent/KR20060094418A/en
Publication of KR20060094418A publication Critical patent/KR20060094418A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 카본블랙을 이용한 탄소나노유체 제조방법에 관한 것으로, 더욱 구체적으로는 증류수 등을 용매로 하여 sp2혼성궤도를 갖는 탄소동소체 나노입자(탄소나노튜브,탄소나노섬유,폴러렌)를 그 용매에 혼합하여 나노유체를 제조함에 있어 카본블랙을 이용하여 분산성이 매우 향상된 탄소나노유체 제조방업에 관한 것이다. 본 발명에 의한 탄소나노유체는 탄소나노입자의 부유 또는 침전이 매우 적어 열교환기 등의 작동유체에 적용하여 열효율 향상과 에너지 저감에 기여할 수 있다.The present invention relates to a carbon nanofluid manufacturing method using carbon black, and more specifically, carbon allotrope nanoparticles (carbon nanotubes, carbon nanofibers, and polyolefins) having sp2 hybrid orbits using distilled water or the like as solvents. The present invention relates to a carbon nanofluid manufacturing method having a very improved dispersibility using carbon black in preparing a nanofluid by mixing with a. Carbon nanofluid according to the present invention is very low in the floating or sedimentation of carbon nanoparticles can be applied to a working fluid, such as a heat exchanger can contribute to thermal efficiency and energy reduction.

탄소나노유체, 나노유체,탄소나노입자, 탄소나노튜브, 분산        Carbon nanofluid, nanofluid, carbon nanoparticle, carbon nanotube, dispersion

Description

카본블랙을 이용한 탄소나노유체 제조방법{A Method of Producting Carbon Nano Fluid using Carbon Black}A method of producting carbon nano fluid using carbon black

도1은 본 발명은 의한 탄소나노유체의 건조 후 측정한 주사전자현미경 사진.1 is a scanning electron micrograph measured after the drying of the carbon nanofluid according to the present invention.

도2는 도1의 일부를 확대한 주사전자현미경 사진.FIG. 2 is a magnified scanning electron micrograph of a portion of FIG. 1; FIG.

도3은 종래 탄소나노입자를 증류수 등에 혼합하여 초음파 처리된 탄소나노유체의 건조 후 측정한 주사전자현미경 사진.3 is a scanning electron micrograph of the conventional carbon nanoparticles mixed with distilled water or the like and measured after drying of the ultrasonically treated carbon nanofluid.

도4는 종래 탄소나노입자,증류수에 계면활성제를 첨가하고 초음파 처리된 탄소나노유체의 건조 후 측정한 주사전자현미경 사진.Figure 4 is a conventional scanning electron micrograph of carbon nanoparticles, added after the surfactant is added to the distilled water and the ultrasonic treatment of carbon nanofluid.

본 발명은 원자력,화력발전,보일러,항공기나 자동차 엔진냉각, 전자통신장비의 액체냉각장치 등의 열교환 매체(냉각수)로 사용되는 물,증류수,에틸렌글리콜,암모니아수 등의 액체에 열전도도가 매우 우수한 sp2혼성궤도를 갖는 탄소동소체 나노입자(탄소나노튜브,탄소나노섬유,폴러렌)를 혼합시켜 나노유체를 제조함에 있어 탄소나노입자의 분산성이 매우 향상된 탄소나노유체 제조방법에 관한 것으로, 그 분산성의 향상은 카본블랙의 첨가에 의하여 이루어 지는 것을 특징으로 한다.The present invention has excellent thermal conductivity in liquids such as water, distilled water, ethylene glycol and ammonia water, which are used as heat exchange media (cooling water) for nuclear power, thermal power plants, boilers, aircraft, automotive engine cooling, and liquid cooling devices in electronic communication equipment. The present invention relates to a method for producing carbon nanofluids, in which dispersibility of carbon nanoparticles is highly improved in preparing nanofluids by mixing carbon allotrope nanoparticles (carbon nanotubes, carbon nanofibers, and polyolefins) having sp2 hybrid orbits. The improvement of the properties is characterized by the addition of carbon black.

열교환기용 작동유체에 열전도도가 우수한 입자를 주입함으로서 그 유체의 열전도도를 증가시킬 수 있다는 이론은 120여년 전(Maxwell,1881)에 제시 되었고, 이를 실현하기 위하여 많은 연구가 수행되었다. 참고적으로, 관내를 흐르는 유체에 대한 열전도계수와 대류열전달계수 간의 상관관계(난류흐름의 경우)를 나타내는 일반적 이론식은 다음과 같다.The theory that the thermal conductivity of the fluid can be increased by injecting particles with good thermal conductivity into the working fluid for the heat exchanger was presented more than 120 years ago (Maxwell, 1881), and much research has been carried out to realize this. For reference, a general theory representing the correlation (in the case of turbulent flow) between the thermal conductivity coefficient and the convective heat transfer coefficient for a fluid flowing in a pipe is as follows.

h=V0.8 * k2/3 ------------------------------------------------ (1) (1)식에서 V는 관내를 흐르는 유체의 속도, k는 유체의 열전도계수를 나타낸다. 다음으로 대류열전달계수와 펌프동력과의 관계식은 다음과 같다.h = V 0.8 * k 2/3 ----------------------------------------- ------- (1) In the formula (1), V is the velocity of the fluid flowing in the tube, k is the thermal conductivity coefficient of the fluid. Next, the relation between convective heat transfer coefficient and pump power is as follows.

h/ho = (P/Po)0.29 ------------------------------------------- (2) (2)식에서 h, ho는 변화된 대류열전달계수와 초기 대류열전달계수이고 P,Po는 변화된 펌프동력과 초기 펌프동력을 나타낸다. (2)식에서 펌프동력(P)를 10배 증가 시켰을 때 (1)식의 대류열전달계수(h)가 1.9배 증가한다. 즉, 대류열전달계수가 약 2배 증가하면 펌프소요동력은 10배 감소된다. 이러한, 이론적 근거를 바탕으로 열교환기 등에 사용되는 작동유체의 열전도계수를 증가시키면 열효율 향상과 에너지 절감에 큰 기여를 할 수 있을 것이다.h / ho = (P / Po) 0.29 ---------------------------------------- --- (2) In (2), h and ho are the changed convective heat transfer coefficient and initial convective heat transfer coefficient, and P and Po represent the changed pump power and initial pump power. When the pump power (P) is increased 10 times in (2), the convection heat transfer coefficient (h) in (1) is increased by 1.9 times. In other words, if the convective heat transfer coefficient increases by about 2 times, the pump required power decreases 10 times. Increasing the thermal conductivity coefficient of the working fluid used in the heat exchanger, etc. based on the theoretical basis will be able to make a significant contribution to improving the thermal efficiency and energy saving.

종래에 작동유체의 열전도 향상 방법으로, 첨가하는 입자를 수 mm 또는 수 μm 크기의 금속입자를 첨가하는 방법을 사용하였으나, 입자의 침전, 관내 압력강하 증가, 막힘 현상, 장치의 마모 등 많은 문제점이 발생 되어, 상용화에는 큰 어려움이 있었다. 그러나 최근 들어 나노 가공기술의 발달로 금속 분말이 나노단위 크기로 제조 가능하여 상기의 문제점을 극복 할 수 있는 가능성이 열리게 되었다. 1995년 S.U.S Choi에 의해 처음으로 도입된 나노유체는 상기 연구자가 속한 미국 Argonne연구소에서 활발한 연구가 진행중에 있으며, 이 연구기관에서 기술을 획득한 중국의 일부 대학에서 연구가 진행 되고 있다. 국내에서도 포항공대,부산대 등에서 연구 중인 차세대 기술이지만, 현재까지 상용화 된 사례가 보고 되지 않고 있는 기술이다.Conventionally, as a method of improving the thermal conductivity of a working fluid, a method of adding metal particles having a size of several mm or several μm has been used, but many problems such as precipitation of particles, increase in pressure drop in a pipe, blockage, and wear of a device There was a great difficulty in commercialization. Recently, however, with the development of nano-processing technology, metal powders can be manufactured in nano unit sizes, thereby opening the possibility of overcoming the above problems. Nanofluids, first introduced by S.U.S Choi in 1995, are being actively researched at the Argonne Research Institute, where the researchers belong, and are being conducted at some universities in China, where they have acquired the technology. It is the next generation technology under research in Pohang University and Pusan University in Korea, but it has not been reported to be commercialized so far.

현재 이러한 나노유체 제조에 사용되는 나노입자는 열전도도가 우수한 Ag, Cu,Al 등 단일금속과 CuO, Al2O3, TiO2,Fe2O3 등의 화합물 그리고 탄소나노튜브 등의 탄소나노입자가 주로 사용되고 있다. 상기에서 열거한 나노입자를 이용하여 나노유체를 제조함에 있어 증류수 등의 액체에 나노입자가 부유하거나 침전되는 현상이 많이 발생한다. 나노 크기의 입자는 마이크로 크기의 입자와 비교하여, 동일 부피대 표면적이 매우 증가됨으로 입자간의 인력이 매우 크게 작용하여 입자간 서로 응집하는 현상으로 인하여 균일하게 분산시키는 것이 매우 어렵다. 종래에는 이러한 문제를 해결하기 위하여 고분자 분산에 사용하는 계면활성제를 첨가하거나, 산처리 방법을 이용하고 있다. 종래, 일반적으로 나노유체 제조에 사용되는 분산방법은 다음과 같다.Currently, nanoparticles used in the preparation of nanofluids include single metals such as Ag, Cu, and Al with excellent thermal conductivity, compounds such as CuO, Al 2 O 3 , TiO 2 , Fe 2 O 3 , and carbon nanoparticles such as carbon nanotubes. Is mainly used. In the production of nanofluids using the nanoparticles listed above, a lot of phenomena in which nanoparticles are suspended or precipitated in a liquid such as distilled water occurs. Compared to the micro-sized particles, the nano-sized particles have a very large surface area with the same volume, and the attraction between the particles is very large, which makes it difficult to uniformly disperse the particles. Conventionally, in order to solve such a problem, the surfactant used for dispersing a polymer is added, or the acid treatment method is used. Conventionally, the dispersion method generally used in the preparation of nanofluid is as follows.

첫번째는 분산제를 이용한 방법으로, 1)분산제와 용액을 스터에 넣고 분산제의 알갱이가 보이지 않을 때까지 스터링을 한다.(용해 되지 않을 경우 가열을 동시에 시행) 2)처리된 용액에 탄소나노튜브를 첨가한다. 3)탄소나노튜브가 첨가된 용 액을 초음파 처리 하여 나노유체를 제조한다.The first method is to use a dispersant, 1) add the dispersant and solution to the stuffer and stir until the grains of the dispersant are not visible (when not dissolved, heat them simultaneously). 2) Add carbon nanotubes to the treated solution. do. 3) A nanofluid is prepared by sonicating a solution to which carbon nanotubes are added.

두번째는 산을 이용한 방법으로, 1)탄소나노튜브를 왕수(염산과 질산이 3:1로 혼합된 용액)에 넣고 약 80도씨에서 끊인 후 필터링을 한다. 2)필터링 된 필터에 NaOH를 이용 중성화 시킨다. 3) 이 필터를 건조한 후 수집하여 증류수에 넣고 초음파 처리하여 나노유체를 제조한다. The second method is using acid. 1) Carbon nanotubes are placed in aqua regia (solution of hydrochloric acid and nitric acid in a 3: 1 solution), cut off at about 80 ° C, and filtered. 2) Neutralize NaOH in the filtered filter. 3) Collect this filter after drying, put it in distilled water and sonicate to prepare nanofluid.

본 발명은 종래 탄소나노유체 제조에서 문제점으로 부각된 분산성 향상을 위 하여 카본블랙이라는 물질을 첨가시켰다. 본 발명에 의한 탄소나노유체 제조방법은 탄소나노튜브 등의 탄소나노입자가 증류수 등 용매에 매우 균일하게 분산됨으로 나노유체의 상용화를 통한 에너지 절감 및 열효율 향상에 크게 기여 할 수 있다. In the present invention, a material called carbon black is added to improve dispersibility, which is a problem in conventional carbon nanofluid manufacture. In the carbon nanofluid manufacturing method according to the present invention, carbon nanoparticles such as carbon nanotubes are very uniformly dispersed in a solvent such as distilled water, thereby greatly contributing to energy saving and thermal efficiency improvement through commercialization of nanofluids.

상기 목적을 달성하기 위한 카본블랙을 이용한 탄소나노유체의 제조방법의 바람직한 실시 예는 다음과 같다.Preferred embodiments of the carbon nanofluid manufacturing method using the carbon black for achieving the above object is as follows.

첫번째, 증류수 등 용매에 탄소나노튜브 등 탄소나노입자와 카본블랙 그리고 계면활성제인 SDS(Sodium dodecyl Sulfate)를 순차적으로 첨가하고 교반하여 만들어진 용액을 1시간 이상 초음파 처리하여 나노유체를 제조한다.First, carbon nanoparticles such as carbon nanotubes, carbon black, and surfactant SDS (Sodium dodecyl Sulfate) are sequentially added to a solvent such as distilled water, and the solution made by stirring is sonicated for 1 hour or more to prepare nanofluid.

두번째, 증류수 등 용매에 카본블랙과 SDS를 순서에 상관없이 첨가하고 교반한 후 만들어진 용액을 1시간 이상 초음파 처리하고, 그 시료에 탄소나노튜브 등 탄소나노입자를 첨가한 후 다시 1시간 이상 초음파 처리하여 탄소나노유체를 제조한다. 도1은 본 발명의 바람직한 실시 예로 제조되어진 탄소나노유체를 건조시켜 주사전자현미경으로 측정한 사진이다. 도2는 도1의 일부를 확대한 사진이다. 도2에서 실가락으로 보이는 것이 탄소나노튜브이고 구형으로 나타난 것은 카본블랙이다. 탄소나노튜브 주위를 구형의 카본블랙이 감싸고 있어 탄소나노튜브간 서로 응집되는 현상을 방지하는 것으로 판단된다. 초음파 처리한 후 탄소나노튜브와 주위를 감싸고 있는 카본블랙간의 결합은 더욱 강해졌다. 도3은 증류수 등 용매에 탄소나노튜브를 혼합하고 초음파 처리된 탄소나노유체를 건조시켜 측정한 것으로 탄소나노튜브간에 응집되어 덩어리 형태를 보이고 있다. 도4는 도3에서 설명된 것에 계면활성제를 첨가시킨 것으로, 이 또한 탄소나노튜브간의 응집력이 매우 커서 덩어리를 형성하고 있다. 본 발명에 의한 카본블랙을 이용한 탄소나노유체 제조방법은 도3과 도4에서 나타난 탄소나노입자간 응집 현상을 크게 저감시켜 탄소나노입자가 증류수 등 용매에서 매우 균일하게 분산될 수 있는 탄소나노유체 제조가 가능하다. Second, carbon black and SDS were added to a solvent such as distilled water in any order and stirred, and the solution was sonicated for 1 hour or more, and carbon nanoparticles such as carbon nanotubes were added to the sample, followed by another 1 hour or more. To produce a carbon nanofluid. 1 is a photograph of a carbon nanofluid prepared in a preferred embodiment of the present invention dried and measured by a scanning electron microscope. FIG. 2 is an enlarged photograph of a portion of FIG. 1. FIG. In Fig. 2, the carbon nanotubes are shown as thread and carbon black is spherical. Since spherical carbon black is wrapped around the carbon nanotubes, it is believed that the carbon nanotubes are prevented from agglomerating with each other. After sonication, the bond between the carbon nanotubes and the surrounding carbon black became stronger. Figure 3 is a mixture of carbon nanotubes in a solvent such as distilled water and measured by drying the carbon nanofluids sonicated agglomerated between the carbon nanotubes shows a lump form. 4 is a surfactant added to the one described in FIG. 3, which also has a large cohesive force between carbon nanotubes, forming a lump. The carbon nanofluid manufacturing method using carbon black according to the present invention greatly reduces the aggregation phenomenon between the carbon nanoparticles shown in FIGS. 3 and 4 to produce carbon nanofluids in which carbon nanoparticles can be dispersed very uniformly in a solvent such as distilled water. Is possible.

상기에서 설명한 바와 같이, 본 발명은 열전도계수가 매우 높은 sp2혼성궤도를 갖는 탄소동소체인 탄소나노입자를 증류수 등 용매에 혼합시켜 제조하므로, 유체의 열전도도가 증가되고, 종래 문제점으로 부각된 분산성 문제를 해결함으로서, 열교환기 등의 작동유체에 적용이 가능하다. 종래 사용되던 작동유체인 물 등을 대체하면 열효율 향상을 통한 에너지 절감에 큰 기여를 할 수 있다.As described above, the present invention is prepared by mixing carbon nanoparticles, which are carbon allotrope having sp2 hybrid orbitals with very high thermal conductivity, in a solvent such as distilled water, thereby increasing the thermal conductivity of the fluid, and the dispersibility of the conventional problem. By solving the problem, it is possible to apply to working fluids such as heat exchangers. Replacing water, which is a conventional working fluid, can greatly contribute to energy saving through improved thermal efficiency.

Claims (4)

원자력,화력발전,보일러,항공기나 자동차 엔진냉각, 전자통신장비의 액체냉각장치 등의 작동유체(냉각수)에 있어서,In working fluids (cooling water), such as nuclear power, thermal power generation, boilers, aircraft and engine engine cooling, and liquid cooling devices in electronic communication equipment, 증류수 등 용매에 열전도도가 매우 우수한 sp2혼성궤도를 갖는 탄소나노입자를 혼합하고, 증류수 등에 혼합된 탄소나노입자의 분산성 향상을 위하여 카본블랙이 첨가되어지는 것을 특징으로 하는 카본블랙을 이용한 탄소나노유체 제조방법. Carbon nanoparticles using carbon black, characterized in that carbon nanoparticles having sp2 hybrid orbits having excellent thermal conductivity are mixed with a solvent such as distilled water, and carbon black is added to improve the dispersibility of carbon nanoparticles mixed in distilled water. Fluid preparation method. 제 1항에 있어서, 탄소나노유체의 제조방법으로, 증류수 등 용매에 탄소나노입자와 카본블랙 그리고 계면활성제인 SDS(Sodium dodecyl Sulfate)를 순차적으로 첨가하고 교반하여 만들어진 용액을 1시간 이상 초음파 처리하는 것을 특징으로 하는 카본블랙을 이용한 탄소나노유체 제조방법.     The method according to claim 1, wherein the carbon nanofluid is manufactured by sequentially adding carbon nanoparticles, carbon black, and surfactant SDS (Sodium dodecyl Sulfate) to a solvent such as distilled water and stirring the solution. Carbon nanofluid manufacturing method using carbon black, characterized in that. 제 1항에 있어서, 탄소나노유체의 제조방법으로, 증류수 등 용매에 카본블랙과 SDS를 순서에 상관없이 첨가하고 교반한 후, 만들어진 용액을 1시간 이상 초음파 처리하고, 그 시료에 탄소나노입자를 첨가한 후 다시 1시간 이상 초음파 처리하는 것을 특징으로 하는 카본블랙을 이용한 탄소나노유체 제조방법.     The method for producing carbon nanofluid according to claim 1, wherein carbon black and SDS are added to a solvent such as distilled water in any order and stirred, and the resulting solution is sonicated for at least 1 hour and carbon nanoparticles are added to the sample. Carbon nanofluid manufacturing method using carbon black, characterized in that the ultrasonic treatment for 1 hour or more after addition. 제 1항에 있어서, 탄소나노입자는 탄소나노튜브, 탄소나노섬유, 폴러렌 중 적어도 하나 이상이 포함된 것을 특징으로 하는 카본블랙을 이용한 탄소나노유체 제조방법.The method of claim 1, wherein the carbon nanoparticles comprise at least one or more of carbon nanotubes, carbon nanofibers, and polystyrene.
KR1020050015555A 2005-02-24 2005-02-24 A method of producting carbon nano fluid using carbon black KR20060094418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050015555A KR20060094418A (en) 2005-02-24 2005-02-24 A method of producting carbon nano fluid using carbon black

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050015555A KR20060094418A (en) 2005-02-24 2005-02-24 A method of producting carbon nano fluid using carbon black

Publications (1)

Publication Number Publication Date
KR20060094418A true KR20060094418A (en) 2006-08-29

Family

ID=37602255

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050015555A KR20060094418A (en) 2005-02-24 2005-02-24 A method of producting carbon nano fluid using carbon black

Country Status (1)

Country Link
KR (1) KR20060094418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156700B1 (en) * 2010-03-17 2012-06-14 국립대학법인 울산과학기술대학교 산학협력단 Heat collector and heat collecting system using the same
WO2012144679A1 (en) * 2011-04-21 2012-10-26 엔바로테크 주식회사 Method for manufacturing a nanofluid containing carbon nanoparticles treated with metal
KR101450380B1 (en) * 2011-12-27 2014-10-15 서울대학교산학협력단 Enhanced thermal conductivity of nanofluid using reduced graphene oxide by mechanical mixing
US11305883B2 (en) 2019-03-01 2022-04-19 United Technologies Advanced Projects, Inc. Circulating coolant fluid in hybrid electrical propulsion systems
US11649064B2 (en) 2019-08-02 2023-05-16 Hamilton Sundstrand Corporation Integrated motor drive cooling
US11981444B2 (en) 2021-01-05 2024-05-14 Pratt & Whitney Canada Corp. Parallel hybrid power plant with hollow motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156700B1 (en) * 2010-03-17 2012-06-14 국립대학법인 울산과학기술대학교 산학협력단 Heat collector and heat collecting system using the same
WO2012144679A1 (en) * 2011-04-21 2012-10-26 엔바로테크 주식회사 Method for manufacturing a nanofluid containing carbon nanoparticles treated with metal
KR101450380B1 (en) * 2011-12-27 2014-10-15 서울대학교산학협력단 Enhanced thermal conductivity of nanofluid using reduced graphene oxide by mechanical mixing
US11305883B2 (en) 2019-03-01 2022-04-19 United Technologies Advanced Projects, Inc. Circulating coolant fluid in hybrid electrical propulsion systems
US11649064B2 (en) 2019-08-02 2023-05-16 Hamilton Sundstrand Corporation Integrated motor drive cooling
US11981444B2 (en) 2021-01-05 2024-05-14 Pratt & Whitney Canada Corp. Parallel hybrid power plant with hollow motor

Similar Documents

Publication Publication Date Title
Sidik et al. A review on preparation methods, stability and applications of hybrid nanofluids
Sidik et al. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review
Yu et al. Dispersion stability of thermal nanofluids
Sidik et al. Preparation methods and thermal performance of hybrid nanofluids
Ettefaghi et al. Preparation and investigation of the heat transfer properties of a novel nanofluid based on graphene quantum dots
Amiri et al. Thermophysical and rheological properties of water-based graphene quantum dots nanofluids
KR20060094418A (en) A method of producting carbon nano fluid using carbon black
Li et al. Polyhedral Cu2O crystal: Morphology evolution from meshed nanocube to solid and gas-sensing performance
Subramanian et al. Nanofluids and their engineering applications
Bhanvase et al. Intensification of heat transfer using PANI nanoparticles and PANI-CuO nanocomposite based nanofluids
CN110527279B (en) Material with high light-heat conversion efficiency and high heat conductivity coefficient and preparation method thereof
Mishra et al. Effect of surface functionalization and physical properties of nanoinclusions on thermal conductivity enhancement in an organic phase change material
CN107032347A (en) Graphene oxide Nano diamond compound, its manufacture method and the nano-fluid including it
Shao et al. Dispersion stability of TiO2-H2O nanofluids containing mixed nanotubes and nanosheets
Jin et al. Investigation of thermal conductivity enhancement of water-based graphene and graphene/MXene nanofluids
WO2017013459A1 (en) A method for the synthesis of nanofluids
Azizi et al. Highly stable copper/carbon dot nanofluid: Preparation and characterization
Kirithiga et al. Investigation of thermophysical properties of aqueous magnesium ferrite nanofluids
Kumar et al. Research and development on composite nanofluids as next-generation heat transfer medium
CN107365571B (en) Preparation process of carbon tube nano fluid and microchannel heat transfer working medium
CN113808766A (en) Nano fluid cooling loop system suitable for pressurized water reactor nuclear power station
dos Santos et al. Aqueous Nanofluids based on Thioglycolic acid-coated copper sulfide nanoparticles for heat-exchange applications
Kusrini et al. Effects of sequence preparation of titanium dioxide-water nanofluid using cetyltrimethylammonium bromide surfactant and TiO2 nanoparticles for enhancement of thermal conductivity
CN102531068B (en) Method for synthesizing lot of mono-dispersed ferroferric oxide (Fe3O4) nano-crystals
CN108359414B (en) GO and spherical silver nanoparticle composite alcohol-based nanofluid and preparation method thereof

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination