JP2005015321A - Cement hydration accelerator - Google Patents

Cement hydration accelerator Download PDF

Info

Publication number
JP2005015321A
JP2005015321A JP2003203313A JP2003203313A JP2005015321A JP 2005015321 A JP2005015321 A JP 2005015321A JP 2003203313 A JP2003203313 A JP 2003203313A JP 2003203313 A JP2003203313 A JP 2003203313A JP 2005015321 A JP2005015321 A JP 2005015321A
Authority
JP
Japan
Prior art keywords
cement
soil
hydration accelerator
roadbed
cement hydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203313A
Other languages
Japanese (ja)
Inventor
Kunihiro Fukai
邦弘 深井
Yoshiji Sakamoto
義司 酒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003203313A priority Critical patent/JP2005015321A/en
Publication of JP2005015321A publication Critical patent/JP2005015321A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement hydration accelerator which serves to prepare a roadbed having the compressive strength equivalent to that of a simple pavement by mixing cement and hydration accelerator together with water with soil on site, makes surplus soil recyclable, in addition which has higher water permeability than asphalt, can evaporate moisture from the roadbed surface and therefore prevents the rise of a roadbed surface temperature and permits the preparation of the roadbed for prevention of a heat island. <P>SOLUTION: The cement hydration accelerator is composed of sodium chloride, potassium chloride, sodium carbonate, lignin, sodium sulfate, magnesium chloride and sodium aluminate, and is added to cement for solidification. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術】
本発明は施工現場に存在する土壌の自然土をセメントで固化可能とするセメント水和促進剤に関する。
【0002】
【従来の技術】
自然土を土質改良する方法には、機械的方法として、土の粒子調整により土質改良を行う方法や機械を用いて転圧固化する方法がある。又、化学的方法として、石灰やセメントを用いて、土質を改良したり、石灰パイル工法やソイルセメント工法の様に、一軸圧縮強度を高める技術がある。又、明礬等のアルミナ系材料を添加して土質改良を行う方法もある。
これら従来の技術は土質改良か土の固化を行う技術であるが、本発明のように、自然土を骨材として使用する「ソイルセメントコンクリート」とは異なる技術である。
【0003】
【発明が解決しようとする課題】
本発明は従来の自然土固化法とは異なり、セメント水和促進剤を提供し自然土を骨材とし固化強度を大幅に増加することを可能とするものである。
【0004】
【課題を解決するための手段】
本発明のセメント水和促進剤は、塩化ナトリウム、塩化カリ、炭酸ナトリウム、リグニン、硫酸ナトリウム、塩化マグネシュウム、又は、それらにアルミン酸ナトリウムを加えてなるものである。そして、このセメント水和促進剤は、水185ccに対して、塩化ナトリウム(0.4〜20g)、塩化カリ(1.5〜9.0g)、炭酸ナトリウム20〜25g)、リグニン(0.1〜0.8g)、硫酸ナトリウム(0.6〜4.0g)、塩化マグネシュウム(0.3〜2.0g)、の範囲で溶解させたもの、或いは、それらに、アルミン酸ナトリウム(0.6〜3.0g)、を加える。尚、アルミン酸ナトリウムを加える事によって、自然土の固化強度上昇に一層の効果を果たす。又、前記物質は記載の範囲で溶解させるものが望ましい。
【0005】
【セメント水和促進剤の作用】
セメント水和促進剤の作用について、図−1に示すポルトランドセメントの水和発熱曲線を参照して説明する。セメントの水和反応の進行状況、水和に伴う発熱量を測定することによって簡単に表現でる。図−1に示すように、水和直後の発熱ピークは水中に溶解した石膏が最も活性化の大きいアルミネートと反応して生成する、エトリンガイトの生成熱及びエーライトの表面の溶解熱によるものである。又、第一ピークから第二ピークの間は誘導期であって、アルミネート粒子の周りは不溶解のエトリンガイト膜によって覆われ、エーライト粒子のC−H−S相(珪酸カルシュウム水和物)の膜によって覆われており、各々の水和反応が抑制されている時期である。液相中のNaとKの濃度が高くなると第二ピークの出現は促進され、誘導期は短くなる傾向にあると言われている。
第二ピークが過ぎて現れる第三ピークはアルミネート粒子の周りのエトリンガイト膜が結晶の膨張圧で破れ、内部のアルミネート粒子が再び水和を始め、モノサルホアルミネートに変化する際の発熱である。第三ピーク以後、エーライト、ビーライトは多量に生成したC−S−H相よって薄められ、イオンの移動は難しくなり、水和速度は次第に遅くなり、水和物どうしの接着により凝結が始まる。
本発明のセメント水和促進剤は、セメント粒子表面に生成するC−S−H相に作用してセメント粒子の水和を促進させる働きをするものと推定される。
【0006】
【発明の実施形態】
(1)セメントはポルトランドセメントを使用する。
(2)自然土の固化とは、建設現場の残土を含み、施工現場の土壌を骨材として、固化強度の増加を行うものである。
(3)セメント水和促進剤は、水(185cc)に、塩化ナトリウム(1.5g)、塩化カリ(4.5g)、炭酸ナトリウム(10g)、リグニン(0.4g)硫酸ナトリウム(2.0g)、塩化マグネシウム(1.0g)、アルミン酸ナトリウム(2.0g)、を溶解させたもので、約200ccの溶液となる。
(4)自然土を骨材とし、セメント水和促進剤の効果を確認する為、セメントセメント水和促進剤、水を添加混合し、一軸圧縮強度試験を行った。
結果を図−2に示す。又、砂分の影響を調査する為、自然土の骨材に砂分を添加し、一軸圧縮強度試験を行った。結果を図−3に示す
(5)自然土を安定処理し埋め立て再利用の可能性を確認する為、締固め試験を行った。結果を図−4に示す。又、突固め特性が改良されたことを確認する為、乾燥密度と含水比の関係を調査した。結果を図−5に示す。
(6)現場の自然土を骨材とし、路盤工事を下記の如く施工した。
▲1▼専用ミキサーを使用する工法
表土(自然土)を約10cmブルドーザーではぎ取り、集めた自然土を、ダンプトラックで専用ミキサーに搬送する。この時、大きな異物は排除する。専用ミキサーで、自然土、セメント、セメント水和促進剤、水を混合し、はぎ取った表土の後にまき出し、整地、転圧する。
上記の施工法にて施工した路盤の物性を図−6に示す。
▲2▼路上混合工法
表土(自然土)をブルドーザーでならした後、耕耘機で約10cm耕し、セメントを散布する。耕耘機でセメントと表土を攪拌した後、セメント水和促進剤を散水する。再度耕耘機で表土を攪拌しローラーで転圧する。
上記の施工法にて施工した路盤の物性を図−7に示す。
(7)後日、(6)項▲1▼の条件で施工した路盤の表面温度変化を調査した。尚、比較の為、アスファルトコンクリート路盤と、自然土のみの路盤の表面温度を調査した。結果を図−8に示す。
【0007】
【発明の効果】
本発明は建設現場で発生する残土(自然土)を骨材として使用できる。その為以下の効果がある。
▲1▼建設残土が発生しないか、発生量を抑制できる。
▲2▼色が現場の土壌と類似する。又、着色が容易なため、景観にマッチした施工が出来る。
▲3▼アスファルトやコンクリート舗装よりも透水性が良いので、ヒートアイランド現象抑制効果が期待できる。
▲4▼一軸圧縮強度が高い為、簡易舗装や駐車場、遊歩道や軟弱地盤に使用できる。
▲5▼施工部は草の繁殖が抑制できるので、田圃の畦、公園内の道路に施工すると、除草作業の削減ができる。
以下の事よりそれらが立証できる。
図−2よりセメント水和促進剤を使用することにより固化した自然土の圧縮強度が増加することが解る。
図−3より自然土に砂分量を一定量添加すると、セメント水和促進剤を使用し固化した自然土の圧縮強度は増加する。路盤の強度を増加させたい場合、セメント水和促進剤と共に、砂分を添加しても良い。
図−4よりセメント水和促進剤とセメントを自然土に混合させると、一軸圧縮強度が40kg/cm2以上有り、簡易舗装基準値を満足する。造成した路盤は簡易舗装として使用できる。
図−5より、セメント水和促進剤とセメントを自然土に混合させ固化(処理土)すると、セメントと自然土で固化(未処理土)した土壌より乾燥密度が増加する。従ってセメント水和促進剤を使用して、土壌改良を行うことができる。
図−6より、セメント水和促進剤とセメントを自然土に混合させ固化した路盤のCBR値はアスファルトと同程度である。尚、一般にアスファルトのCBR値は24.3である。
図−7より、セメント水和促進剤を使用した路盤のCBR値(水和促進剤0.7%)は使用しない路盤のCBR値(水和促進剤無し)より小さい。CBR値は小さいほど固いことを意味する。従ってセメント水和促進剤を使用することにより固い路盤が造成出来る。又、現場の土を使用して路盤造成が可能となる。
図−8より、セメント水和促進剤とセメントを自然土に混合させ固化した路盤は、表面温度の上昇がアスファルトコンクリートより少ない。水和促進剤を使用することにより、ヒートアイランド防止効果のある路盤が造成出来る。
【図面の簡単な説明】
【図1】ポルトランドセメントの水和発熱曲線を示す図である。
【図2】セメント水和促進剤の添加率を骨材に対し0〜0.2まで変化させた。
この時の固化条件は下記
セメント/骨材=0.2。水/セメント=1.5材令=7日
上記における一軸圧縮強度試験結果。
【図3】自然土の骨材に対し砂分量を0〜0.45まで変化させた。
この時の固化条件は下記
セメント/骨材=0.2。セメント水和促進剤/骨材=0.02材令=28日
上記における一軸圧縮強度試験結果。
【図4】自然土に対し下記の条件で締固め試験を行った。
セメント/骨材=0.2。水/セメント=1.0
セメント水和促進剤/骨材=0.02
上記における一軸圧縮試験結果
【図−5】図−4の条件において、含水比と乾燥密度の関係を調査した結果。セメント水和促進剤を使用した土壌が処理土。セメント水和促進剤を使用しない土壌が未処理土。
【図6】専用ミキサー工法で施工した路盤のCBR値
施工条件は下記
セメント/骨材=0.1。水/セメント=1.0
セメント水和促進剤/骨材=0.013
【図7】路上混合工法で施工した路盤のCBR値
施工条件は下記。尚、セメント水和促進剤無しは下記の条件にてセメント水和促進剤のみを零とした。
セメント/骨材=0.13。水/セメント=1.0
セメント水和促進剤/骨材=0.007
【図8】施工した路盤の表面温度。AM6時より翌日のAM6時までの調査結果。
[0001]
[Technology to which the invention belongs]
The present invention relates to a cement hydration accelerator that can solidify natural soil of soil existing at a construction site with cement.
[0002]
[Prior art]
As methods for improving soil quality of natural soil, there are mechanical methods such as a method for improving soil quality by adjusting soil particles and a method for rolling and solidifying using a machine. In addition, as a chemical method, there is a technique for improving soil quality using lime or cement, or a technique for increasing uniaxial compressive strength, such as a lime pile method or a soil cement method. There is also a method for improving soil quality by adding alumina-based materials such as alum.
These conventional techniques are techniques for improving soil quality or solidifying soil, but are different from “soil cement concrete” using natural soil as an aggregate as in the present invention.
[0003]
[Problems to be solved by the invention]
Unlike the conventional natural soil solidification method, the present invention provides a cement hydration accelerator and makes it possible to significantly increase the solidification strength using natural soil as an aggregate.
[0004]
[Means for Solving the Problems]
The cement hydration accelerator of the present invention is sodium chloride, potassium chloride, sodium carbonate, lignin, sodium sulfate, magnesium chloride, or sodium aluminate added thereto. And this cement hydration promoter is sodium chloride (0.4-20g), potassium chloride (1.5-9.0g), sodium carbonate 20-25g), lignin (0.1) with respect to 185cc of water. To 0.8 g), sodium sulfate (0.6 to 4.0 g), magnesium chloride (0.3 to 2.0 g), or sodium aluminate (0.6 ~ 3.0 g). By adding sodium aluminate, the effect of increasing the solidification strength of natural soil is further improved. Further, it is desirable that the substance is dissolved within the stated range.
[0005]
[Action of cement hydration accelerator]
The effect | action of a cement hydration promoter is demonstrated with reference to the hydration exothermic curve of the Portland cement shown in FIG. It can be expressed simply by measuring the progress of the hydration reaction of cement and the calorific value associated with hydration. As shown in Figure 1, the exothermic peak immediately after hydration is due to the heat of formation of ettringite and the heat of dissolution of the surface of alite produced by the reaction of gypsum dissolved in water with the most activated aluminate. is there. The period between the first peak and the second peak is the induction period, and the aluminate particles are covered with an insoluble ettringite film, and the C—H—S phase of the alite particles (calcium silicate hydrate) It is a time when each hydration reaction is suppressed. It is said that when the concentrations of Na + and K + in the liquid phase are increased, the appearance of the second peak is promoted and the induction period tends to be shortened.
The third peak that appears after the second peak is the heat generated when the ettringite film around the aluminate particles is broken by the expansion pressure of the crystals, and the inner aluminate particles begin to hydrate again and change to monosulfo aluminate. is there. After the third peak, alite and belite are diluted by a large amount of C—S—H phase, ion migration becomes difficult, hydration rate becomes gradually slower, and condensation starts by adhesion between hydrates. .
The cement hydration accelerator of the present invention is presumed to act on the C—S—H phase generated on the cement particle surface to promote the hydration of the cement particles.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
(1) Portland cement is used as the cement.
(2) Solidification of natural soil includes the remaining soil at the construction site and increases the solidification strength using the soil at the construction site as an aggregate.
(3) Cement hydration accelerators are water (185 cc), sodium chloride (1.5 g), potassium chloride (4.5 g), sodium carbonate (10 g), lignin (0.4 g) sodium sulfate (2.0 g). ), Magnesium chloride (1.0 g), and sodium aluminate (2.0 g) are dissolved to give a solution of about 200 cc.
(4) Using natural soil as an aggregate, in order to confirm the effect of the cement hydration accelerator, a cement cement hydration accelerator and water were added and mixed, and a uniaxial compressive strength test was conducted.
The result is shown in FIG. Moreover, in order to investigate the influence of sand content, sand content was added to the aggregate of natural soil, and the uniaxial compressive strength test was done. The results are shown in Fig. 3. (5) A compaction test was conducted to confirm the possibility of landfill reuse by stabilizing the natural soil. The results are shown in Fig.4. Moreover, in order to confirm that the tamping characteristics were improved, the relationship between the dry density and the water content ratio was investigated. The results are shown in Fig.-5.
(6) Using the natural soil at the site as an aggregate, the roadbed work was constructed as follows.
(1) Construction method using a dedicated mixer The topsoil (natural soil) is stripped by a 10 cm bulldozer and the collected natural soil is transported to a dedicated mixer by a dump truck. At this time, large foreign matters are excluded. In a special mixer, natural soil, cement, cement hydration accelerator, and water are mixed, and after the stripped topsoil, the soil is ground, leveled, and pressed.
Figure 6 shows the physical properties of the roadbed constructed by the above construction method.
(2) After mixing the road mixing method topsoil (natural soil) with a bulldozer, plow about 10 cm with a tiller and spray cement. After stirring the cement and topsoil with a tiller, spray the cement hydration promoter. Again, the topsoil is stirred with a tiller and rolled with a roller.
Figure 7 shows the physical properties of the roadbed constructed by the above construction method.
(7) Later, the surface temperature change of the roadbed constructed under the condition of item (1) in (6) was investigated. For comparison, the surface temperatures of asphalt concrete roadbed and natural soil-only roadbed were investigated. The results are shown in Fig.-8.
[0007]
【The invention's effect】
In the present invention, residual soil (natural soil) generated at a construction site can be used as an aggregate. Therefore, there are the following effects.
(1) It is possible to suppress the amount of construction soil generated or not.
(2) The color is similar to the soil in the field. In addition, because it is easy to color, construction that matches the landscape is possible.
(3) Since water permeability is better than asphalt or concrete pavement, the effect of suppressing heat island phenomenon can be expected.
(4) Uniaxial compression strength is high, so it can be used for simple pavements, parking lots, boardwalks and soft ground.
(5) The construction department can suppress the propagation of grass, so weeding work can be reduced if it is constructed on paddy fields and roads in the park.
They can be proved from the following.
It can be seen from FIG. 2 that the compressive strength of the natural soil solidified by using the cement hydration accelerator increases.
Figure 3 shows that when a certain amount of sand is added to natural soil, the compressive strength of natural soil solidified using a cement hydration accelerator increases. When it is desired to increase the strength of the roadbed, sand may be added together with the cement hydration accelerator.
As shown in Fig.4, when cement hydration accelerator and cement are mixed with natural soil, the uniaxial compressive strength is 40 kg / cm2 or more, which satisfies the simple pavement standard value. The created roadbed can be used as a simple pavement.
From Fig.5, when cement hydration accelerator and cement are mixed with natural soil and solidified (treated soil), the dry density increases from the soil solidified with cement and natural soil (untreated soil). Therefore, soil improvement can be performed using a cement hydration accelerator.
From Fig.6, the CBR value of the roadbed with the cement hydration accelerator and cement mixed with natural soil and solidified is similar to that of asphalt. In general, asphalt has a CBR value of 24.3.
From Fig.7, the CBR value of the roadbed using cement hydration accelerator (0.7% hydration accelerator) is smaller than the CBR value of the roadbed not using hydration accelerator (no hydration accelerator). The smaller the CBR value is, the harder it is. Therefore, a hard roadbed can be created by using a cement hydration accelerator. In addition, the roadbed can be created using the soil at the site.
From Fig.8, the roadbed with cement hydration accelerator and cement mixed with natural soil and solidified has less surface temperature rise than asphalt concrete. By using a hydration accelerator, a roadbed with a heat island prevention effect can be created.
[Brief description of the drawings]
FIG. 1 is a diagram showing a hydration exothermic curve of Portland cement.
FIG. 2 The cement hydration accelerator addition rate was varied from 0 to 0.2 with respect to the aggregate.
The solidification conditions at this time are the following cement / aggregate = 0.2. Water / cement = 1.5 material age = 7 days Uniaxial compressive strength test result in the above.
FIG. 3 The sand content was changed from 0 to 0.45 with respect to the aggregate of natural soil.
The solidification conditions at this time are the following cement / aggregate = 0.2. Cement hydration accelerator / aggregate = 0.02 material age = 28 days Results of uniaxial compressive strength test in the above.
FIG. 4 A compaction test was performed on natural soil under the following conditions.
Cement / aggregate = 0.2. Water / cement = 1.0
Cement hydration accelerator / aggregate = 0.02
Results of uniaxial compression test in the above [Fig. 5] Results of investigation of the relationship between the water content ratio and the dry density under the conditions of Fig. 4. Soil using cement hydration accelerator is treated soil. Soil that does not use cement hydration accelerator is untreated soil.
[Fig. 6] CBR value construction conditions for a roadbed constructed by a dedicated mixer method are the following cement / aggregate = 0.1. Water / cement = 1.0
Cement hydration accelerator / aggregate = 0.013
[Fig. 7] CBR value construction conditions for the roadbed constructed by the road mixing method are as follows. In the case of no cement hydration accelerator, only the cement hydration accelerator was set to zero under the following conditions.
Cement / aggregate = 0.13. Water / cement = 1.0
Cement hydration accelerator / aggregate = 0.007
[Fig. 8] Surface temperature of the constructed roadbed. Survey results from 6:00 AM to 6:00 AM the next day.

Claims (2)

自然土(建設現場の残土)とセメントを水を介して混合固化する時に添加するセメント水和促進剤であって、塩化ナトリウム、塩化カリ、炭酸ナトリウム、リグニン、硫酸ナトリウム、塩化マグネシウムを含有することを特徴とするセメント水和促進剤Cement hydration accelerator added when mixing and solidifying natural soil (residual soil at construction site) and cement through water, and contains sodium chloride, potassium chloride, sodium carbonate, lignin, sodium sulfate, magnesium chloride Cement hydration accelerator characterized by アルミン酸ナトリウムを含有することを特徴とする請求項1のセメント水和促進剤The cement hydration accelerator according to claim 1, which contains sodium aluminate.
JP2003203313A 2003-06-25 2003-06-25 Cement hydration accelerator Pending JP2005015321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203313A JP2005015321A (en) 2003-06-25 2003-06-25 Cement hydration accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203313A JP2005015321A (en) 2003-06-25 2003-06-25 Cement hydration accelerator

Publications (1)

Publication Number Publication Date
JP2005015321A true JP2005015321A (en) 2005-01-20

Family

ID=34189824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203313A Pending JP2005015321A (en) 2003-06-25 2003-06-25 Cement hydration accelerator

Country Status (1)

Country Link
JP (1) JP2005015321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889393B1 (en) * 2008-08-29 2009-03-19 주식회사 한국건설기술공사 Recycling composition of sewage or waste water sludge, sidewalk block and making method of sidewalk block using it
KR100901004B1 (en) 2008-09-08 2009-06-04 주식회사 한국건설기술공사 Composition for wet process of construction for road
CN103755197A (en) * 2013-12-19 2014-04-30 柳州正菱集团有限公司 Concrete early-strength agent
CN110256010A (en) * 2019-06-19 2019-09-20 江苏科技大学 A kind of liquidation subgrade soils and construction method
CN110467922A (en) * 2019-07-12 2019-11-19 广东工业大学 A kind of soil passivation modifying agent and its preparation method and application containing industrial lignin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889393B1 (en) * 2008-08-29 2009-03-19 주식회사 한국건설기술공사 Recycling composition of sewage or waste water sludge, sidewalk block and making method of sidewalk block using it
KR100901004B1 (en) 2008-09-08 2009-06-04 주식회사 한국건설기술공사 Composition for wet process of construction for road
CN103755197A (en) * 2013-12-19 2014-04-30 柳州正菱集团有限公司 Concrete early-strength agent
CN110256010A (en) * 2019-06-19 2019-09-20 江苏科技大学 A kind of liquidation subgrade soils and construction method
CN110467922A (en) * 2019-07-12 2019-11-19 广东工业大学 A kind of soil passivation modifying agent and its preparation method and application containing industrial lignin

Similar Documents

Publication Publication Date Title
JP3452330B2 (en) Solidified material mixed with crushed stone powder and construction method using solidified material mixed with crushed stone powder
JP2007284974A (en) Soil block
KR100621963B1 (en) Soil paving composition using water-quenched blast furnace slag and method for paving ground using the same
JPH0813413A (en) Improvement method for poor subgrade soil
JP2002511381A (en) Chemicals to improve the engineering properties of soil
JP3225246B2 (en) Permeable concrete pavement method
JP2005015321A (en) Cement hydration accelerator
JP2012229376A (en) Wet sand of coal ash and various construction methods utilizing the wet sand of coal ash
JP2009270302A (en) Pavement structure
JPH0953071A (en) Treatment of surplus excavated soil
JP6487133B1 (en) Ground improvement method
JP2014110811A (en) Method for constructing weed-proof material using steel slag
JP2004345885A (en) Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground
JP3795780B2 (en) Soil-based pavement improvement material and its construction method
JP2544970B2 (en) Curable soil composition and soil hardening method
JPS60229984A (en) Method of soil improvement
KR100901004B1 (en) Composition for wet process of construction for road
JP2503771B2 (en) Solidifying material for cohesive soil of volcanic ash
JPH02263890A (en) Quick ground-preventing method and soil-coagulant
JP3288106B2 (en) Paving material
JP2006241700A (en) Soil block
KR100438138B1 (en) A improved method of soil-paving for environment
KR100762975B1 (en) Agent for solidifying soil for soil-cement pavement
Sarkar et al. Cost Effectiveness of flexible pavement on stabilised expansive soils
JP4020997B2 (en) Cement admixture and soil solidifier for soil solidification