KR20060089025A - Road compound and method of soil for soil-cement pavement - Google Patents
Road compound and method of soil for soil-cement pavement Download PDFInfo
- Publication number
- KR20060089025A KR20060089025A KR1020050010091A KR20050010091A KR20060089025A KR 20060089025 A KR20060089025 A KR 20060089025A KR 1020050010091 A KR1020050010091 A KR 1020050010091A KR 20050010091 A KR20050010091 A KR 20050010091A KR 20060089025 A KR20060089025 A KR 20060089025A
- Authority
- KR
- South Korea
- Prior art keywords
- soil
- cement
- pavement
- solidified material
- road
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K17/00—Soil-conditioning materials or soil-stabilising materials
- C09K17/02—Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
- C09K17/10—Cements, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/68—Aluminium compounds containing sulfur
- C01F7/74—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Structural Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Road Paving Structures (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
본 발명의 목적은 기존의 아스팔트 및 시멘트 콘크리트 도로포장과 달리 자연상태의 흙을 이용하여 주변의 자연경관과 조화를 이루며, 보다 경제적이며, 소요의 강도 및 내구성을 가질수 있는 친환경적인 흙포장 도로를 만들기 위한 흙 고화방법 및 흙에 첨가하여 필요한 하중을 지지할수 있는 강도 및 내구성을 향상시킬 수 있는 고화재를 개발하고자 하는 것이다. 또한 본 발명의 고화재는 흙포장 도로용 뿐만 아니라 절토시 사면의 안정용, 흙댐의 전단면, 운하, 개수로, 하천의 라이닝 용으로도 다양하게 적용할 수 있다.The purpose of the present invention is to create an eco-friendly dirt pavement that can harmonize with the surrounding natural landscape using natural soil, unlike conventional asphalt and cement concrete pavement, which is more economical and has the required strength and durability. Soil solidification method and the addition to the soil is to develop a solidified material that can improve the strength and durability to support the required load. In addition, the solidified material of the present invention can be variously applied not only for soil pavement roads, but also for stabilization of slopes when cutting, shear surfaces of soil dams, canals, waterways, and lining of rivers.
흙, 도로, 고화재, 친환경적, RC, NRCDirt, Road, High Fire, Eco Friendly, RC
Description
도 1은 점성토의 함수비에 따른 압축강도1 is compressive strength according to the water content of viscous soils
도 2는 사질토의 함수비에 따른 압축강도2 is compressive strength according to the water content of sandy soil
도 3은 점성토의 RC혼합률에 따른 압축강도3 is compressive strength according to RC mixing rate of viscous soil
도 4는 사질토의 RC혼합률에 따른 압축강도4 is the compressive strength according to RC mixing rate of sandy soil
도 5는 점성토의 NRC혼합률에 따른 압축강도5 is compressive strength according to NRC mixing rate of viscous soil
도 6은 사질토의 NRC혼합률에 따른 압축강도6 is compressive strength according to NRC mixing rate of sandy soil
흙포장 도로에서 흙의 성질을 개량하는 기술은 우선적으로 흙과 물의 최적함수비에서 외적인 다짐에 의한 흙의 전단강도 증진, 밀도 증대 및 투수계수 감소 등의 효과를 얻을 수 있는 방법과 이러한 기계적인 작용에 의한 효과 외에 화학적 작용에 의한 방법으로 흙과 무기 및 유기 화학재료를 물과 함께 혼합하여 새로운 반응생성물을 흙속에 생성시켜 흙 입자 사이의 공극을 치밀하게 채워주거나 흙 입자 사이의 정전기적인 인력을 증진시키는 방법에 의해 흙의 제 성질을 개선시키는 방법이 있다.Techniques to improve the properties of soils on the pavement are to improve the shear strength, increase the density and decrease the permeability coefficient of the soil by external compaction at the optimum ratio of soil and water, and the mechanical action. In addition to the effects of chemicals, soil and inorganic and organic chemicals can be mixed with water to create new reaction products in the soil, filling the voids between the soil particles or enhancing the electrostatic attraction between the soil particles. There is a method of improving soil properties by the method.
첫 번째 기계적인 다짐에 의한 방법은 지금까지 토질공학에서 오랜기간동안 검증되어 현재까지 사용되고 있으나, 두 번째의 화학적인 방법은 국내의 경우 토양의 안정처리재 또는 토양 고화재로 불리어지고 있으며, 그 화학적 조성에 따라 각각의 특성이 다르고 또한 대상 토질에 따라 효과가 달라 안정된 품질확보 및 공통된 시공방법이 제시되고 있지 못한 실정이다. The first method of mechanical compaction has been used for a long time in soil engineering until now, but the second chemical method is called soil stabilization material or soil solidification material in Korea. Since the characteristics vary depending on the composition, and the effects vary depending on the soil quality, stable quality and common construction methods have not been proposed.
또한 기존에 국내에서 개발된 대부분의 고화재는 최근까지 국내의 수요가 많지 않음에 따라 그 성능 및 가격이 외국에 비해 떨어지며, 현장적용을 하기위한 충분한 연구 및 현장적용을 하기 위한 시공방법이 개발되지 못하고 있어 사용상의 문제가 제기되고 있다. In addition, since most of the existing fires developed in Korea have not had much domestic demand until recently, their performance and price are lower than those of other countries, and sufficient research and application methods for on-site application have not been developed. We do not have and problem on use is raised.
또한, 기존에 개발된 토양 고화재 기술의 대부분은 대도시 지하철공사, 영종도 인천국제공항 개발 및 해안가 지반개량공사에 있어 연약지반 개량 및 안정처리에 사용할 목적으로 주로 개발되고 사용되고 있어 흙포장 도로의 표층흙 고화에 대한 새로운 기술개발이 필요하다. In addition, most of the existing soil solidification technologies are developed and used mainly for metropolitan subway construction, Yeongjong-do Incheon International Airport development, and shoreline ground improvement construction. New technology development for solidification is needed.
본 발명은 흙포장 도로의 표층 및 기층 흙을 고화하는 방법 및 고화재 개발에 관한 것으로 포장용 흙으로 사용되는 사질토 및 점성토 등의 대상토와 물 그리고 시멘트계 고화재는 보통포틀랜드시멘트, 아윈(CSA계), 무수석고(또는 황산나트 륨) 및 무기염류를 혼합한 것과 알루미늄설페이와 소듐카보네이트를 혼합한 것을 사용하였다. 이와 같은 고화재를 도로포장용 표층 및 기층에 요구되는 강도 및 내구성을 만족시킬 수 있는 최적의 배합으로 혼합하여 초기에 고화재와 물의 수화에의해 불용성의 칼슘설퍼알루미네이트(calcium sulfoaluminate) 또는 에트린자이트(ettringite)같은 침상구조의 수화물을 최대로 많이 생성하여 흙 입자 사이의 공극을 밀실하게 채워주게 하는 화학적 작용에 의한 고화 및 포장용 기계 장비를 이용하는 물리적 고화를 통한 흙포장 도로의 흙 고화방법 및 고화재 제조방법에 대한 기술을 제공하고자 한다. The present invention relates to a method of solidifying surface and base soils of a pavement and development of solidified fires. Target soils such as sandy soils and viscous soils used as paving soils, water and cement-based solidified materials are usually Portland cement, Irwin (CSA-based). , A mixture of anhydrous gypsum (or sodium sulfate) and inorganic salts, and a mixture of aluminum sulfate and sodium carbonate were used. Such solidified materials are mixed in an optimum formulation that can satisfy the strength and durability required for the surface pavement and base of road pavement, and are insoluble calcium sulfoaluminate or ethrinzai initially by hydration of the solidified material and water. Soil solidification method and solidification method of soil pavement road through physical solidification using chemical action solidification and pavement machinery to generate maximum hydrate of needle-like needle structure to fill gaps between soil particles tightly To provide a description of how to make a fire.
상기 본 발명의 목적을 달성하기 위한 흙포장 도로용 고화재는 시멘트계 고화재로서 첫째는, 보통포틀랜드 시멘트 또는 혼합시멘트(고로슬래그 시멘트 및 플라이애시 시멘트)와 같은 제1혼합물과 아윈(calcium sulfoaluminate계, CSA계), 무수석고(또는 황산나트륨), 무기염류를 혼합한 제2혼합물로 구성하였으며, 이를 Road Compound(이하, RC로 약함)로 명명하기로 한다. 둘째는, 제1혼합물과 알루미늄설페이트 및 소듐카보네이트를 혼합한 제2혼합물로 구성하였으며, 이를 New Road Compound(이하, NRC로 약함)로 명명하기로 한다.The soil paving road solidified material for achieving the object of the present invention is a cement-based solidified material, firstly, a first mixture such as ordinary portland cement or mixed cement (blast furnace slag cement and fly ash cement) and Irwin (calcium sulfoaluminate system, CSA), anhydrous gypsum (or sodium sulfate), and a second mixture of inorganic salts were mixed, which will be referred to as Road Compound (hereinafter referred to as RC). Second, the first mixture was composed of a second mixture of aluminum sulfate and sodium carbonate, which will be referred to as New Road Compound (hereinafter referred to as NRC).
또한, 흙포장 도로용 고화재와 혼합되는 흙은 통일분류법에 제시된 사질토 및 점성토로 분류하여 사용하고자 하며 이때 사용되는 물의 양은 토질시험에 의해서 구한 최적함수비를 중심으로 결정하였다. In addition, the soil mixed with the solidified road for pavement is intended to be classified into sandy soil and viscous soil presented in the unification classification method, and the amount of water used was determined based on the optimum water content ratio determined by the soil test.
본 고화재를 적용할 수 있는 흙포장 도로는 자전거 전용도로, 주차장, 광장, 공원 및 체육시설 등과 같은 근린 생활공간의 포장 도로는 물론 국도, 및 지방도로 등에도 적용 할 수 있다. The soil paving road to which this fire can be applied can be applied to national roads and local roads as well as pavement roads of neighboring living spaces such as bicycle paths, parking lots, plazas, parks and sports facilities.
본 발명의 Road Compound를 구성하는 재료의 성분은 Road Compound 총중량에 대하여 시멘트계는 70~95%, RC는 5~30%로 이루어 지며, 또한 RC의 총중량에 대하여 아윈은 25~75%, 무수석고(또는 황산나트륨)를 포함한 무기염류는 25~75%로 구성되고, New Road Compound 시멘트계는 90~95%, NRC는 5~10%로 이루어지며, 또한 NRC의 총중량에 대하여 소듐카보네이트 및 알루미늄설페이트는 각각 50%로 제조된 것을 사용하였다. The components of the material constituting the road compound of the present invention is composed of 70 to 95% of cement, 5 to 30% of RC, and 25 to 75% of gross weight of RC, and anhydrous gypsum. Or sodium sulfate), consisting of 25-75% of inorganic salts, 90-95% of New Road Compound cement, 5-10% of NRC, and 50% of sodium carbonate and aluminum sulfate, respectively. The one prepared in% was used.
상기와 같이 고화재에 사용되는 재료에 대한 범위가 넓은 원인은 고화재가 적용되는 흙포장 도로의 사용목적에 따라 요구되는 강도 및 건조수축 균열 및 수밀성과 같은 내구적 특성에 따라 그 사용량이 결정되기 때문이다. The reason for the wide range of materials used for the solidified materials as described above is that the amount of usage is determined by the strength required by the purpose of the soil pavement to which the solidified materials are applied, and the durability characteristics such as dry shrinkage cracking and watertightness. Because.
상기와 같은 고화재의 다양한 배합특성에서 대표적인 RC와 NRC의 화학성분 을 나타낸 것이 표 1이다. Table 1 shows the chemical composition of the typical RC and NRC in the various mixing properties of the solidified materials as described above.
다음은 상기의 고화재의 다양한 배합특성에 따른 점성토 및 사질토에 대하여 실험을 통하여 적용한 실시예이다.The following is an example applied through experiments on viscous soils and sandy soils according to various mixing characteristics of the solidified material.
- 대상 시료 Target Sample
시험에 사용한 점성토와 사질토의 구성재료 및 화학성분은 표 2와 같다. 또한 대상토의 입도 분포 특성은 표 3로 나타냈으며, 대상토의 물리, 역학적 특성 은 표 4와 같다. Table 2 shows the constituent materials and chemical composition of cohesive and sandy soils used in the test. In addition, the particle size distribution characteristics of the target soil are shown in Table 3, and the physical and mechanical characteristics of the target soil are shown in Table 4.
〈실시예 〉<Example>
RC의 경우 점성토 도로의 흙과 고화재의 배합조건에 따른 강도특성을 함수비(흙의 중량에 대한 물의 중량비)를 5수준(15, 20, 25, 30 및 35%), 사질토의 경우 강도특성을 함수비(흙의 중량에 대한 물의 중량비)를 4수준(10, 15, 20 및 25%)으로 실시하여 점성토 25%, 사질토 15%의 최적함수비를 결정한 것이 도 1, 2이다. 또한, 각각의 최적함수비에 대하여 점성토는 고화재 중량에 대한 RC 혼합률을 4수준(10, 20, 30 및 40%), 사질토는 고화재 중량에 대한 RC 혼합률을 2수준(20 및 30%)로 변화시켜 압축강도 특성을 나타낸 것이 도 3, 4이다. In the case of RC, the strength characteristics according to the mixing condition of soil and solidified material on the cohesive soil road were 5 levels (15, 20, 25, 30, and 35%) in water content, and in the case of sandy soils. The water content ratio (weight ratio of water to weight of soil) was carried out at four levels (10, 15, 20 and 25%) to determine the optimum water content ratio of 25% viscous soil and 15% sandy soil. In addition, for each optimum function ratio, clay soils have 4 levels of RC mixing rate (10, 20, 30, and 40%) for solid fire weight, and sandy soils have 2 levels of RC mixing rate for solid fire weight (20 and 30%). 3 and 4 show the compressive strength characteristics by changing
NRC의 경우 예비실험을 통하여 점성토 25%, 사질토 15%의 최적함수비를 결정하였다. 또한, 결정된 점성토의 최적함수비에 대하여 OPC+NRC/SOIL을 20 및 25%로 실험을 실시한 것이 도 5이고, 사질토의 최적함수비에 대하여 OPC+NRC/SOIL를 15%로 고정하고 NRC/OPC+NRC의 혼합율을 0, 1.5, 3.0, 4.5 및 6.0%로 혼합하여 실험을 실시한 것이 도 6이다. In case of NRC, the optimum function ratio of 25% clay and 15% sandy soil was determined through preliminary experiments. In addition, FIG. 5 shows that the experiment was performed at 20 and 25% of OPC + NRC / SOIL with respect to the determined optimum function ratio of viscous soils. The OPC + NRC / SOIL was fixed at 15% and NRC / OPC + NRC for the optimum function ratio of sandy soil. Figure 6 shows the experiment by mixing the mixing ratio of 0, 1.5, 3.0, 4.5 and 6.0%.
상기의 실시예를 통하여 흙에 대한 고화재의 혼합량, 고화재 중량에 대한 시멘트 및 RC의 혼합비, 흙의 종류, 흙의 함수비에 따라 고화강도 특성이 3~25 MPa의 범위로 다양하기 때문에 적용되는 흙포장 도로의 사용목적에 따라 최적배합을 결정하여야 한다. Through the above embodiments, the solidification strength characteristics vary depending on the mixing ratio of the solidified material to the soil, the mixing ratio of cement and RC to the solidified weight, the type of soil, and the water content of the soil in the range of 3 to 25 MPa. The optimum mix should be determined according to the purpose of the pavement.
본 발명을 통하여 기존의 아스팔트 및 시멘트 콘크리트 도로포장과 달리 자연상태의 흙을 이용하여 주변의 자연경관과 조화를 이루며, 보다 경제적이며, 소요의 강도 및 내구성을 가질 수 있는 친환경적인 흙포장 도로를 만들 수 있으며, 도로현장에 존재하는 흙을 재료로 사용함에 따른 자원절약 효과 및 도로 포장 공정의 단순화에 의한 공기단축 효과를 얻을 수 있다.Unlike the existing asphalt and cement concrete pavement through the present invention, by using the soil in the natural state in harmony with the surrounding natural landscape, to create an eco-friendly dirt pavement that can be more economical, having the required strength and durability In addition, it is possible to obtain a resource saving effect by using soil existing in the road site as a material and an air shortening effect by simplifying the road pavement process.
또한 본 발명의 고화재는 흙포장 도로용 뿐만 아니라 절토시 사면의 안정용, 흙댐의 전단면, 운하, 개수로, 하천의 라이닝 용으로도 다양하게 적용할 수 있다. In addition, the solidified material of the present invention can be variously applied not only for soil pavement roads, but also for stabilization of slopes when cutting, shear surfaces of soil dams, canals, waterways, and lining of rivers.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050010091A KR100762975B1 (en) | 2005-02-03 | 2005-02-03 | Agent for solidifying soil for soil-cement pavement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050010091A KR100762975B1 (en) | 2005-02-03 | 2005-02-03 | Agent for solidifying soil for soil-cement pavement |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060089025A true KR20060089025A (en) | 2006-08-08 |
KR100762975B1 KR100762975B1 (en) | 2007-10-04 |
Family
ID=37177238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050010091A KR100762975B1 (en) | 2005-02-03 | 2005-02-03 | Agent for solidifying soil for soil-cement pavement |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100762975B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101432249B1 (en) | 2012-05-18 | 2014-08-26 | 주식회사 엘에스건설 | composition for soil pavement and construction method of soil pavement using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06343995A (en) * | 1993-06-04 | 1994-12-20 | Sakashiyou Giken Kogyo Kk | Odorless solidifying method for raw sewage |
KR20030095815A (en) * | 2002-06-14 | 2003-12-24 | 최연왕 | Manufacturing for color soil pavement thechnique |
-
2005
- 2005-02-03 KR KR1020050010091A patent/KR100762975B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR100762975B1 (en) | 2007-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12017963B2 (en) | Flowable compositions and methods of utilizing and producing the same | |
Zentar et al. | Utilization of siliceous–aluminous fly ash and cement for solidification of marine sediments | |
CN109853310A (en) | A kind of dredging silt industrial residue composite curing light soil and roadbed placement in layers construction method | |
KR20150016465A (en) | Permeable concrete using recycled aggregate and porous concrete pavement using the same method | |
KR100975671B1 (en) | The methods to manufacture an highly durable, environmentally friendly permeability concrete composite utilizing low carbon blended cement, performance weathered granite soil, water friendly chopped fiber, pigment, inorganic water solution and reinforcing mesh, and permeability pavement using it | |
Balegh et al. | Effect of ceramic waste on mechanical and geotechnical properties of tuff treated by cement | |
Zhu et al. | Utilization of excavated loess and gravel soil in controlled low strength material: Laboratory and field tests | |
JP5975603B2 (en) | High-strength porous concrete composition and high-strength porous concrete cured body | |
KR100625172B1 (en) | Production method of soil concrete and soil block using expansive agent or hydro-depository agent | |
Hammad et al. | Improvement of Sabkha soils using cement and marble powder | |
Zhao et al. | Utilization of high fine-grained shield tunnel spoil in CLSM and effect of foam agent content on properties | |
Pons et al. | Development of engineering properties for regular and quick-set flowable fill | |
JP5812623B2 (en) | High-strength porous concrete composition and high-strength porous concrete cured body | |
KR100762975B1 (en) | Agent for solidifying soil for soil-cement pavement | |
Dockter | Comparison of dry scrubber and class C fly ash in controlled low-strength material (CLSM) applications | |
Badrawi et al. | Stabilizing soft clay using geo-foam beads and cement bypass dust | |
CN114804767A (en) | Premixed flow state filling material of weatherable rock aggregate | |
Mukherjee et al. | Exploring fly ash utilization in construction of highways in India | |
Sachdeva et al. | High volume fly ash concrete for paver blocks | |
Wani et al. | Mechanical properties of Pervious concrete | |
JP2005015321A (en) | Cement hydration accelerator | |
Sarkar et al. | Cost Effectiveness of flexible pavement on stabilised expansive soils | |
Silva | Analysis of the feasibility of manufacturing concrete paving blocks with recycled aggregates from construction and demolition waste | |
Ťažký et al. | Cement-Bonded Sub-Base Layers of Walkable and Running Structures for Rainwater Management | |
Pattanayak et al. | A Compressive Strength Model for Silica Fume Pervious Concrete: A Sustainable Material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120730 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130705 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140829 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150921 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160921 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170911 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180918 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190910 Year of fee payment: 13 |