KR20060093794A - Resin-basd caron nanotube hybrid materials with high thermal conductivity - Google Patents

Resin-basd caron nanotube hybrid materials with high thermal conductivity Download PDF

Info

Publication number
KR20060093794A
KR20060093794A KR1020050014540A KR20050014540A KR20060093794A KR 20060093794 A KR20060093794 A KR 20060093794A KR 1020050014540 A KR1020050014540 A KR 1020050014540A KR 20050014540 A KR20050014540 A KR 20050014540A KR 20060093794 A KR20060093794 A KR 20060093794A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
heat generating
heating element
planar heating
polymer resin
Prior art date
Application number
KR1020050014540A
Other languages
Korean (ko)
Other versions
KR100642622B1 (en
Inventor
김기동
서동일
Original Assignee
주식회사 에이엔씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이엔씨아이 filed Critical 주식회사 에이엔씨아이
Priority to KR1020050014540A priority Critical patent/KR100642622B1/en
Publication of KR20060093794A publication Critical patent/KR20060093794A/en
Application granted granted Critical
Publication of KR100642622B1 publication Critical patent/KR100642622B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

본 발명은 탄소나노튜브(Carbon Nanotubes)를 첨가하여 전기 및 열전도성을 증대시킨 탄소나노튜브를 이용한 면상발열체 및 그 제조방법에 관한 것이다.The present invention relates to a planar heating element using carbon nanotubes having improved electrical and thermal conductivity by adding carbon nanotubes and a method of manufacturing the same.

본 발명의 제조방법은 고분자 수지기재에 대한 일정한 질량비로 평균 길이가 수십 내지 수백 ㎛에 이르는 탄소나노튜브를 고분자 수지기재에 혼합,분산하여 발열부를 성형하는 제1공정과; 상기 제1공정에서 혼합,분산처리된 발열부에 전기저항이 1~10Ω의 범위로하여 쉬트형상의 전극부를 형성하는 제2공정과; 상기 전극부에 전도도가 높은 절연부를 부착하는 제3공정으로 이루어지는 것이다.The manufacturing method of the present invention comprises a first step of forming a heat generating part by mixing and dispersing carbon nanotubes having an average length of several tens to several hundreds of micrometers in a polymer resin substrate at a constant mass ratio with respect to the polymer resin substrate; A second step of forming a sheet-shaped electrode part with an electrical resistance in a range of 1 to 10 kW in the heat generating part mixed and dispersed in the first step; And a third step of attaching an insulating portion having high conductivity to the electrode portion.

탄소나노튜브, 면상발열체       Carbon Nano Tube, Planar Heating Element

Description

탄소나노튜브를 이용한 면상발열체 및 그 제조방법 {Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity}Planar heating element using carbon nanotube and its manufacturing method {Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity}

도 1은 본 발명의 제조공정을 예시한 공정도1 is a process diagram illustrating a manufacturing process of the present invention.

도 2는 탄소나노튜브가 메트릭스에 분산된 모습을 나타낸 사시도2 is a perspective view showing a state in which carbon nanotubes are dispersed in a matrix

도 3은 탄소나노튜브를 발열부로 이용한 면상 발열체를 나타낸 것으로서,3 shows a planar heating element using carbon nanotubes as a heating unit,

(a)는 정면도이고, (b)는 평면도이다.       (a) is a front view, (b) is a top view.

도 4는 탄소나노튜브를 이용한 다른 실시예의 면상 발열체를 나타낸 것으로,Figure 4 shows a planar heating element of another embodiment using carbon nanotubes,

(a)는 정면도이고, (b)는 평면도이다.       (a) is a front view, (b) is a top view.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100…발열부 200…전극부 300…절연부100... Heating portion 200... Electrode part 300.. Insulation

본 발명은 탄소나노튜브(Carbon Nanotubes)를 첨가하여 전기 및 열전도성을 증대시킨 탄소나노튜브를 이용한 면상발열체 및 그 제조방법에 관한 것이다.The present invention relates to a planar heating element using carbon nanotubes having improved electrical and thermal conductivity by adding carbon nanotubes and a method of manufacturing the same.

일반적으로 열전도성을 갖는 복합재료 조성물들은 대부분 열전도도가 높은 물질을(금, 은, 구리, 알루미늄, 철, 흑연분말, AIN 등)수지 등의 기재상에 균일하게 분포시킴으로써 열전도성을 갖게되는 것이다.In general, composite materials having thermal conductivity are thermally conductive by uniformly distributing a material having high thermal conductivity (gold, silver, copper, aluminum, iron, graphite powder, AIN, etc.) on a substrate such as a resin. .

이의 선행기술로서 US특허 제6,372,337호에 제안되어 있는 바와 같이, 기지물질인 오일 100중량에 대하여 평균입자직경이 0.5㎛ ~ 5㎛의 금속분말을 500 ~ 1,200중량%을 혼합하여 열전도 그리스를 제조한다.As proposed in US Pat. No. 6,372,337 as a prior art, a thermally conductive grease is prepared by mixing 500-1,200 wt% of a metal powder having an average particle diameter of 0.5 μm to 5 μm with respect to 100 weight of oil as a known substance. .

또한 미국특허 제4,544,696호(Shaheen)(수지내에 칼슘, 알루미늄 및 금,구리 또는 은); 제4,544,696호(Streusand), 제4,584,336호(Pate) 및 제4,588,768호(Streusand)(산화알루미늄 또는 산화아연을 가지는 규소 질화물 함유-유기폴리실옥산); 제5,011,870호(Paterson)(알루미늄 질화물 및 폴리유기실리콘 수지 매트릭스내의 규소금속 및 붕소질화물); 및 제5,352,731호(Nakano)(산화알루미늄 함유 실리콘 고무)를 참조한다.See also US Pat. No. 4,544,696 to Shaheen (calcium, aluminum and gold, copper or silver in the resin); Nos. 4,544,696 (Streusand), 4,584,336 (Pate) and 4,588,768 (Streusand) (silicon nitride containing-organic polysiloxanes with aluminum oxide or zinc oxide); Paterson (silicon metals and boron nitrides in aluminum nitride and polyorganosilicon resin matrices); And 5,352,731 (Nakano) (aluminum oxide containing silicone rubber).

미국특허 제5,430,085호(Acevedo)는 300㎛ 내지 325㎛ 범위의 입자크기를 가지는 전도성 입자 80중량%, 75~80㎛ 범위의 입자크기를 가지는 전도성 입자 10중량%, 및 0.020 내지 0.025인치 범위의 길이를 가지는 전도성 섬유 10중량%을 포함하는 충전제와 혼합된 실리콘과 같은 수지를 포함하는 열 및 전기전도성 코크(caulk)가 기재되어있다.U. S. Patent No. 5,430, 085 (Acevedo) discloses 80 wt% conductive particles having a particle size in the range of 300 μm to 325 μm, 10 wt% conductive particles having a particle size in the range of 75 to 80 μm, and a length in the range of 0.020 to 0.025 inch. Thermal and electrically conductive caulks are described that include a resin, such as silicone, mixed with a filler comprising 10% by weight of conductive fibers having a.

미국특허 제4,604,424호(Cole)에는 폴리디유기실옥산,경화제,백금함유-히드로실화(hydrosilation)촉매, 및 산화아연 및 산화마그네슘 충전제를 함유하는데 이 충전제의 입자크기는 실질적으로 모든 충전제 입자가 325메쉬 스크린을 통과하는 정도의 크기이고, 이 충전제의 평균 입자크기는 10㎛보다 작은 열전도성 실리콘 탄성체를 기재하고있다.US Pat. No. 4,604,424 (Cole) contains polydiorganosiloxanes, hardeners, platinum-containing hydrosilation catalysts, and zinc oxide and magnesium oxide fillers, the particle size of which is substantially all filler particles of 325 mesh. It is about the size that passes through a screen, and the average particle size of this filler is described as a thermally conductive silicone elastomer of less than 10 mu m.

충전제는 각각 충전제 중량에 대해 50~90중량%의 산화아연(ZnO2),10~50중량%의 산화마그네슘(MgO)으로 이루어 진다.The filler consists of 50 to 90% by weight of zinc oxide (ZnO 2 ) and 10 to 50% by weight of magnesium oxide (MgO) relative to the weight of the filler.

다른 충전제(40중량%까지)들은 산화알루미늄(Al2O3),산화 제2철 및 카본 블랙을 포함한다.Other fillers (up to 40% by weight) include aluminum oxide (Al 2 O 3 ), ferric oxide and carbon black.

경화된 탄성체들은 단독충전제로서 산화알루미늄을 함유하는 조성물보다 더 많은 정도까지 연마재료에 의한 침식을 견디어 낸다고 알려져 있다.Cured elastomers are known to withstand erosion by abrasive materials to a greater extent than compositions containing aluminum oxide as the sole filler.

그럼에도 불구하고 현재까지 이러한 전단 혼합(shear mixing)은 분산되는 수지 전체에 걸쳐서 열전도성을 증가시키려는 의도로서 전도성 충전제의 입자크기 및 기하학적 형태를 분쇄하는데 사용되어 왔다.Nevertheless, such shear mixing has been used to break up the particle size and geometry of the conductive filler with the intention of increasing the thermal conductivity throughout the resin to be dispersed.

상기의 다양한 혼용 및 가공기법의 개선은 전기, 전자 및 의료,환경등의 산업분야에서 상업적으로 다양하게 응용할수 있으며, 저전압 구동하에서의 고효율의 열전도성을 갖는 수지-기재 조성물은 여전히 개발대상이 되고있다.Improvement of the various mixing and processing techniques can be commercially applied in a variety of industries, such as electrical, electronics, medical, and environment, and resin-based compositions having high thermal conductivity of high efficiency under low voltage driving are still subject to development. .

따라서 조성물의 기계적 성질 또는 경화된 반응 생성물의 기계적 성질 모두를 손상하지 않으면서 보다 우수한 전도 특성을 가지는 열전도성을 갖는 면상발열체의 필요성이 존재한다.Accordingly, there is a need for planar heating elements having better thermal conductivity without compromising both the mechanical properties of the composition or the mechanical properties of the cured reaction product.

본 발명은 이러한 종래 기술의 문제점과 과거로부터 요청되어 온 기술적 과제를 해결하기 위하여 제안된 것으로서, 본 발명은 소량의 높은 전기 전도성 및 열전도성을 지닌 탄소나노튜브를 수지, 페인트 및 접착제등 다양한 기재에 첨가하여 성형이 쉬우며, 온도 균일성이 우수한 높은 열전도성을 갖는 탄소나노튜브를 이용한 면상발열체 및 그 제조방법을 제공하는데 그 목적이 있는 것이다.The present invention has been proposed to solve the problems of the prior art and the technical problem that has been requested from the past, the present invention is a carbon nanotube having a small amount of high electrical conductivity and thermal conductivity to various substrates such as resins, paints and adhesives It is an object of the present invention to provide a planar heating element using carbon nanotubes having a high thermal conductivity having excellent thermal uniformity and easy to be formed by addition, and a method of manufacturing the same.

상기의 목적을 달성하기위한 본 발명의 제조방법은 고분자 수지기재에 대한 일정한 질량비로 평균 길이가 수십 내지 수백 ㎛에 이르는 탄소나노튜브를 혼합,분산하여 발열부를 성형하는 제1공정과; 상기 제1공정에서 혼합,분산처리된 발열부에 전기저항이 1~105Ω㎝의 범위로하여 쉬트형상의 전극부를 형성하는 제2공정과; 상기 발열부에 전도도가 높은 절연부를 부착하는 제3공정으로 이루어지는 것이다.The manufacturing method of the present invention for achieving the above object comprises a first step of forming a heat generating unit by mixing and dispersing carbon nanotubes having an average length of several tens to several hundred μm at a constant mass ratio with respect to the polymer resin substrate; A second step of forming a sheet-shaped electrode part with an electrical resistance in the range of 1 to 10 5 Ωcm in the heat generating part mixed and dispersed in the first step; And a third step of attaching an insulating portion having high conductivity to the heat generating portion.

이러한 공정에 의해 탄소나노튜브가 혼합된 고분자 수지기재로 성형된 발열부와; 상기 발열부의 표면에 넓은 면적을 지닌 전극부와; 상기 발열부가 외부와의 접촉에 의한 누전이 발생되는 것을 방지하기 위한 절연부로 구성된 면상발열체를 얻게 되는 것이다.      A heat generating part formed of a polymer resin material mixed with carbon nanotubes by such a process; An electrode portion having a large area on the surface of the heat generating portion; The heat generating unit is to obtain a planar heating element composed of an insulating portion for preventing the short circuit caused by contact with the outside.

이하 본 발명의 전체적인 구성 및 이로부터 얻게되는 특유의 효과 등에 대하여 첨부도면을 이용하여 상세히 설명하면 하기와 같다.    Hereinafter, the overall configuration of the present invention and specific effects obtained therefrom will be described in detail with reference to the accompanying drawings.

본 발명자들은 소량의 탄소나노튜브(110)의 첨가에 의해 발열부(100)의 전기 전도성이 현저하게 증가하는 현상을 이용하여 본 발명의 면상 발열체를 제작하기에 이른 것이다.      The present inventors have come to produce the planar heating element of the present invention by using a phenomenon in which the electrical conductivity of the heat generating part 100 is remarkably increased by the addition of a small amount of carbon nanotubes 110.

즉 종래의 도전성이 있는 탄소 특히 흑연,카본블랙 및 활성탄소/섬유등을 고분자 수지류에 분산시킬경우 50중량% 이상 과량의 탄소입자를 첨가하여야만 원하는 저항과 발열효과를 얻을수 있으며, 이로 인해 성형의 어려움과 함께 기계적 강도가 감소하게 되지만 본 발명에 사용되는 탄소나노튜브는 수지 기재 대비 10중량% 이하의 소량의 첨가만으로도 수지 조성물이 충분한 전기 및 열전도성을 가지게 되며, 또한 소량 첨가에 의한 우수한 가공 및 성형성과 함께 기계적 강도 또한 저하되지 않는다.     In other words, when dispersing conventional conductive carbon, especially graphite, carbon black, and activated carbon / fiber, in polymer resins, an excess of 50% by weight or more of carbon particles must be added to obtain a desired resistance and exothermic effect. The mechanical strength decreases with difficulty, but the carbon nanotubes used in the present invention have sufficient electrical and thermal conductivity even with the addition of a small amount of 10 wt% or less relative to the resin substrate. Along with formability, mechanical strength also does not decrease.

일반적으로 탄소나노튜브는 대체로 수 내지 수십㎛이며, 그 길이가 수십 내지 수백 ㎛에 이를 정도로 비등방정의 구조를 갖는다.     In general, carbon nanotubes are generally in the range of several tens to several tens of micrometers, and have a structure that is anisotropic so that their lengths reach tens to hundreds of micrometers.

이러한 구조적 특성에 따라 역학적으로도 견고하며(철의 100배정도)화학적인 안정도도 뛰어나며 또한 전기저항이 10-1 ~ 10-4 정도로 반도체적 성질을 가짐에 따라 열전도도 1,800~6,000W/mK로 우수하며, 속이비어있는 중공(中空)특성으로 일반적인 탄소소재인 흑연이나 탄소섬유등에 비해 낮은 밀도를 가진다.According to these structural characteristics, it is also mechanically strong (about 100 times of iron) and has excellent chemical stability, and also has excellent thermal conductivity of 1,800 ~ 6,000W / mK as it has semiconducting properties with electric resistance of 10 -1 ~ 10 -4 . It is hollow and hollow, and has a lower density than graphite or carbon fiber, which is a common carbon material.

또한 직경에 대한 길이비(L/R)가 높아 (100~10000)고분자 수지내에 분산시 소량의 첨가로 서로 그물망 구조(Network Structure)를 이루어 단락 및 단선에 의한 절연이 발생하지 않으며 충분한 열 및 전기전도성을 갖는다.     In addition, the ratio of length to diameter (L / R) is high (100 to 10000), and when dispersed in a polymer resin, a small amount is added to form a network structure with each other, so that insulation due to short circuit and disconnection does not occur. Has conductivity.

이러한 특성을 갖는 탄소나노튜브(110)로 이용한 본 발명의 제조공정은 하기 와 같다.     The manufacturing process of the present invention using the carbon nanotubes 110 having these characteristics is as follows.

즉 고분자 수지기재(120)에 대한 일정한 질량비로 평균 길이가 수십 내지 수백 ㎛에 이르는 탄소나노튜브를 혼합,분산하여 발열부(100)를 성형하는 제1공정(10)과; 상기 제1공정에서 혼합,분산처리되어 전기저항이 1~105Ω㎝의 범위로 하여 쉬트형상의 전극부(200)를 성형하는 제2공정(20)과; 상기 발열부(100)에 전도도가 높은 전열부(300)를 부착하는 제3공정(30)으로 이루어지는 것이다.That is, the first step 10 of forming a heat generating part 100 by mixing and dispersing carbon nanotubes having an average length of several tens to hundreds of micrometers in a constant mass ratio with respect to the polymer resin substrate 120; A second step (20) of forming a sheet-shaped electrode part (200) by mixing and dispersing in the first step so that the electrical resistance is in the range of 1 to 10 5 Ωcm; And a third process 30 of attaching the heat transfer part 300 having high conductivity to the heat generating part 100.

이러한 공정에 의해 제조된 본 발명의 면상발열체는 도면에 예시된 바와같이, 탄소나노튜브(110)가 혼합된 고분자 수지기재(120)로 성형된 발열부(100)와, 상기 발열부(100)의 표면에 넓은 면적을 지닌 전극부(200)와, 상기 발열부(100)가 외부와의 접촉에 의한 누전이 발생되는 것을 방지하기위한 절연부(300)로 구성되는 것이다.      The planar heating element of the present invention manufactured by such a process, as illustrated in the drawings, the heat generating part 100 and the heat generating part 100 formed of a polymer resin substrate 120 mixed with carbon nanotubes 110. The electrode portion 200 having a large area on the surface of the, and the heat generating portion 100 is composed of an insulating portion 300 to prevent the short circuit caused by contact with the outside.

본 발명의 제조방법에 대하여 하기 실시예에서 상세히 설명되고 있으나, 본 발명의 범주가 실시예에 한정되는 것은 아니다.     The manufacturing method of the present invention is described in detail in the following examples, but the scope of the present invention is not limited to the examples.

[실시예 1]Example 1

탄소나노튜브(110)는 금속촉매 및 기체의 탄화수소를 열분해하여 얻었으며, 그 길이가 수십 내지 수백㎛이며, 이의 직경은 20 ~ 50nm이다.     Carbon nanotubes 110 were obtained by thermal decomposition of hydrocarbons of metal catalysts and gases, the length of which is several tens to several hundred micrometers, the diameter of which is 20 ~ 50nm.

탄소나노튜브와 폴리에스테르가 섞여있는 복합체의 중량을 100으로 하였을때, 탄소나노튜브의 양을 0.5, 폴리에스테르를 99.5로 하여 분산,혼합하였다.When the weight of the composite in which carbon nanotubes and polyester were mixed was 100, the amount of carbon nanotubes was 0.5 and polyester was 99.5, which was dispersed and mixed.

[실시예 2]Example 2

사용된 탄소나노튜브(110)는 실시예 1과 동일하다.Carbon nanotubes 110 used are the same as in Example 1.

탄소나노튜브와 폴리에스테르가 섞여있는 복합체의 중량을 100으로 하였을때, 탄소나노튜브의 양을 1,폴리에스테르를 99로 하여 분산,혼합하였다.When the weight of the composite in which carbon nanotubes and polyester were mixed was 100, the amount of carbon nanotubes was dispersed in 1, polyester 99, and mixed.

[실시예 3]Example 3

사용된 탄소나노튜브(110)는 실시예 1과 동일하다.Carbon nanotubes 110 used are the same as in Example 1.

탄소나노튜브와 폴리에스테르가 섞여있는 복합체의 중량을 100으로 하였을때, 탄소나노튜브의 양을 3, 폴리에스테르를 97로하여 분산, 혼합하였다.When the weight of the composite in which carbon nanotubes and polyester were mixed was 100, the amount of carbon nanotubes was 3 and polyester was dispersed and mixed.

[실시예 4]Example 4

사용된 탄소나노튜브(110)는 실시예 1과 동일하다.Carbon nanotubes 110 used are the same as in Example 1.

탄소나노튜브와 폴리에스테르가 섞여있는 복합체의 중량을 100으로 하였을때, 탄소나노튜브의 양을 5, 폴리에스테르를 95로 하여 분산, 혼합하였다.When the weight of the composite in which the carbon nanotubes and the polyester are mixed is 100, the amount of the carbon nanotubes is 5 and the polyester is 95, which is dispersed and mixed.

[실시예 5]Example 5

사용된 탄소나노튜브(110)는 실시예 1과 동일하다.     Carbon nanotubes 110 used are the same as in Example 1.

탄소나노튜브와 폴리에스테르가 섞여있는 복합체의 중량을 100으로 하였을때,탄소나노튜브의 양을 10, 폴리에스테르를 90으로 하여 분산, 혼합하였다.When the weight of the composite in which the carbon nanotubes and the polyester are mixed is 100, the amount of the carbon nanotubes is 10 and the polyester is 90 to disperse and mix.

[실시예 6]Example 6

사용된 탄소나노튜브(110)는 실시예 1과 동일하다.Carbon nanotubes 110 used are the same as in Example 1.

탄소나노튜브와 폴리에스테르가 섞여있는 복합체의 중량을 100으로 하였을때,탄소나노튜브의 양을 20, 폴리에스테르를 80으로 하여 분산,혼합하였다.When the weight of the composite in which carbon nanotubes and polyester were mixed was 100, the amount of carbon nanotubes was 20 and polyester 80 was dispersed and mixed.

[비교예][Comparative Example]

상기 실시예와 비교하여 탄소나노튜브를 첨가하지않고 폴리에스테르 수지기재만을 100중량%로 하여 면상 발열체를 제조하였다.Compared to the above embodiment, the planar heating element was manufactured by using only 100% by weight of polyester resin without adding carbon nanotubes.

[표 1] 실시예에 따른 전기 저항치Table 1 Electrical Resistance Values According to Examples

전기저항값(Ω㎝)  Electric resistance value (Ω㎝) 비교예   Comparative example 2×108이상(측정불가) 2 x 10 8 or more 실시예1    Example 1 5×105 5 × 10 5 실시예2    Example 2 1×104 1 × 10 4 실시예3    Example 3 2×103 2 × 10 3 실시예4    Example 4 8×102 8 × 10 2 실시예5    Example 5 2×102 2 × 10 2 실시예6    Example 6 10        10

측정은 HP2000 multmeter로 2point로 하였으며, 샘플을 길이가 2cm 폭이 1cm로 하였음.Measurements were made at 2 points using a HP2000 multmeter, and the samples were 2 cm long and 1 cm wide.

본 발명에 속한 분야에서 통상의 지식을 가진자라면 이상의 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형이 가능한 것이며, 이러한 을용 및 변형은 본 발명의 권리범위에 속하는 것이다.Those skilled in the art to which the present invention pertains will be capable of various applications and modifications within the scope of the present invention based on the above contents, and such uses and modifications are within the scope of the present invention.

상술한 바와 같이 본 발명에 따르면 탄소나노튜브를 이용한 면상 발열체는 기존의 발열체에 비해 상당히 소량으로도 높은 전기전도성을 나타내는 면상발열체를 얻을수있다.As described above, according to the present invention, a planar heating element using carbon nanotubes can obtain a planar heating element that exhibits a high electrical conductivity even in a small amount compared to a conventional heating element.

또 이로인해 어떤 모양으로도 제조가 가능하며 성형이 우수하며, 또한 기계적인 물성을 저하시키지 않게되는 것이다.In addition, it can be manufactured in any shape, excellent molding, and does not lower the mechanical properties.

또 탄소나노튜브는 다른 재료보다 열전도성이 1,800~6,000W/mk로 매우 높아 이로 이루어진 면상 발열체의 경우 탄소나노튜브의 소량첨가로 저전압 구동하에서도 우수한 열전도성을 나타내므로 경제적이며 그 공정이 간단하여 상업화가 용이하게되는 것이다.In addition, carbon nanotubes have much higher thermal conductivity than other materials, such as 1,800 ~ 6,000W / mk, so the surface heating element made of carbon nanotubes shows excellent thermal conductivity even under low voltage driving due to the small amount of carbon nanotubes. It is easy to commercialize.

Claims (4)

고분자 수지기재에 대한 일정한 질량비로 평균 길이가 수십 내지 수백 ㎛에 이르는 탄소나노튜브를 혼합,분산하여 발열부를 성형하는 제1공정과; 상기 제1공정에서 혼합,분산처리된 발열부의 전기저항이 1~105Ω㎝의 범위로하여 쉬트형상의 전극부를 형성하는 제2공정과; 상기 발열부에 전도도가 높은 절연부를 부착하는 제3공정으로 제조되는 탄소나노튜브를 이용한 면상발열체의 제조방법.A first step of forming a heat generating part by mixing and dispersing carbon nanotubes having an average length of several tens to hundreds of micrometers at a constant mass ratio with respect to the polymer resin substrate; A second step of forming a sheet-shaped electrode part with an electrical resistance of the heat generating part mixed and dispersed in the first step in a range of 1 to 10 5 Ωcm; A method of manufacturing a planar heating element using carbon nanotubes manufactured by a third step of attaching an insulating portion having high conductivity to the heat generating portion. 제1항에 있어서, 상기 수지기재내에 첨가되는 탄소나노튜브는 단층벽,이중벽 및 다층벽으로 성형되는것을 특징으로하는 탄소나노튜브를 이용한 면상 발열체의 제조방법.The method of manufacturing a planar heating element using carbon nanotubes according to claim 1, wherein the carbon nanotubes added in the resin base material are formed into a single wall, a double wall, and a multilayer wall. 제1항에 있어서, 상기 탄소나노튜브의 고분자 수지 기재와의 혼합비율이 전체중량의 0.5% 내지 20중량%인것을 특징으로하는 탄소나노튜브를 이용한 면상 발열체의 제조방법.The method of claim 1, wherein the mixing ratio of the carbon nanotubes with the polymer resin substrate is 0.5% to 20% by weight of the total weight. 탄소나노튜브가 혼합된 고분자 수지기재로 성형되는 발열부(100)와; 상기 발열부(100)의 표면에 넓은 면적을 지닌 전극부(200)와; 상기 발열부(100)가 외부와의 접촉에 의한 누전이 발생되는 것을 방지하기위한 절연부(300)로 구성된 것을 특 징으로 하는 탄소나노튜브를 이용한 면상발열체.      A heating part 100 formed of a polymer resin material mixed with carbon nanotubes; An electrode unit 200 having a large area on the surface of the heat generating unit 100; Planar heating element using carbon nanotubes, characterized in that the heat generating portion 100 is composed of an insulating portion 300 for preventing the short circuit caused by contact with the outside.
KR1020050014540A 2005-02-22 2005-02-22 Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity KR100642622B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050014540A KR100642622B1 (en) 2005-02-22 2005-02-22 Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050014540A KR100642622B1 (en) 2005-02-22 2005-02-22 Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity

Publications (2)

Publication Number Publication Date
KR20060093794A true KR20060093794A (en) 2006-08-25
KR100642622B1 KR100642622B1 (en) 2006-11-10

Family

ID=37601781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050014540A KR100642622B1 (en) 2005-02-22 2005-02-22 Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity

Country Status (1)

Country Link
KR (1) KR100642622B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975637B1 (en) * 2010-03-10 2010-08-17 주식회사 포톤 High efficiency susceptor and the process of manufacture that use cnt
KR100979278B1 (en) * 2008-09-17 2010-08-31 고려대학교 기술지주 (주) Heat generation sheet and fabrication method thereof
KR101128335B1 (en) * 2011-09-06 2012-03-23 신수용 Heating element and method of manufacturing thereof
US8513870B2 (en) 2008-02-29 2013-08-20 Korea University Industrial & Academic Cooperation Foundation Electron emission source, electric device using the same, and method of manufacturing the electron emission source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920094B1 (en) 2008-02-28 2009-10-05 최영희 Wiring method of carbon nano planar heating element film
KR101328353B1 (en) 2009-02-17 2013-11-11 (주)엘지하우시스 Heating sheet using carbon nano tube
KR101794079B1 (en) 2015-08-20 2017-11-06 류도영 Heating element manufactured using carbon nanotube and polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513870B2 (en) 2008-02-29 2013-08-20 Korea University Industrial & Academic Cooperation Foundation Electron emission source, electric device using the same, and method of manufacturing the electron emission source
KR100979278B1 (en) * 2008-09-17 2010-08-31 고려대학교 기술지주 (주) Heat generation sheet and fabrication method thereof
KR100975637B1 (en) * 2010-03-10 2010-08-17 주식회사 포톤 High efficiency susceptor and the process of manufacture that use cnt
KR101128335B1 (en) * 2011-09-06 2012-03-23 신수용 Heating element and method of manufacturing thereof

Also Published As

Publication number Publication date
KR100642622B1 (en) 2006-11-10

Similar Documents

Publication Publication Date Title
KR100642622B1 (en) Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity
KR102075893B1 (en) Thermally conductive sheet, manufacturing method of thermally conductive sheet, heat dissipation member and semiconductor device
KR101099237B1 (en) Conductive Paste and Conductive Circuit Board Produced Therewith
CN101138896B (en) Carbon nano-tube/ polymer composite material
US6794035B2 (en) Graphitized carbon fiber powder and thermally conductive composition
CN102337033A (en) Additive high-thermal-conductivity organic silicon electronic pouring sealant and preparation method thereof
KR101144888B1 (en) Flexible thermoelectric material, method for preparing the same and thermoelectric device comprising the same
US8741429B2 (en) Fixing heater and manufacturing method thereof
KR20210087026A (en) Boron nitride nanomaterial, and resin composition
WO2004082333A1 (en) Seat-like heating units with porous plate-shaped electrode
WO2004023845A1 (en) Seat-like heating units using carbon nanotubes
KR101777691B1 (en) Heating composition having graphene oxide and heater using the same
JP2002088249A (en) Thermoconductive polymer composition and thermoconductive molded body
Ali et al. Preparation and application practice of temperature self‐regulating flexible polymer electric heaters
KR102016735B1 (en) Insulating ink composition and substrate formed insulating film using the same
US8039547B2 (en) Compositions for coating electrical interfaces including a nano-particle material and process for preparing
JP2695563B2 (en) Heat transfer material
CN113261398A (en) Method for preparing radiating fin
JP2002003717A (en) Heat conductive sheet
KR102259236B1 (en) Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube
KR20210011899A (en) heat dissipation composite material and method of fabricating of the same
CN1318201A (en) PTC device and method for producing same
JP2018098273A (en) Thermoelectric conversion composition and thermoelectric conversion element
KR20220079236A (en) A paste composition comprising a carbon nanomaterial and basalt fiber, a conductive film comprising the same, and the method for producing the same
US20070295933A1 (en) Fixing Heater and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121031

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131030

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171027

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 14