KR20060087627A - 신규한 혈전용해 프로테아제 - Google Patents

신규한 혈전용해 프로테아제 Download PDF

Info

Publication number
KR20060087627A
KR20060087627A KR1020050008322A KR20050008322A KR20060087627A KR 20060087627 A KR20060087627 A KR 20060087627A KR 1020050008322 A KR1020050008322 A KR 1020050008322A KR 20050008322 A KR20050008322 A KR 20050008322A KR 20060087627 A KR20060087627 A KR 20060087627A
Authority
KR
South Korea
Prior art keywords
thrombolytic
tpase
protease
ala
fibrinogen
Prior art date
Application number
KR1020050008322A
Other languages
English (en)
Other versions
KR100753002B1 (ko
Inventor
김성보
이동우
이상재
홍영호
최은아
최찬익
조석철
국무창
변유량
Original Assignee
(주)바이오벤
변유량
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오벤, 변유량 filed Critical (주)바이오벤
Priority to KR1020050008322A priority Critical patent/KR100753002B1/ko
Publication of KR20060087627A publication Critical patent/KR20060087627A/ko
Application granted granted Critical
Publication of KR100753002B1 publication Critical patent/KR100753002B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0235Slidable or telescopic telephones, i.e. with a relative translation movement of the body parts; Telephones using a combination of translation and other relative motions of the body parts
    • H04M1/0237Sliding mechanism with one degree of freedom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0241Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/34Microprocessors

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 신규한 혈전용해 프로테아제, 이를 코딩하는 핵산 분자, 상기 핵산 분자를 포함하는 벡터 및 상기 벡터를 포함하는 형질전환체에 관한 것이다. 본 발명의 혈전용해 프로테아제는 혈전용해능이 매우 우수할 뿐만 아니라, 소장 상피세포를 통하여 흡수될 수 있기 때문에, 혈전용해 의약으로서의 개발 가능성이 매우 높다.
혈전용해, 프로테아제, 바실러스, 피브린, 피브리노겐, 템페

Description

신규한 혈전용해 프로테아제{Novel Fibrinolytic Protease}
도 1은 피브린용해 활성 분석을 보여준다. 패널 A는 프로테아제 억제제를 처리한 것이고, 패널 B는 가열 처리(100℃, 5분)한 것이다.
도 2는 후보 균주의 총 세포단백질 패턴을 나타낸다. 200종의 균주가 일차적으로 선택되었고, 혈전용해 활성, 카제인분해 활성 및 비교 활성(혈전용해 활성/카제인분해 활성)에 대하여 분석하였다. 이들 중, 특이성 및 혈전용해 활성이 큰 18종의 균주를 선택하고 이들의 총 세포단백질 페턴을 분석하였다.
도 3은 본 발명의 Bacillus subtilis TP-6의 현미경 이미지이다.
도 4는 Bacillus subtilis TP-6의 성장 곡선이다. ■는 660 nm 흡광도로 측정한 세포 밀도, ▲는 배지 상등액의 혈전용해 활성, ●는 배양 브로스의 pH 값을 각각 나타낸다.
도 5의 패널 A는 B. subtilis TP-6로부터 수득한 혈전용해 프로테아제의 옥틸-세파로스 소수성 컬럼에서의 크로마토그래피를 나타낸다. -는 단백질 농도(280 nm에서 측정), ●는 효소 활성, - - - 는 암모늄 설페이트 농도를 나타낸다. 패널 B는 SP-세파로스 이온-교환 컬럼에서의 크로마토그래피를 나타낸다. -는 단백질 농도(280 nm에서 측정), ●는 효소 활성, - - - 는 NaCl 농도를 나타낸다.
도 6은 각각의 정제 단계에서 얻은 활성 분획에 대한 혈전용해 활성 분석 결과를 보여준다. 이 실험은 피브린 응괴에 대한 특이성을 검증하기 위하여 실시하였다. 패널 A는 옥틸-세파로스 FF 용출액, 패널 B는 SP-세파로스 FF 용출액에 대한 것이다.
도 7은 B. subtilis TP-6로부터 정제한 혈전용해 효소의 SDS-PAGE(12%) 결과 사진이다. M, 분자량 마커(Bio-Rad); 1, 옥틸 세파로스 풀; 2, SP-세파로스로부터 정제된 TPase.
도 8은 B. subtilis TP-6로부터 정제한 혈전용해 효소의 카제인분해 활성에 대한 온도 영향을 보여주는 그래프이다.
도 9는 B. subtilis TP-6로부터 정제한 혈전용해 효소의 카제인분해 활성에 대한 pH 영향을 보여주는 그래프이다. ●는 소듐 아세테이트 완충액, ▲는 포타슘 포스페이트 완추액, ■는 Tris-HCl 완충액을 나타낸다.
도 10은 B. subtilis TP-6로부터 정제한 혈전용해 효소에 대한 철 이온(패널 A) 및 칼슘 이온(패널 B)의 영향을 보여준다. 과량의 철 이온(1 mM 이상)은 효소활성을 강하게 억제하였으나, 칼슘 이온은 거의 영향을 미치지 않아TEk. 칼슘 이온의 첨가는 효소 활성을 조금 활성화시켰다.
도 11은 TPase(패널 A) 및 플라스민(패널 B)에 의해 분해된 인간 피브리노겐의 SDS-PAGE 결과 사진이다. 피브리노겐(0.25%, w/v)을 정제된 TPase(0.2 ㎍) 또는 플라스민(1 ㎍)과 37℃에서 반응시켰다.
도 12는 플라스미노겐-풍부 피브린 플레이트(패널 A) 및 플라스미노겐-부재 피브린 플레이트(패널 B)에서 TPase에 의한 혈전용해 분석 결과이다. 1, 대조군으로서 100 mM 소듐 포스페이트 완충액(pH 7.4); 2, TPase (2.25 ㎍) in 100 mM 소듐 포스페이트 완충액(pH 7.4); 3, 대조군으로서 TPase (2.25 ㎍) in 100 mM 소듐 포스페이트 완충액(10 ㎕); 4, TPase (2.25 ㎍) 및 플라스미노겐(0.05 U) in 100 mM 소듐 포스페이트 완충액. 플라스미노겐 활성의 1 유니트는 37℃에서 20분 동안에 275 nm에서의 흡광도를 1만큼 증가시키는 양으로 정의하였다.
도 13은 TPase에 의한 피브리노겐(패널 A), 플라스미노겐(패널 B) 및 rpPAI-1(패널 C)의 분해 패턴을 보여주는 SDS-PAGE 사진이다.
도 14는 TPase로 처리된 피브리노겐의 크기-배척 크로마토그래피 분석 결과이다. 1, 대조군으로서 피브리노겐; 2-4, TPase에 의해 생성된 주요한 FDPs.
도 15는 TPase에 의한 피브리노겐의 절단에 대한 SDS-PAGE 결과 사진이다. M, 분자량 마커(Bio-Rad); 1, 대조군으로서 기질; 2-5은 정제된 효소의 1 U/ml, 10 U/ml, 100 U/ml 및 1000 U/ml에 해당하는 레인이다.
도 16은 TPase의 절단 위치에 대한 SDS-PAGE 분석 결과 및 예측을 보여준다. 피브리노겐(10 mg/ml)을 정제된 효소 100 U/ml와 반응시켰다.
도 17은 TPase의 절단 위치에 대한 SDS-PAGE 분석 결과 및 예측을 보여준다. 피브리노겐(10 mg/ml)을 정제된 효소 1000 U/ml와 반응시켰다.
도 18은 TPase에 의해 절단된 FDPs의 탠덤 매스 스펙트로포토미터 분석 결과이다. 패널 A는 단백질 스팟에 대한 MALDI-MS 스펙트럼. 패널 B 및 C는 각각 m/z 1274.6 및 1663.0에서 전구체 이온 [M+2H]2+의 MALDI-TOF/TOF 탠덤 MS 스펙트럼.
도 19는 피브리노겐 기질에서의 TPase의 절단 위치(P10-P1, P1'-P10')에 대한 아미노산 서열 얼라인먼트이다.
도 20은 PDB 뷰어 프로그램으로 얻은 TPase의 입체구조를 나타낸다. 활성위치는 노란색으로 표시되어 있다.
도 21은 Bacillus 종으로부터 얻은 서브틸리신의 아미노산 서열 얼라인먼트이다. 서브틸리신 BPN(BPN)은 B. amyloliquefaciences, 서브틸리신 NAT(NAT)는 B. natto, 서브틸리신 Amylosacchariticus(Amyl)는 B. licheniformis, 그리고 TPase는 B. subtilis TP-6로부터 유래된 것이다(Vasantha et al. 1984, Yoshimoto et al. 1988, Kunst 1997; Kim et al. 1994).
도 22는 PDB 뷰어 프로그램으로 얻은 TPase의 입체구조를 나타낸다. 활성 트라이어드 잔기(Asp32, His64, 및 Ser221)는 노란색으로 표시되어 있고, Glu에 대한 P1 잔기의 기질 특이성에 관여하는 것으로 발표된 잔기(Glu156 및 Gly166)는 청색으로 표시되어 있다. 서브틸리신 BPN과 비교하여, TPase의 변화된 아미노산은 적색으로 표시되어 있다.
도 23은 TPase 100 U/ml(패널 A) 또는 1000 U/ml(패널 B)로 처리된 피브리노겐의 절단 위치를 나타낸다. 효소의 P1/P1' 위치들을 인간 피브리노겐의 α, β, 및 γ사슬에 나타내었다. 프로테아제 절단 위치는 각각의 사슬에서 수직으로 표 시되어 있고, 주 구조 D 및 E를 야기하는 절단은 검은색 역삼각형으로 표시되어 있다. 절단에 대한 마이너 지역들은 검은색 화살표로 표시되어 있다. TPase에 의해 가수분해되지 않는 지역은 음영으로 표시되어 있고, 음영이 깊을수록 TPase에 의한 공격을 덜 받는 지역이다.
도 24는 TPase(패널 A) 및 플라스민(패널 B)에 의한 피브리노겐의 절단 위치에 대한 예측도이다. 프로테아제 절단 위치는 각각의 사슬에서 검은 화살표로 나타나 있다. D(또는 D') 및 E(또는 E') 지역은 음영으로 나타나 있다. 사슬을 연결하는 이황화 결합은 선으로 표시되어 있고, 사슬내 이황화 결합은 사슬내에 작은 상자로 표시되어 있다. β- 및 γ-사슬에서의 당화 위치는 롤리폽 구조로 표시되어 있다. 피브리노겐 펩타이드 A 및 B는 각각 α- 및 β-사슬에서 검은색 상자로 표시되어 있다.
도 25는 TPase에 의한 피브리노겐의 절단 위치를 부여주는 예측도(패널 A) 그리고, TPase에 의한 피브리노겐의 절단 과정을 보여주는 모식도이다(패널 B).
도 26은 인간 피브리노겐의 D 도메인의 α-탄소 골격을 나타내는 리본 그림이다. TPase에 의해 인식되는 부위들은 단지 곁사슬 리간드로 표시되어 있다.
본 발명은 신규한 혈전용해 프로테아제에 관한 것으로서, 보다 상세하게는 신규한 혈전용해 프로테아제, 이를 코딩하는 핵산 분자, 상기 핵산 분자를 포함하는 벡터 및 상기 벡터를 포함하는 형질전환체에 관한 것이다.
혈전용해는 비활성 전효소인 플라스미노겐이 플라스민으로 전환되고 이 활성 효소가 피브린을 분해함으로써 이루어진다. 인체 내에서의 혈전용해는 정교하게 조절되는데, 플라스민 이외에, t-PA(tissue-type plasminogen activator), scu-PA(single-chain urokinase-type plasminogen activator), α2-항플라스민, PAI-1(plasminogen activator inhibitor-1) 및 PAI-2 등이 관여한다.
혈액 응괴의 약리학적 분해는 혈액내의 혈전용해 시스템을 활성화할 수 있는 물질을 혈관내 주입함으로써 달성된다. 이러한 혈전용해 치료방법은 급성 심근경색의 치료로 일반적으로 이용되고 있다. 두 개의 혈전용해제, 피브린-비선택적 스트렙토키나아제 및 피브린-선택적 알터플라아제(t-PA)가 널리 이용되고 있다.
한편, 박테리아-유래 프로테아제는 산업계에서 주목을 받는 효소이다. 이 프로테아제는 다양한 그룹으로 분류되며, 예를 들어, 알칼린 프로테아제, 세린 프로테아제, 메탈로프로테아제 등이 있으며, 이 중에서 알칼린 세린 프로테아제가 산업적으로 가장 중요한 그룹이다.
세린 프로테아제는 다양한 산업분야에 적용되고 있는 데, 그 이유는 알칼린 pH에서 활성을 나타내고 안정성을 갖기 때문이다. 세린 프로테아제의 따른 특성은, Ser, His 및 Asp 잔기로 이루어진 활성 트라이어드를 갖는다는 것이다. 세린 프로테아제의 다양한 종류에 대하여 많은 연구가 있어 왔다(Kalisz 1988; Morihara 1974; Rawling et al. 1991; Siezen and Leunissen 1997).
세린 프로테아제 중 서브틸리신-유사 세린 프로테아제는 일반적으로 박테리아로부터 유래된다. 이 프로테아제 클래스는 티로신, 페닐알라닌 및 루이신과 같은 방향족 잔기 또는 소수성 잔기(위치 P1에서)에 대하여 특이성을 나타낸다. 또한, 이 프로테아제는 pH 10 근처에서 가장 활성이 크며, pI 9 근처의 등전점을 갖는다. 대표적인 서브틸리신-유사 세린 프로테아제는 B. amyloliquefaciens, B. licheniformisB. subtilis (Rao et al. 1998)로부터 유래된 프로테아제이다.
서브틸리신은 박테리아 세린 프로테아제의 원형적 그룹이다. 연구가 이루어진 서브틸리신은, B. amyloliquefaciens의 서브틸리신 BPN(Well et al. 1983), B. subtilis의 서브틸리신 E(Sathl and Ferrari 1984),B. licheniformis의 서브틸리신 칼스버그(Jacobs et al. 1985), B. subtilis var. amylosacchariticus의 서브틸리신 아밀로사카리티쿠스(amylosacchariticus)(Yoshimoto et al. 1988) 및 B. subtilis (natto)의 서브틸리신 NAT(Nakamura et al. 1992)가 있다. 상기 서브틸리신의 서열들은 촉매활성 중심에서 필수적인 아미노산들(Ser221, His64, Asp32)이 보존되어 있는 것으로 알려져 있다(Gupta 2002).
혈전용해 활성을 갖는 박테리아 세린 프로테아제는 치료제로 개발되고 있다. 이러한 세린 프로테아제로서, Bacillus subtilis로부터 유래된 혈전용해 효소, 서브틸리신 NAT(Fujita et al. 1993), Bacillus sp. CK 11-4의 혈전용해 프로테아제(CK)(Kim et al. 1993) 등이 있으며, 이들 혈전용해 효소 모두는 t-PA 유도 혈전용 해를 촉진시킬 수 있는 Bacillus spp-유래 서브틸리신-유사 세린 프로테아제이다.
본 명세서 전체에 걸쳐 다수의 특허문헌 및 논문이 참조되고 그 인용이 표시되어 있다. 인용된 특허문헌 및 논문의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 신규한 혈전용해 프로테아제를 개발하고자 예의 연구 노력한 결과, 텝페(tempeh)에서 분리한 바실러스 서브틸리스 T6로부터 혈전용해 프로테아제를 정제하고 이 효소가 혈전을 효율적으로 분해하면서도 소장 상피세포를 투과할 수 있는 것을 확인함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 신규한 혈전용해 프로테아제를 제공하는 데 있다.
본 발명의 다른 목적은 본 발명의 혈전용해 프로테아제를 코딩하는 핵산 분자를 제공하는 데 있다.
본 발명의 또 다른 목적은 본 발명의 혈전용해 프로테아제를 코딩하는 핵산 분자를 포함하는 벡터를 제공하는 데 있다.
본 발명의 다른 목적은 본 발명의 혈전용해 프로테아제를 코딩하는 핵산 분자를 갖는 벡터를 포함하는 형질전환체를 제공하는 데 있다.
본 발명의 다른 목적은 본 발명의 혈전용해 프로테아제를 생산하는 Bacillus subtilis TP6를 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 다음의 다음의 특성을 갖는 혈전용해 프로테아제(fibrinolytic protease)를 제공한다: (a) Bacillus subtilis로부터 유래; (b) 최적 온도가 40-60℃; (c) 최적 pH가 5.0-6.5; (d) 분자량이 26-28 kDa; (e) PMSF(phenylmethanesulfonyl fluoride), EDTA 및 β-머캅토에탄올에 의해 비활성화 되고 칼슘 이온 및 철이온에 의해 활성화 되며; 그리고 (f) 피브리노겐의 α사슬의 Glu11와 Gly12 및 Asn383와 Ala384, β사슬의 Glu141와 Tyr142, Gln189와 Met190 및 Gln332와 Asn333, 그리고 γ사슬의 Asp80와 Ala81 및 Asn207와 Trp208 사이를 절단한다.
본 발명에 따른 혈전용해 프로테아제는 최적 pH가 산성 지역에 있고, 상술한 절단 위치를 갖는 것으로서, 이러한 특성을 갖는 혈전용해 프로테아제는 종래에 알려져 있지 않다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 효소의 최적 온도는, 45-55℃, 가장 바람직하게는 대략 50℃이다. 본 발명의 효소의 최적 pH는 바람직하게 는 5.5-6.5이고, 보다 바람직하게는 6.0-6.5이고, 가장 바람직하게는 대략 6.0이다. 따라서, 본 발명의 효소는 호산성 및 호열성을 갖는다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 혈전용해 효소의 분자량은 27-28 kDa이고, 가장 바람직하게는 대략 27.5 kDa이다.
본 발명의 혈전용해 프로테아제는 Bacillus subtilis로부터 유래된 것이고, 바람직하게는 Bacillus subtilis TP6(KFCC 11343P)로부터 유래된 것이다.
본 발명 효소의 특성 중 하나는, PMSF, EDTA 및 β-머캅토에탄올에 의해 비활성화(inactivation) 되고 칼슘 이온 및 철이온에 의해 활성화(activation)되는 것이다. 본 명세서에서 본 발명의 효소의 활성을 언급하면서 사용된 용어 "활성화"는 본 발명의 효소의 활성을 적어도 20% 상승시키는 것을 의미한다. 또한, 본 발명의 효소의 활성을 언급하면서 사용된 용어 "비활성화"는 본 발명의 효소의 활성을 적어도 50% 감소시키는 것을 의미한다.
한편, 본 발명의 효소는 펩스타틴 A, 류펩틴, DTT, 메탄올, 에탄올 및 이소프로판올과 같은 억제제에 의해서는 그 활성이 거의 감소되지 않는다. 본 발명의 프로테아제는 칼슘 이온 및 철 이온에 의해 활성화되지만, 다른 금속 이온, 예컨대, 니켈, 구리, 망간, 마그네슘, 포타슘, 소듐, 아연 및 코발트 이온에 의해서는 거의 활성화되지 않는다.
본 발명의 효소가 기질, 피브리노겐에 작용할 때에는, 특정 위치를 절단하게 되는 데, α사슬의 Glu11와 Gly12의 사이, Asn383와 Ala384 사이, β사슬의 Glu141와 Tyr142 사이, Gln189와 Met190의 사이, Gln332와 Asn333의 사이, 그리고 γ사슬 의 Asp80와 Ala81의 사이 및 Asn207와 Trp208의 사이를 절단한다. 이러한 기질 인식 특성은 공지된 다른 프로테아제들에서는 발견할 수 없는 것이다. 따라서, 본 발명의 혈전용해 프로테아제는 공지의 다른 효소들과 비교하여 다른 패턴으로 혈전을 분해한다.
하기의 실시예에 기재된 바와 같이, 본 발명의 혈전용해 프로테아제는 활성 트라이어드 잔기(Asp32, His64, 및 Ser221)를 갖는 세린 계열의 프로테아제이며, 서브틸리신 계열의 프로테아제이다. 본 발명의 혈전용해 프로테아제는 혈전을 분해함에 있어서 상당히 높은 활성을 나타낸다. 이러한 높은 활성은 하기의 실시예에 기재되어 있고, 공지의 B. natto의 NK 및 B. subtilis IMR-NK1의 MK1과 속도론적 상수(kinetic constant), 예컨대, Km, kcat, kcat/Km 값 등을 비교하여을 때, 본 발명의 혈전용해 프로테아제가 매우 우수한 값을 나타낸다. 따라서, 본 발명의 혈전용해 프로테아제가 다른 공지의 혈전용해 프로테아제보다 우수한 혈전용해 프로테아제임을 알 수 있다.
본 발명의 혈전용해 프로테아제는 상술한 생화학적 특성으로 특정될 수 있지만, 아미노산 서열로도 특정할 수 있다.
본 발명의 혈전용해 프로테아제는 서열목록 제 2 서열을 포함하는 아미노산 서열을 갖는다. 본 발명의 혈전용해 프로테아제는 상기한 아미노산 서열에 대하여 실질적인 동일성(substantial identity)를 나타내는 아미노산 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되 는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 98%의 상동성을 나타내는 아미노산 서열을 의미한다.
본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 혈전용해 프로테아제를 코딩하는 핵산 분자를 제공한다.
본 명세서에서 용어 "핵산 분자"는 DNA (gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).
가장 바람직하게는, 본 발명의 핵산 분자는 서열목록 제1서열로 나타내는 뉴클레오타이드 서열을 포함한다. 혈전용해 프로테아제를 코딩하는 본 발명의 핵산 분자는 상기한 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 98%의 상동성을 나타내는 뉴클레오타이드 서열을 의미한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 혈전용해 프로테아제를 코딩하는 상술한 본 발명의 핵산 분자를 포함하는 벡터를 제공한다.
본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.
본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 본 발명의 핵산 분자가 원핵 세포 유래이고, 배양의 편의성 등을 고려하여, 원핵 세포를 숙주로 하는 것이 바람직하다. 본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다.
예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pL λ프로모터, trp 프로모터, lac 프로모터, T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C., J. Bacteriol., 158:1018-1024(1984)) 그리고 파아지 λ의 좌향 프로모터 (pL λ프로모터, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., 14:399-445(1980))가 조절 부위로서 이용될 수 있다. 숙주세포로서 바실러스 균이 이용되는 경우, 바실러스 츄린겐시스의 독소단백질 유전자의 프로모터 (Appl. Environ. Microbiol. 64:3932-3938(1998); Mol. Gen. Genet. 250:734-741(1996)) 또는 바실러스균에서 발현 가능한 어떠한 프로모터라도 조절부위로 이용될 수 있다.
한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, ColE1, pBR322, pUC8/9, pHC79, pET 시리즈 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.
한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 발명의 벡터는 그로부터 발현되는 혈전용해 프로테아제의 정제를 용이하게 하기 위하여, 다른 서열과 융합될 수도 있다. 융합되는 서열은 예컨대, 글루타티온 S-트랜스퍼라제 (Pharmacia, USA), 말토스 결합 단백질 (NEB, USA), FLAG (IBI, USA) 및 6x His (hexahistidine; Quiagen, USA) 등이 있고, 가장 바람직하게는 6x His이며, 그 이유는 이러한 추가적인 서열은 항원성이 없고, 단백질 즉 중사슬 및 경사슬의 가변성 부위의 폴딩을 방해하지 않기 때문이다. 상기 정제를 위한 추가적인 서열 때문에, 숙주에서 발현된 단백질은 친화성 크로마토그래피를 통하여 신속하고, 용이하게 정제된다.
본 발명의 바람직한 구현예에 따르면, 상기 융합 서열이 포함되어 있는 벡터에 의해 발현된 융합 단백질은 친화성 크로마토그래피에 의해 정제된다. 예컨대, 글루타티온-S-트랜스퍼라제가 융합된 경우에는 이 효소의 기질인 글루타티온을 이용할 수 있고, 6x His이 이용된 경우에는 Ni-NTA His-결합 레진 컬럼 (Novagen, USA)을 이용하여 소망하는 혈전용해 프로테아제를 신속하고 용이하게 얻을 수 있다.
한편, 본 발명의 발현 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 벡터를 포함하는 형질전환체를 제공한다.
본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지되어 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.
또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주 세포로 서, 이스트 (Saccharomyce cerevisiae), 곤충 세포 및 사람 세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 등이 이용될 수 있다.
본 발명의 벡터를 숙주 세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기 천공 방법 (Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145(1988)) 등에 의해 실시될 수 있다. 또한, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법 (Capecchi, M.R., Cell, 22:479(1980)), 칼슘 포스페이트 침전법 (Graham, F.L. et al., Virology, 52:456(1973)), 전기 천공법 (Neumann, E. et al., EMBO J., 1:841(1982)), 리포좀-매개 형질감염법 (Wong, T.K. et al., Gene, 10:87(1980)), DEAE-덱스트란 처리법 (Gopal, Mol. Cell Biol., 5:1188-1190(1985)), 및 유전자 밤바드먼트 (Yang et al., Proc. Natl. Acad. Sci., 87:9568-9572(1990)) 등에 의해 벡터를 숙주 세포 내로 주입할 수 있다.
숙주 세포 내로 주입된 벡터는 숙주 세포 내에서 발현될 수 있으며, 이러한 경우에는 다량의 혈전용해 프로테아제를 얻게 된다. 예를 들어, 상기 발현 벡터가 lac 프로모터를 포함하는 경우에는 숙주 세포에 이소프로필-β-D-티오갈락토피라노시드(IPTG)를 처리하여 유전자 발현을 유도할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 혈전용해 프로테아제를 생산하는 Bacillus subtilis TP6(KFCC 11343P)를 제공한다. 본 발명의 신규한 균주는 그램-양성, 막대형, 내생포자-형성 및 운동성의 미생물이며, 그의 16S rDNA 서열은 B. subtilis와 99%의 상동성을 나타낸다.
본 발명의 혈전용해 프로테아제는 피브린에 직접 작용하여 혈전을 용해하며 소장 상피세포를 통하여 흡수될 수 있다. 기존의 혈전용해 단백질은 대부분 플라스미노겐 전구체의 활성화를 통해 혈전용해능을 증가시켜 혈전을 용해시키는 특성을 가지고 있다. 최근에는 플라스민을 이용한 직접적인 혈전 분해가 이러한 간접적인 혈전 분해에 비하여 더욱 특이적이며 부작용이 적은 방법이 될 수 있음을 시사하는 여러 보고가 발표되고 있는 점을 고려할 때, 이로부터 직접적이며 충분히 특이적인 혈전 용해능을 가지고 있는 본 발명의 혈전용해 프로테아제는 유용한 혈전 용해 의약으로서의 개발 가능성이 매우 높은 것으로 기대된다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험방법 및 실험재료
실험재료
본 실시예에서 이용된 시약들은 다음과 같다: 제한효소, Ex-tag DNA 중합효소, dNTP, PCR용 시약은 Takara Biomedicals (Shiga, Japan)로부터 구입하였고; pGEM-T easy 벡터 및 T4 DNA 리가아제는 Promega (Medison, WI, USA)로부터 구입하였으며; pQE-30 발현 벡터 및 His-bind 레진 키트는 Novagen으로부터 구입하였고; 지놈 팁 및 플라스미드 Miniprep 키트는 Qiagen (Hilden, Germany)으로부터 구입하였으며; 전기영동 시약은 Bio-Rad (Hercules, CA, USA)로부터 구입하였고; SP 세파로스, 옥틸 세파로스 및 HiLoad 16/60 Superdex 200 pg은 Ammersham Biosciences로부터 구입하였고; 효소 분석 및 특성 연구를 위한 시약은 Sigma로부터 구입하였다. 올리고뉴클레오타이드는 Cosmo (Seoul, Korea)에서 합성하였다.
1. 혈전용해 프로테아제의 정제
1.1. 혈전용해 효소-생성 균주의 스크리닝 및 분리
텝페 (Tempeh) 시료를 인도네시아 자바의 여러 지역에서 수집하고, 통기성 조건으로 인리치먼트한 다음, 영양 브로스 (Difco, MD, USA)에서 37℃로 연속 희석하여 박테리아를 분리하였다. 분리된 박테리아 배양액의 상등액을 원심분리로 얻고 (10,000 ㅧ g, 15 min) 피브린 플레이트 방법 (Astrupt and Mㆌllertz 1952)으로 활성분석을 하였다. 가장 큰 혈전용해 활성을 나타내는 분리된 박테리아 B. subtilis TP6를 선택하고, 변형 영양 브로스 [pH 7.0, 5 g 소이톤 (Difco), 5 g 비프 추출액(Difco) 및 20 g 자일로스 (Sigma) per liter 포함]에서 37℃에서 배양하였다. 효소 정제를 위한 발효는 5 L 발효조 (Biostat S; Braun, Germany)에서 실시하였고, 대수기말에 1,000 rpm 및 1 vvm의 통기 조건을 주었다.
1.2. 16s rDNA 시퀀싱 및 분석
Genomic Tip-100을 이용하여 제조사의 지시내용에 따라 지놈 DNA를 12-시간 배양한 세포로부터 추출하였다. 16S rDNA 유전자를 PCR로 증폭하였고, 이 때 이용된 프라이머는 다음과 같다: 9F (5'-GAGTTTGATCCTGGCTCAG-3'; E. coli 16S rRNA 넘버링에 따른 위치 9-27) 및 1542R (5'-AGAAAGGAGGTGATCCAGCC-3'; 위치 1542-1525) (Weisberg et al. 1991). 증폭된 PCR 산물을 Basestation DNA fragment 분석기 (NJ Research, USA)로 시퀀싱하였다. 16S rDNA 서열을 Clustal W 프로그램 version 1.81 (Thomson et al. 1994)으로 얼라인먼트를 하였다.
1.3. TPase 유전자의 클로닝 및 시퀀싱
B. subtilis TP6의 지놈 DNA를 상술한 바와 같이 분리하였다. B. subtilis TP6의 지놈 DNA를 주형으로 이용하고 축퇴성 프라이머를 이용하여 추정의 TPase를 포함하는 DNA 단편을 PCR로 얻었다. 상기 축퇴성 프라이머는 Bacillus sp.의 공지의 서브틸린신 서열 (aprT)에 기초하여 제작한 것으로서 서열은 다음과 같다: 5'-GTG AGA (A/G)GC AAA AA(A/G) (G/T)T(A/G) TGG ATC AG; 및 5'-A(A/T)T GTG C(A/T)G CTG CTT GTA CGT TGA T(C/T). 증폭 조건은 다음과 같다: 94℃에서 5분 동안 1 사이클, 94℃, 30초의 변성, 57℃, 30초의 어닐링 및 72℃ 및 120초의 연장반응으로 구성된 사이클의 30 사이클, 그리고 72℃, 7분 동안 최종 연장반응. 지놈 DNA로부터 증폭된 PCR 산물을 pGEM-T Easy 벡터에 직접적으로 클로닝한 다음, E. coli DH5α에 형질전환시켰다. Qiaprep Spin Miniprep 키트를 이용하여 제조사의 지시내용에 따라 E. coli DH5α로부터 플라스미드를 분리하였고, 분리된 플라스미드를 시퀀싱하였다. 유사한 유전자 및 단백질을 검색하기 위하여 GenBank 프로그램 BLAST를 이용하였고, Clustal W 프로그램 version 1.81로 얼라인먼트를 하였다.
1.4. 혈전용해 프로테아제의 배양 및 정제
가장 큰 혈전용해 활성을 나타내는 분리 균주 TP6를 선택하고, 변형 영양 브로스[pH 7.0, 5 g 소이톤(Difco), 5 g 비프 추출액(Difco) 및 20 g 자일로스 (Sigma) per liter 포함]에서 37℃에서 배양하였다. 효소 정제를 위한 발효는 5 L 발효조(Biostat S; Braun, Germany)에서 실시하였고, 대수기말에 1,000 rpm 및 1 vvm의 통기 조건을 주었다.
모든 정제과정은 AKTA FPLC 시스템에서 4℃에서 실시하였다. 효소 정제를 위한 배양은 5 L 발효조(Biostat S; Braun, Germany)에서 실시하였고, 대수기말에 1,000 rpm 및 1 vvm의 통기 조건을 주었다. 배양 브로스를 10,000 ㅧ g로 20분 동안 원심분리하고, 세포-부재 상등액을 암모늄 설페이트(40-70% 포화)로 분획한 다음, 침전물을 50 mM 포타슘 포스페이트 완충액(pH 6.0)에 재현탁한 후, 동일한 완충액에 대하여 하룻밤 동안 4℃에서 투석하였다. 투석결과물(최종 농도 2.0 M)을, 50 mM 포타슘 포스페이트(pH 6.0, 2.0 M 암모늄 설페이트 포함)로 평형화된 옥틸 세파로스 FF 컬럼(30 ml)에 로딩하였다. 암모늄 설페이트의 하강농도구배 (2로부터 0 M까지)로 단백질을 용출한 다음, 단백질 분해활성을 모이는 분획을 수집하였다. 수집된 분획을 50 mM 포타슘 포스페이트 (pH 6.0)로 완충액 교환을 하였고, 이어 동일한 완충액으로 평형화된 Hiprep 16/10 SP 세파로스 FF 컬럼에 로딩하였다. 0으로부터 0.5 M의 NaCl의 선형 농도구배로 1.5 ml/min의 속도로 흡착된 단백질을 용출하였다. 효소 활성을 나타내는 분획을 수집하고, 10,000-분자량 컷오프 (MWCO) 막 (Amicon, Bedford, MA, USA)으로 약 10배정도 농축하였다. 정제된 단백질을 -20℃에서 상기 완충액 내에 보관하였다.
1.5. 전기영동 및 N-말단 아미노산 시퀀싱
Modular Mini-Protein Ⅱ 전기영동 시스템(Bio-Rad, Hercules, CA, USA)을 이용하여 표준 프로토콜(Laemmli 1970)에 따라 SDS-PAGE를 실시하였다. 광범위 분자량 마커(Bio-Rad)를 이용하여 시료의 분자량을 결정하였다. 전기영동 후, 쿠마쉬 브릴런트 블루 R-250(Sigma) 또는 실버 니트레이트(Bio-Rad)로 단백질을 가시화하였다. SDS-PAGE(12%) 후, 10 mM CAPS 완충액(pH 11.0), 10% 메탄올 내의 Sequi-Blot PVDF 막(Bio-Rad)으로 젤 상의 단백질을 전이시켰고, Mini Trans-Blot 전기영동 전이 장치(Bio-Rad)를 이용하였다. 목적 단백질의 N-말단 아미노산 서 열결정을 Tufts University, Analytical Core Facility(Boston, MA)에서 실시하였다.
2. 프브린분해 프로테아제의 특성 연구
2.1. 효소 활성 분석
Kunitz 방법(1947)의 변형된 방법에 따라 Hammerstein 카제인(Merk, Darmstadt, Germany)을 기질로 이용하여 프로테아제 활성을 측정하였다. 10 mM 소듐 포스페이트 완충액(pH 7.4) 내의 0.5% (w/v) Hammerstein 카제인 450 ㎕에 효소 용액 50 ㎕를 첨가하여 반응을 개시시켰다. 37℃에서 30분 후, 15% (w/v) 트리클로로아세트산(TCA) 500 ㎕를 첨가하여 반응을 종결시키고, 70℃에서 20분 동안 가열한 다음, 4℃에서 13,000 ㅧ g로 20분 동안 원심분리 하였다. 상등액의 흡광도를 280 nm에서 측정하였다. 프로테아제 활성의 1 유니트(U)는, 상기한 조건에서 280 nm 흡광도를 1분 동안에 0.01 상승시키는 효소의 양으로 정의하였다.
프브린분해 활성을 피브린 플레이트 분석방법 (Astrupt and Mullertz 1952)으로 결정하였다. 10 mM 소듐 포스페이트 완충액 (pH 7.4)에 용해된 인간 피브리노겐 (0.5%, w/v, Sigma)을 동일한 완충액으로 평형화된 라이신 세파로스 컬럼에 통과시켜 플라스미노겐을 제거하였다 (Clearly et al. 1989). 용출된 플라스미노겐-부재 피브리노겐 용액의 일부 (10 ml)를 0.1 ml 트롬빈 용액(100 NIH U/ml)과 혼합시킨 다음, 플레이트에 부었다. 4℃에서 1시간 동안 고화시킨 다음, 피브린 플레이트를 이용하여 혈전용해 활성을 측정하였다: 적합한 농도의 효소 용액 (50 ㎕)을 피브린 플레이트 상에 놓여 있는 종이 디스크(직경 8 mm, Millipore)에 로딩한 다음, 37℃에서 6시간 동안 반응시켰다. 정량적 분석을 위하여, 투명대 직경을 측정하였고, 표준 혈전용해 효소로서 인간 플라스민의 대조군 플롯으로부터 활성을 계산하였다.
2.2. 피브리노겐 기질의 분해 산물의 준비
10 mM 소듐 포스페이트 완충액(pH 7.4)내의 피브리노겐 용액(10 mg/ml) 20 ㎕를 정제한 TPase와 6시간 동안 37℃에서 반응시켰다. 반응 혼합물을 12% 폴리아크릴아미드 젤 상에서 전기영동한 다음, 아미노산 서열결정을 위하여 sequi-Blot PVDF 막(Bio-Rad)으로 상술한 방법에 따라 전이시켰다. 쿠마쉬 브릴런트 블루 R-250으로 가시화한 다음, 분해된 피브리노겐의 단백질 밴드의 첫 번째 10개의 N-말단 아미노산을 Tufts University, Analytical Core Facility(Boston, MA)에서 서열결정하였다.
실험결과
1. 혈전용해 효소의 생화학적 특성 연구
1.1. 피브린-분해 박테리아의 분리 및 동정
인도네시아 자바섬에 있는 재래시장에서 템페 시료를 수집하였다. 시료를 PBS(phosphate-buffered saline)에 1시간 동안 4℃에서 용해시킨 다음, 각 시료의 상등액을 원심분리(10,000 ㅧ g, 15 min)로 수득하고, 피브린 플레이트 방법으로 분석하였다(참조: 도 1). 상등액의 혈전용해 활성은 몇몇의 효소 억제제로 억제되었고, 열로 쉽게 비활성화 되었기 때문에, 혈전용해 효소의 존재를 간접적으로 확인할 수 있었다.
템페 시료로부터 초기 스크리닝 동안에, 강한 프브린분해 활성을 보이는 200종의 균주를 선택하였다. 균주의 각각의 배양 상등액에 대하여 혈전용해 및 카제인분해 활성을 조사하여 피브린-특이 효소 생성 균주를 선별하였다. 혈전용해활성에 대하여 강하면서도 특이적인 활성을 나타내는 18종의 후보 균주를 선별한 다음, 이들의 전체 세포 단백질 패턴을 조사하였다 (참조: 도 2). 이들 중에서, 균주 TP-6가 최종적으로 선별되었는 데, 이 균주는 강한 혈전용해활성을 보이면서도 가장 큰 비교 활성(혈전용해 활성 to 카제인분해 활성)을 나타내었다. 균주 TP-6는 그램-양성, 막대형, 내생포자-형성 및 운동성의 미생물로 동정되었다. 그의 16S rDNA 서열은 B. subtilis와 99%의 상동성을 나타내었다. 따라서, 균주 TP-6는 B. subtilis 에 속하는 균주로 동정되었고, B. subtilis TP6로 명명하였으며, 이 균주를 한국미생물보존센터에 2005년 1월 21일자로 기탁하고, 기탁번호 KFCC 11343P를 부여받았다(참조: 도 3).
1.2. 혈전용해 효소의 정제
분리된 균주 TP-6의 배양 프로파일은 도 4에 도시되어 있다. 혈전용해 활성은 초기 대수기에서 증가하였고, 이어 성장곡선과 평행되는 패턴을 보였다. 혈전용해 프로테아제 (TPase로 명명)를 3 L 배양 상등액으로부터 정제하였다. 표 1 에 기재된 바와 같이, 정제는 3 단계로 실시되었다: 암모늄 설페이트 분획, 옥틸 세파로스 소수성 크로마토그래피 및 SP 세파로스 양이온-교환 크로마토그래피 (참조: 도 5).
B. subtilis TP6로부터 TPase의 정제
정제 단계 총 단백질 (mg) 총 활성 (AU) 비활성 (AU/mg) 정제도 수율 (%)
배양 상등액 12320 73447 6 1 100
암모늄 설페이트 침전 970 67994 70 12 93
옥틸 세파로스 44 41614 945 158 57
SP 세파로스 16 19165 1197 200 26
단백질분해 활성 및 혈전용해 활성을 각각의 단계에서 측정하였다 (참조: 도 6). 최종적으로 TPase는 200배 정제되었고 수율은 26%이었다. 최종 정제물의 정제도를 SDS-PAGE(12% 폴리아크릴아미드 젤)로 확인하였다. 단일의 단백질 밴드가 실버 니트레이트 염색으로 확인되었고, 외관(apparent) Mr은 약 27.5 kDa이었다 (참조: 도 7).
정제된 TPase의 첫 번째 24개의 N-말단 아미노산의 서열을 결정하였고, 이 서열은 서열목록 제2서열의 108번째 아미노산으로부터 131번재 아미노산에 해당하는 것이다. 이 서열은, B. amyloliquefaciences로부터 얻은 서브틸리신 BPN (Ankamura et al. 1992)과 B. subtilis로부터 얻은 서브틸리신 E (Vasantha et al. 1984)와 같은 서브틸리신-유사 세린 프로테아제와 매우 유사하다.
1.3. 효소의 생화학적 특성 조사
TPase의 최적 pH 및 온도는 각각 6.0 및 50℃로 조사되었다 (도 8 및 9). 효소는 산성 지역 pH 6.0-6.5(37℃ 온도)에서 24시간 동안 활성을 나타내었고 안정성을 나타내었다. 다양한 프로테아제 억제제 및 유기용매에 의한 영향을 시약으로 효소를 37℃에서 30분 동안 처리한 다음 조사하였고, 그 결과는 표 2에 기재되어 있다.
B. subtilis TP6로부터 정제된 혈전용해 프로테아제의 혈전용해 활성에 대한 억제제의 영향
억제제 농도(mM) 상대적 활성(%)
미첨가 - 100
E-64 0.1 100
펩스타틴 A 1 100
류펩틴 1 97
PMSF 1 53
5 12
DTT 1 98
EDTA 1 36
5 30
10 27
2-머캅토에탄올 10 46
1 78
에탄올 10 94
1 100
메탄올 10 97
1 100
이소프로판올 10 94
1 100
TPase의 활성은 1 mM PMSF (53%), 1 mM EDTA (36%), 및 10% β-머캅토에탄올 (46%)에 의해 억제되었다. 펩스타틴 A, 류펩틴, DTT, 메탄올, 에탄올 및 이소프로판올과 같은 억제제는 효소를 억제하지 않았다. 5 mM EDTA-처리된 TPase에 대하여 그의 혈전용해 활성에 대한 금속 이온의 영향을 조사하였고, 결과는 표 3에 정리되어 있다.
B. subtilis TP6로부터 정제된 혈전용해 프로테아제의 혈전용해 활성에 대한 금속 이온의 영향
금속 이온 농도(mM) 잔여 활성(%)
미첨가 - 100
CaCl2 1.0 113
NiCl2 1.0 91
CuCl2 1.0 72
MnCl2 1.0 106
MgCl2 1.0 98
KCl 1.0 99
NaCl 1.0 92
CoCl2 1.0 81
ZnCl2 1.0 78
FeCl3 1.0 127
CoSO4 1.0 100
ZnSO4 1.0 90
MgSO4 1.0 110
MnSO4 1.0 104
CuSO4 1.0 67
효소를 동일한 완충액으로 하룻밤 동안 투석한 다음, 금속 이온을 첨가하였다. EDTA-처리된 TPase (100%)는 1 mM Ca2+ (123%) 또는 Fe2+ (127%)에 의해 활성화되었다 (도 10). 일반적으로, Bacillus로부터 유래된 서브틸리신은 세포외로 분비되고, PMSF로 억제되는 특성에 따라 세린 엔도펩티다아제로 분류된다. 이러한 종래의 Bacillus-유래 서브틸리신은 중성 또는 알칼린 pH에서 가장 큰 활성을 나타내며, 15-30 kDa 범위의 분자량을 갖는다. 서브틸리신의 공통적인 특징은 하나 또는 그 이상의 칼슘 결합위치를 갖는다는 것이다 (Byan 2000). 칼슘 결합은 형태적 안정성(conformational stability)에 중요한 요소이기 때문에, 이 이온을 제거하면 효소의 형태적 안정성이 손실된다. 따라서, 상술한 본 실시예의 결과들 은 TPase가 서브틸리신-유사 세린 프로테아제임을 보여준다.
1.4. 혈전용해 효소의 뉴클레오타이드 서열
TPase를 코딩하는 유전자를 B. subtilis TP6의 지놈 DNA를 주형으로 이용하여 PCR 증폭하고 시퀀싱을 하였다. TPase의 DNA 서열로부터 유추된 아미노산 서열에 기초하여, 본 발명의 효소(성숙형에서)가 275개의 아미노산으로 이루어져 있고 분자량이 27.5 kDa임을 알 수 있다 (참조: 서열목록 제1서열 및 제2서열). TPase의 DNA 서열은 B. subtilis K-54의 서브틸리신 K54와 97%, B. amyloliquefaciences의 서브틸리신 BPN(Vasantha et al. 1984)과 95%의 유사성을 갖는다. 또한, 본 발명의 TPase는 서브틸리신 패밀리의 다른 멤버들 (Amylosacchariticus 82%, E 82% 및 NAT 82%)과도 유사성을 나타내며, 그의 아미노산 서열은 세린 프로테아제의 활성중심에 필수적인 3개의 보존성 아미노산 (세린 221, 히스티딘 64 및 아스파트산 32, Kunst 1997; Nakamura et al. 1992; Yoshimoto et al 1988)을 갖고 있다. 따라서, 본 발명의 TPase를 서브틸리신-유사 세린 프로테아제로 분류하였다. 이러한 분류를 검증하기 위하여, TPase의 생화학적 특성을 연구하였고, 종전에 발표된 다른 서브틸리신 패밀리와 비교하였다.
1.5. 혈전용해 효소의 기질 특이성 및 속도론적 변수
정제된 TPase의 기질 특이성을 합성 기질을 이용하여 분석하였다 (표 4).
TPase의 아미도분해 활성 비교
합성 기질 (0.5mM) 기질 가수분해 (nmol/min/ml) 상대적 활성 (%) 표적 효소
N-succinyl-Ala-Ala-Pro-Phe-pNA 2.488 100 서브틸리신 또는 키모트립신
N-succinyl-Ala-Ala-Pro-Leu-pNA 5626 27.4 서브틸리신 또는 키모트립신
D-Val-Leu-Lys-pNA 13.5 0.1 플라스민
N-succinyl-Ala-Ala-Ala-pNA 1.7 0 젤라티나아제
N-succinyl-Ala-Ala-Pro-Phe-pNA(p-nitroanilide) 기질에 대하여 아미도분해(Amidolytic) 활성이 가장 크게 나타났다 (20,000 nmolㆍmin-1ㅇml-1). 반대로, D-Val-Leu-Lys-pNA, 및 N-succinyl-Ala-Ala-Ala-pNA과 같은 기질에 대하여 매우 낮은 활성을 나타내었다.
Chang et al. 2000에 기재된 조건에 따라 N-succinyl-Ala-Ala-Pro-Phe-pNA를 기질로 이용하여 TPase의 속도론적 변수를 다른 혈전용해 프로테아제들과 비교하였다 (표 5).
B. subtilis TP6의 TPase,B. natto의 NK 및B. subtilis IMR-NK1의 MK1의 속도론적 상수
B. subtilis TP6의 TPase B. natto의 NK B. subtilis IMR-NK1의 MK1
k cat (s-1) K m (mM) k cat /K m (s-1M-1) k cat (s-1) K m (mM) k cat /K m (s-1M-1) k cat (s-1) K m (mM) k cat /K m (s-1M-1)
25.71 0.26 9.9x104 17.85 0.52 3.4x104 21.08 0.34 6.21x104
TPase와 NK의 속도론적 상수는 100 mM 소듐 포스페이트 완충액 (0.1 M NaCl, pH 7.4) 1.0 ml 내의 기질 N-succinyl-Ala-Ala-Pro-Phe-pNA를 이용하여 37℃에 결정하였다. MK1은 10.4 mM Tris-HCl 완충액 (4.2 mM CaCl2, pH 7.8) 1.2 ml에서 반응시켰다(Chang et al., 2000).
TPase의 Kmkcat 값은 각각 0.26 mM 및 25.71 s-1이었다. 효소반응 효 율 (kcat/Km)은 9.9ㅧ104 s-1ㅇM-1이었고, 이는 나토키나아제보다 약 3배정도 높은 값이다. TPase는 나토키나아제와 동일한 패밀리로 분류하였기 때문에, 합성 기질에 대한 TPase의 활성은 그의 혈전용해 활성에 직접적인 연관성을 갖는다. 이러한 실험결과들은 본 발명의 TPase가 다른 공지의 혈전용해 프로테아제보다 우수한 혈전용해 프로테아제임을 증명하는 것이다.
2. 효소의 혈전용해 특성
2.1. 피브리노겐 분해 패턴의 분석
혈액응고 경로의 표적 단백질은 피브리노겐이며, 이 단백질은 이황화결합된 Aα-, Bβ- 및 γ-사슬 3 부분으로 이루어진 340 kDa 용해성 혈장 단백질이다 (Walker and Nesheim 1999). 혈관이 손상되면, 피브리노겐의 트롬빈-매개 중합(즉, 피브린)이 일어난다. 반대로, 피브린의 용해는 플라스민에 의한 선택적 절단의 결과이다. 플라스민에 의한 피브리노겐의 절단은 유일한 패턴을 나타내었다 (Henshen 1983). 피브리노겐과 피브린의 절단 위치는 이미 규명되었고 플라스민에 의한 피브린 절단에 의해 생성된 산물도 잘 연구되었지만, 박테리아 프로테아제-매개 피브린 절단에 대한 모델은 아직까지 알려진 바 없다. 따라서, 인간 피브리노겐을 기질로 이용하여 TPase의 혈전용해 패턴을 분석하고 인간 플라스민과 비교하였다 (참조: 도 11). 10 mM 소듐 포스페이트 완충액 (pH 7.4)에 용해된 0.5% (w/v) 인간 피브리노겐 50 ㎕와 정제된 TPase (50 ㎕)를 37℃에서 6시간 동안 반응 시켰다. 반응 혼합물 일부를 정기적으로 회수하고 SDS-PAGE 분석을 하였다.
도 11의 패널 A에서 보는 바와 같이, TPase는 5분 이내에 피브리노겐의 Aα-사슬을 완전히 분해하였고, Bβ-사슬도 10분 후에 분해되었다. 그러나, γ-사슬은 처리 6시간 후에도 여전히 존재하였다. 이 결과는 TPase 특정 기질 인식 위치가 피브리노겐의 α- 및 β-사슬에 있음을 보여주는 것이다. 비록, 인간 플라스민은 γ-사슬을 공격하지만, TPase의 시간에 따른 혈전용해의 패턴은 인간 플라스민과 유사하였다 (도 11의 패널 B). 타깃 기질, 피브리노겐의 절단 패턴에서 두 효소가 서로 유사한 양상을 보이는 것은 매우 흥미로운 사실이다. TPase에 의한 기질 인식은 플라스민 보다 덜 선택적이지만, TPase는 적어도 피브린-특이, 플라스민-유사 프로테아제이다.
2.2. 효소의 혈전용해 활성에 대한 플라스미노겐 첨가의 영향
피브린 응괴의 용해는 플라스민, 플라스민 활성자(PA) 및 플라스미노겐 활성자 억제자-1 (PAI-1)에 의해 직접적으로 또는 간접적으로 이루어진다. 플라스민은 혈전용해에서 있어서 중심이 되는 효소이다. 이 효소는 그의 비활성 전구체 플라스미노겐으로부터 PA의 작용에 의해 형성된다. 공지된 혈전용해 의약들의 대부분은 PA 패밀리에 속한다. 혈장에서, 플라스민은 세르핀(serine protease inhibitors) 패밀리의 억제자에 의해 조절된다. 세르핀은 프로테아제 자연 기질을 모방한 활성 중심을 포함하기 때문에, 상기 프로테아제는 상기 억제자와 비활성 복합체를 형성한다. 플라스미노겐 활성자의 주요한 억제자는 PAI-1이다. 최근 에, 서브틸리신 NAT는 PAI-1의 절단과 비활성화를 통하여 혈전용해를 강화시킨다는 제2의 기전이 발표되었다 (Urano et al. 2001). PAI-1은 혈전용해의 주요한 억제자이고 이의 PA와의 비율에 의해 총 혈전용해 활성이 조절되기 때문에, 이 억제자의 비활성화는 혈전용해 증가와 직접적인 연관을 갖는다.
TPase의 혈전용해를 유도하는 기전을 연구하기 위하여, 플라스미노겐-부재 또는 플라스미노겐-풍부 피브린 플레이트에서 TPase의 상대적인 혈전용해 활성을 조사하였다(도 12). 플라스미노겐 용액 (5 Uㆍml-1) 1 ml을 포함하는 플라스미노겐-풍부 피브린 플레이트 (10 ml)에서 TPase의 혈전용해 활성은 플라스미노겐-결여 피브린 플레이트에서의 활성보다 어떠한 상승성(synergism)을 보이지 않았고, 이는 6시간 반응 후에도 그러하였다. 또한, TPase에 의한 기질 피브리노겐과 플라스미노겐의 분해 패턴을 비교하였다 (도 13). 도 13의 패널 B에서 볼 수 있듯이, TPase는 플라스미노겐에 대해서는 거의 단백질분해 활성을 보이지 않았으나, rpPAI-1을 절단하여 비활성화시켰다 (도 13의 패널 C). 따라서, TPase는 플라스미노겐 활성자는 아니지만 제한된 단백질분해능을 갖는 직접 작용 효소임을 알 수 있다. 또한, 본 발명의 효소는 PAI-1의 비활성화를 통하여 혈장의 혈전용해 활성을 간접적으로 증가시킨다는 것을 알 수 있다. 이러한 혈전용해 활성 기전을 명확하게 하기 위하여, 효소의 직접적 작용 및 간접적 작용을 연구하였다.
2.3. 피브리노겐 분해 산물(FDPs)의 분석 및 예측
효소 처리 10분 이후에 피브리노겐의 Aα-와 Bβ-사슬이 분해되지만, γ-사슬은 6시간 처리 후에도 분해되지 않았다(참조: 도 11). 이 결과는, TPase 특정 기질 인식 위치가 피브리노겐의 α- 및 β-사슬에 있음을 보여주는 것이다. 또한, TPase의 시간에 따른 혈전용해의 패턴은 인간 플라스민과 유사하였다 (도 11의 패널 B). 이러한 발견을 검증하기 위하여, 피브리노겐 (10 mg)을 TPase (100 U)로 분해시킨 다음, HiLoad 16/60 Superdex 200 젤 컬럼 (Ammersham Bioscience)에 로딩하였다 (도 14). 용출된 분자들에서의 모든 비공유결합을 파괴하여 용출물에서의 공유결합종의 분자량 분포를 규명하기 위하여, 비환원조건 하에서 SDS-PAGE를 실시하였다. 부분적으로 파괴된 피브리노겐 단편은 3개의 주요한 크기를 가졌다. 이러한 중간체들의 대략적 분자량은 250 kDa, 150 kDa 및 100 kDa이었다. α-, β- 및 γ-사슬이 용출액에서의 절단된 정도를 결정하기 위하여, SDS-PAGE를 환원조건 하에서 실시하였다. 절단된 단편 β2 및 γ1의 첫 번째 아미노산은 다음과 같은 서열을 갖는다: AATLKSRKML(37.2 kDa) 및 YSSLELEKHQL(36.9 kDa). 이 서열을 인간 피브리노겐의 각각의 사슬의 서열과 얼라인먼트를 한 결과, 이들 단편들은 각각 γ-와 β-사슬의 C-말단인 것으로 확인되었다.
피브린의 용해는 플라스민에 의해 촉매되는 선택적 절단의 결과이다. 플라스민에 의한 피브리노겐 및 피브린의 절단은 종래에 많이 연구되었다 (Walker 1999). 피브리노겐의 단편화는 α-사슬 내에서 발생하여 ~260 kDa의 α-C 단편을 형성한다. 이 단편의 추가적 절단은 단편 DE(~160 kDa), 단편 D(~100 kDa) 및 단편 E(~60 kDa)를 생성한다. 피브린 모노머의 E와 D 지역을 연결하는 2개의 이황 화 고리 사이에 있는 α-, β- 및 γ-사슬은 절단되어 용해성 공유 또는 비공유 교호결합 산물을 방출한다. D 지역은, β- 및 γ-사슬의 비절단 C-말단으로 주로 이루어져 있고, E 지역은 각각의 사슬의 N-말단으로 이루어져 있다. 피브리노겐의 플라스민-민감 위치는 이미 규명되어 있다(Henschen 1983). 플라스민과 TPase의 피브리노겐 인식 위치가 서로 완전히 상이하지만, TPase에 의한 피브리노겐의 β- 및 γ-사슬의 절단 패턴은 인간 플라스민과 매우 유사하였다. 결과적으로, TPase에 의한 분해산물은 인간 플라스민에 의한 분해산물과 유사하다.
3. 효소의 P1 위치-특이 기질 특이성 연구
3.1. 기질분해산물의 N-말단 아미노산 서열결정 및 탠덤 매스 스펙트럼 분석
TPase에 의해 생성된 FDPs의 첫 번째 10개으 N-말단 아미노산 서열을 결정하여 효소의 촉매활성 위치에 대한 정보를 얻었다. 피브리노겐을 다양한 농도의 정제 TPase로 처리하였다(도 15). 효소의 인식 위치에 대한 보다 정밀한 연구를 하기 위하여, 피브리노겐 분자의 제한된 처리를 실시하였다. 그 결과, TPase 100 U/ml 및 1000 U/ml에 의해 생성된 각각의 시료를 취하여 각각 FDPs 부분분해 중간체 및 완전분해 중간체로 삼았다. 반응 혼합물을 12% 폴리아크릴아미드 젤에서 전기영동한 다음, 아미노산 서열분석을 위하여 PVDF 막으로 전이시켰다. TPase 100 U/ml에 의해 생성된 주요한 단백질 밴드의 N-말단 아미노산서열은, GGGVRGPRVV (31 kDa), GGGVRGPRVV (26 kDa), YSSELSEKHQ (36.9 kDa) 및 AATLKSRKML (37.2 kDa)이었다(도 16). 이 서열들은 각각 인간 피브리노겐의 α-, β- 및 γ-사슬의 내 부 서열에 해당하는 것이며, α1, α2, β1 및 γ1으로 명명되었다. SDS-PAGE로 결정된 이들 단편들의 분자량은 피브리노겐의 아미노산 서열로부터 계산된 것과 동일하였다. 명백하게는, 피브리노겐의 β- 및 γ-사슬의 C-말단은 TPase에 의해 절단되지 않는다. 이 경우, 피브리노겐의 γ-사슬은 절단되지 않았고, 이 결과는 도 11의 패널 A와 일치되는 것이다. 비록 피브리노겐 기질의 γ-사슬은 쉽게 가수분해되지 않았지만, 과량의 효소를 사용하면 γ-사슬은 절단되었다.
또한, 과량의 TPase에 의한 피브리노겐의 완전분해 산물을 조사하였다. TPase 1000 U/ml에 의해 생성된 주요한 단백질 밴드의 N-말단 아미노산 서열은 AATLKSRKML (37.2 kDa), AATKLSRKML (31 kDa), AATKLSRKML (26 kDa), YSSELSEKHQ (36.9 kDa), MEYCRTPCTV (31.2 kDa) 및 NEANKYQISV (15 kDa)이었다 (도 17). 이들 서열은 인간 피브리노겐의 사슬의 내부 서열에 해당하는 것이며, 각각 γ1, β1, β2, γ2, γ3 및 β3로 명명되었다. 피브리노겐 단편의 과도한 절단은 단백질 밴드 β2, β3, γ2 및 γ3를 형성하였다. 이들 펩타이드의 아미노산 서열을 탠덤 매스 스펙트로포토미터로 분석하였다. 피브리노겐(10 mg)을 TPase(100 U/ml)로 3시간 동안 절단한 다음, HiLoad 16/60 Superdex 200 젤 컬럼에 로딩하였고, 그 결과 절단된 피브리노겐 단편은 3개의 주요한 크기(피크 2-4)와 미지의 작은 펩타이드의 마지막 단편을 형성하였다(도 14). Edman 방법에 의한 FDPs의 연속적 분석뿐만 아니라, 마지막 피크의 미지 펩타이드(1 ml)을 수집하고 Spin-Vac 진공 증발기 (Hanil Sciences, Korea)로 50 ㎕까지 농출하였다. 농축물 10 ㎕를 0.1% TFA로 평형화된 Poros 20 R2 레진이 있는 Zip-TipTM (Millipore)에 로딩하였다. 레진에 결합한 펩타이드를 70% 아세토니트릴(in 0.1% TFA)로 용출한 다음, MALDI-MS/MS에 로딩하였다. 실험 결과, TPase에 의해 새롭게 형성된 펩타이드의 서열은 ARPNNPDWGT 및 WIQYKEGFGH 이었다(도 18). 이 서열들은 각각 피브리노겐의 α- 및 γ-사슬의 서열에 해당한다.
3.2. TPase의 기질 인식 위치의 결정
TPase에 의해 생성된 10개의 N-말단 아미노산 서열은 표 6에 정리되어 있다.
TPase에 의한 피브리노겐 분해산물(FDPs)의 첫 번째 10개의 N-말단 아미노산 서열
아미노산 서열 Mr 위치
AATLKSRKML 37,233c γ사슬
AATLKSRKML 31,000a γ사슬
AATLKSRKML 26,000a γ사슬
ARPNNPDWGT 1,274c α사슬
GGGVRGPRVV 30,000a α사슬
GGGVRGPRVV 25,000a α사슬
MEYCRTPCTV 31,200c β사슬
NEANKYQISV 15,040c β사슬
WIQYKEGFGH 1,662c γ사슬
YSSELEKHQL 36,861c β사슬
aSDS-PAGE(12%)로 분석된 FDPs의Mr cGenBank의 피브리노겐 서열에 얼라인먼트 하여 계산된 FDPs의Mr
TPase의 기질 인식위치를 결정하기 위하여, 상기 서열들을 인간 피브리노겐의 서열과 얼라인먼트 하였다. TPase의 절단위치의 추론된 아미노산 서열은 표 7에 정리되어 있다. TPase에 의해 절단되는 결합은 화살표로 표시하였고, P1과 P1' 위치(P1/P1')의 함축된 아미노산 서열로 나타내었다.
P1, P1' 및 P4 위치에서 TPase에 의해 절단되는 아미노산 서열
P10-P1 P1'-P10' P1/P1' 위치
DSGEGDFLAE↓ GGGVRGPRVV E11/G12 α사슬/피브리노겐
VKDNENVVNE↓ YSSELEKHQL E141/Y142 β사슬/피브리노겐
QKLESDVSAQ↓ MEYCRTPCTV Q189/M190 β사슬/피브리노겐
KAHYGGFTVQ↓ NEANKYQISV Q332/N333 β사슬/피브리노겐
DESSKPNMID↓ AATLKSRKML D80/A81 γ사슬/피브리노겐
LDGSVDFKKN↓ WIQYKEGFGH N207/W208 γ사슬/피브리노겐
FRPDSPGSGN↓ ARPNNPDWGT N383/A384 α사슬/피브리노겐
효소의 P1 위치는 글루탐산, 글루타민, 아스파르트산 또는 아스파라긴이었고, 이들 아미노산 모두는 산성의 아미노산 및 이의 유도체이다. 효소의 절단 위치(P10-P1 및 P1'-P10')의 12개 아미노산 서열을 Clustal W 프로그램, version 1.8.1로 얼라인먼트 하였다(도 19). 이 얼라인먼트 결과는 결론을 얻는 데 충분하지 않지만, P1 위치에 산성 아미노산 또는 그의 유도체가 P5 위치에 아스파라긴과 글루타민이 높게 보존되어 있다는 것을 밝혔다. 또한, P5 위치에 염기성 아미노산 잔기, 라이신과 알기닌이 보존되어 있다는 것도 규명되었다.
따라서, 피브리노겐의 다른 여러 잔기에서 절단이 발생하기는 하지만, 본 발명의 TPase는 Glu 잔기가 P1 위치에 있는 펩타이드 결합에 대하여 명백한 선호도를 나타낸다는 것을 알 수 있다. 일견, Glu에 대한 이러한 선호도는 이 잔기의 부분적 음전하 때문인 것으로 판단된다. Glu보다 곁사슬이 짧지만 유사한 전하를 가지는 Asp도 P1 잔기로서 선호도가 있다. 한편, Glu 잔기는 S1 기질 결합 위치에 잘 맞으며 이 잔기는 효소의 어떤 곁사슬에 수소결합으로 붙들려 있는 것으로 판단된다. Gln의 곁사슬은 Glu와 크기가 유사하며(Chothia 1984), 비록 전하는 없지 만 여전히 수소결합능을 가지고 있다. 따라서, P1 위치에서의 산성 아미노산(Glu 및 Asp) 및 그의 유도체(Gln 및 Asn)에 대한 선호도는 세린 프로테아제의 산성 아미노산 특이 기질 특이성 패턴과 일치한다 (Czapinska and Otlewski 1999).
TPase 및 서브틸리신 BPN의 서열 비교는 TPase의 특이성에 미치는 요소를 규명하는 데 단서를 제공한다. TPase의 3차원 구조의 일부는 서브틸리신 BPN과 매우 유사하였는 데, 이는 두 효소 사이의 높은 보존성 아미노산 서열 때문이다(상동성 93.8%). 서브틸리신 BPN에 대한 TPase 동족체 모델의 3차원 구조는 도 20에 나타나 있다. Bacillus-유래 서브틸리신은 세린 프로테아제의 두 번째 큰 패밀리이다. 알칼린 프로테아제의 두 종류, 서브틸리신 칼스버그 및 서브틸리신 노보 또는 박테리아 프로테아제 나가아제(BPN)가 이미 동정되어 있다. Bacillus licheniformis에 의해 생성되는 서브틸리신 칼스버그는 칼스버그 실험실에서 1947년에 Linderstrom, Land와 Ottesen에 의해 발견되었다. 서브틸리신 BPN은 Bacillus amyloliquefaciences에 의해 생성된다. 두 효소는 넓은 기질 특이성을 보이며, Ser221, His64, 및 Asp32로 이루어진 활성위치 트라이어드를 갖는다. 높은 보존성 서열을 가지는 서브틸리신 NAT, TPase 및 Bacillus-유래 서브틸리신을 Clustal W 프로그램, version 1.8.1으로 얼라인먼트 하였다 (도 21). 그 결과, TPase 및 NAT는 각각 서브틸리신 BPN 및 서브틸리신 Amylosacchariticus (서브틸리신 칼스버그의 서브디비젼)과 보다 유사하였다. 칼스버그 패밀리와 비교하여, BPN 패밀리는 보다 좁은 기질 인식 스펙트럼을 갖으며, 효소 안정성에 있어서 칼슘 이온에 의존한다. 한편, TPase도 칼슘-의존성 안정성을 나타내며, P1 위치에서 기질 인식 스펙트럼이 산성 아미노산으로 한정된다.
서브틸리신 BPN의 결정 구조에 기초한 아미노산 잔기의 변화는 TPase의 3차원 모델에 나타나 있다(도 22). 효소의 활성 트라이어드 및 활성 위치는 변화되지 않았기 때문에, P1 잔기에 대한 기질 특이성의 변화와 관련된 정보를 얻지 못했다. 그럼, P1 잔기에 대한 선호도의 변화는 과연 어디에서 오는 것인가? 두 가지 이유가 기대되었다. 그 중 하나의 이유는 잔기 156 및 166 근처에서 소수성 아미노산이 전하를 띠는 아미노산으로 치환된 것이다. Wells et al. (1987)는 기질 특이성이 변화되는 것은 P1 결합 위치에서 잔기 156 및 166에서 전하를 띠는 아미노산으로 치환되었기 때문이라는 사실을 발표한 바 있다. 도 22에서 볼 수 있듯이, TPase의 아미노산 변화(적색으로 표시됨)는 Glu156 및 Gly166 잔기(청색)을 포함하는 루프 지역 근처에서 발견된다. 이러한 아미노산 변화는 Glu156 및 Gly166 잔기의 형태학적 변화에 영향을 미친다. 또 다른 이유는 촉매활성 트라이어드의 His64의 루프 지역에서 극성의 아미노산(Asn61)이 염기성 아미노산(Arg61)으로 변화된 것이다.
3.3. TPase에 의한 예측된 피브리노겐 분해 프로파일
본 발명에서 본 발명자들은 B. subtilis sp.의 배지로부터 신규한 박테리아 혈전용해 프로테아제(TPase)를 분리하였다. TPase는 PMSF에 의해 억제되고, 그의 부분적 NH2-말단 서열은 B. amyloliquefaciens로부터 분리한 서브틸리신-유사 프로 테아제 (서브틸리신 BPN) 및 B. subtilis로부터 분리한 서브틸리신-유사 프로테아제(서브틸리신 NAT)와 유사하기 때문에, 본 발명자들은 본 발명의 효소를 서브틸리신-유사 세린 프로테아제로 분류하였다. 서브틸리신 NAT는 제한된 단백질분해 활성으로 P1-P1' 펩타이드 결합에서 PAI-1을 절단하며, 이는 PAI-1-풍부화 피브린 응괴의 t-PA-유도 분해를 강화시킨다 (Urano et al. 2001). TPase는 플라스미노겐 활성자 활성을 가지고 있지 않으며, 제한된 단백질분해 활성으로 피브린을 직접적으로 분해한다. 또한, 본 발명의 효소는 피브린 내부에 위치한 Glu(E)-소수성 아미노산 서열에 대하여 선택적이며, 절단은 Glu(또는 Asp) 잔기 바로 뒤에서 일어난다.
TPase에 의한 피브리노겐의 단편화는 α사슬 내에서의 절단에 의해 발생되며, 이는 α1 및 α2 단편을 방출시키고, 결국 주 단편 2(250 kDa; 도 14)를 생성한다. 분자의 반쪽에 있는 2개의 이황화 고리 사이의 β- 및 γ-사슬 내의 단편 2의 추가적 절단은 단편 3(150 kDa) 및 단편 4(100 kDa)를 생성시킨다. 이러한 패턴은 플라스민과 매우 유사하다. TPase의 플라스민-유사 작용을 조사하기 위하여, 효소의 분석된 혹은 계산딘 절단 위치를 피브리노겐 분자의 모델에 표시하였다(도 23). 효소의 P1/P1' 위치를 피브리노겐의 각각의 사슬에 표시하였고, TPase에 의해 가수분해되지 않은 부분은 음영으로 표시하였다. TPase의 프로테아제 절단 위치는 각각의 사슬에서 수직선으로 표시하였고, 주 구조 D 및 E를 야기하는 절단은 검은색 화살표로 나타내었다. 피브리노겐은 코일링 지역에 의해 두 개의 동일한 구형 D 지역에 연결된 중심의 구형 E 지역으로 이루어져 있다. 피브리노겐 분자 구조의 각각의 반쪽에서 E 및 D 지역은 이황화 고리의 한쌍(사슬 α를 β에, 사슬 β를 γ에, 그리고 사슬 γ를 α에 연결함)에 의해 묘사되어 있다 (Zang and Ledman 1994).
TPase 민감성 결합을 규명하였고, 이를 도 24의 패널 A에 나타내었다. TPase 절단에 의해 형성된 단편의 명칭, 구조 및 분자량도 기재되어 있다. 3개의 사슬 α-나선 지역에 의해 분리되는 D' 지역(TPase 민감성 지역을 포함)에 의해 표시된 양쪽 옆은 E 지역 부근에서 자가-연합한다. 이와 같은 현상은 플라스민에서도 거의 동일하게 나타난다(도 24의 패널 B) (Walker and Nesheim 1999).
TPase에 의한 피브리노겐의 단편화는 α사슬 내에서의 절단에 의해 발생하며 이는 α1 및 α2 단편을 방출하며, 결국 D'E'D' 복합체(250 kDa)를 형성한다. 피브리노겐 분자의 반쪽에 있는 2개의 이황화 고리 사이에 있는 β- 및 γ-사슬 내의 D'E'D' 복합체의 절단은 E'D' 중간체 (150 kDa) 및 D' 단편(100 kDa)을 형성한다. 최종적으로, 피브리노겐은 D' 및 E' 단편으로 절단된다. TPase에 의한 이러한 절단 과정은 도 25의 패널 A에 도식화되어 있다. 또한, TPase의 절단 위치의 대부분은 피브리노겐 분자의 외부(특히, α-나선 사슬 내의 산성 아미노산 및 루프 지역의 외부 아미노산)에 한정되어 위치한다는 사실도 조사되었다. TPase의 절단 위치에 따른 구조는 프로그램 PDB 뷰어를 이용하여 인간 피브리노겐 구조 상에 나타내었다(도 26).
플라스민 및 TPase의 기질 인식 위치
분류 P5 P4 P3 P2 P1 P1'-P4' P5' P6'-P9' P10'
플라스민a - Lys Xaa Thy/Phe/Trp Lys - - - -
TPase Asp/Asn Haa Haa Xaa Glu/Asp Xaa Lys/Arg Xaa Val/Leu
Xaa, 비특정 아미노산; Haa, 소수성 아미노산 aBackes et al. 2000
표 11에 정리된 바와 같이, 플라스민의 선호 테트라펩타이드 기질 인식 서열은 P4-Lys, P3-Xaa(비특정 아미노산), P2-Tyr/Phe/Trp 및 P1-Lys(Backes et al. 2000)이다. TPase에 대해서는 P5-Asp/Arn, P4 3-소수성 아미노산, P2-Xaa 및 P1-Glu/Asp이었다. 상기 두 효소는 P1 인식 위치에서 전하를 띠는 아미노산을 갖는다는 점에서 서로 유사하다. 비록 TPase에 의한 기질 인식은 플라스민보다 덜 선택적이지만, TPase는 피브린-특이 플라스민-유사 프로테아제이다.
최근 약제학적 연구 및 임상적 연구는 혈전용해제의 효능, 내성 및 간편성을 개선하는 데 집중되고 있다. 새로운 혈전용해제의 공통된 특징은 혈장에서의 연장된 반감기인데, 이는 1회 또는 반복 볼루스 주입에 적합한 특징이다. 그러나, 아직까지 이상적인 혈전용해제는 개발되어 있지 않으며, 소망하는 임상적 특성은 재폐색, 전신성 혈전용해의 활성화 및 출혈의 위험 없이 혈전 혈관을 신속하게 여는 것이다(Baker 2002). Collen 및 동료연구자들(1993)은 플라스민이 t-PA에 견줄만 하거나 또는 우수하며 이는 플라스민이 출혈을 덜 일으키기 때문이라고 발표하였다. 직접적인 혈전용해효소, 플라스민은 국부적 혈전용해 및 혈전용해 출혈의 토끼 모델에서 t-PA에 비교되었다 (Marder et al. 2001). 혈전 대동맥내로 제한된 혈류를 적용시켜 플라스미노겐의 국부적 공급을 제한한 모델에서, 플라스민은 혈병 용해 및 혈관 재관류에서 t-PA보다 나은 효능을 발휘하였다. 이러한 결과 는, 플라스민이 플라스미노겐 활성자와는 분명하게 차이가 있는 유효한 혈전용해제임을 보여주는 것이다. 본 발명의 TPase는 플라스민을 분해하지 않으면서도 피브린에 대하여 높은 특이성을 나타내고, 직접적으로 작용하는 혈전용해제이며, 출혈의 위험을 증가시키지 않고, 플라스민 억제제에 의해 억제되지 않기 때문에, 혈전용해제로서 매우 유용하다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
이상에서 상세히 설명하였듯이, 본 발명은 신규한 혈전용해 프로테아제, 이를 코딩하는 핵산 분자, 상기 핵산 분자를 포함하는 벡터 및 상기 벡터를 포함하는 형질전환체를 제공한다. 본 발명의 혈전용해 프로테아제는 혈전용해능이 매우 우수할 뿐만 아니라, 소장 상피세포를 통하여 흡수될 수 있기 때문에, 혈전용해 의약으로서의 개발 가능성이 매우 높다.
참조문헌
Adams DS, et al.(1991) A synthetic DNA encoding a modified human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem 266: 8476-8482
Artursson P (1991) Cell cultures as models for drug adsorption across the intestinal mucosa. Crit Rev Ther Drug Carrier Syst 8: 305-330
Artursson P, Karlsson J (1991) Correlation between oral drug adsorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175: 880-885
Astrupt T, et al.(1952) The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 40: 346-351
Backes BJ, et al.(2000) Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nature Biotech 18: 187-193
Baker D, et al.(1992) A protein-folding reaction under kinetic control. Nature 356: 263-265
Baker WF (2002) Thrombolytic therapy: Clincal Application. Thromb Hemost 8: 291-314
Ballinger MD, et al.(1996) Furilisin: a variant of subtilisin BPN engineering for cleaving tribasic substrates. Biochemistry 35: 13579-13585
Bangert K, et al.(1993) Different N-terminal forms of ㅱ-plasmin inhibitor in human plasma. Biochem J 391: 623-625
Barbosa JARG, et al.(1996) Novel features of serine protease active sites and specificity pockets: sequence analysis and modeling studies of glutamate-specific endopeptidases and epidermolytic toxins. Protein Eng 9: 591-601
Becker RC (1994) The modern era of coronary thrombolysis. Kluwer academic publisher, Boston
Blasi F (1993) Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays 15: 105-111
Bode W, et al.(1987) The high resolution structure X-ray structure of the complex formed between subtilisin Carlsberg and eglin c, an inhibitor from the leech Hirudo medicinali. Eur J Biochem 166: 673-692
Bode W, et al.(1984) The refined 2.2 Å X-ray crystal structure of the tertiary complex formed by bovine trypsinogen, valine-valine and the Arg15 analogue of bovine pancreatic trypsin inhibitor. Eur J Biochem 144: 185-190
Breddam K, Meldal M (1992) Substrate preferences of glutamic-acid-specific endopeptidase assessed by synthetic peptide substrates based on intramolecular fluorescence quenching. Eur J Biochem 206: 103-107
Brown JH, et al.(2000) The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci 97: 85-90
Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophy Acta 1543: 203-222
Burton PS, et al.(1993) Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem Biophys Res Commun 190: 760-766
Carrell RW, et al.(1987) The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harbor Symposia Qantitative Biol, LII, 527-535
Chang CT, et al.(2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48: 3210-3216
Chmielewska J, et al.(1988) Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor: evidence for second-site interactions. Biochem J 251: 327-332
Cleary S, et al.(1989) Purification and characterization of tissue plasminogen activator kringle-2 domain expressed in Escherichia coli. Biochemistry 28: 1884-1891
Collen D (1993) Towards improved thrombolytic therapy. Lancet 342: 34-36
Collen D (1996) Fibrin-selective thrombolytic therapy for acute myocardial infraction. Circulation 93: 857-865
Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78: 3114-3124
Collen D, Lijnen HR (1995) New thrombolytic agents and strategies. Baillieres Clin Haematol 8: 425-435
Czapinska H, Otlewski J (1999) Structural and energetic determinants of the S1-site specificity in serine proteases. Eur J Biochem 260: 571-595
Dantzig AH, et al. (1994) Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264: 430-433
Declerck PJ, et al.(1988) Purification and characterization of a plasminogen activator inhibitor-1 binding protein from human plasma: identification as a multimeric form of S protein (vitronectin). J Biol Chem 263: 15454-15461
Declerck PJ, et al.(1992) Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol Chem 267: 116931-1696
Dorado J, et al.(2001) Nitrogen-removal with protease as a method to improve the selective delignification of hemp steamwood by white-rot fungus Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 57: 205-211
Drapeau GR, et al.(1972) Purification and properties of an extracellular protease of Staphylococcus aureus. J Biol Chem 247: 6720-6726
Erickson LA, et al.(1990) Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 346: 74-76
Evnin LB, et al.(1990) Substrate specificity of trypsin investigated by using a genetic selection. Proc Natl Acad Sci USA 87: 6659-6663
French JK, et al.(1999) Survival 12 years after randomization to streptokinase: The influence of thrombolysis in myocardial infarction flow at three to four weeks. J Am Coll Cardiol 34: 62-69
Fujita M, et al.(1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197: 1340-1347
Gallagher T, et al.(1995) The prosegment-subtilisin BPN complex: crystal structure of a specific foldase. Structure 3: 907-914
Van Gent E, et al.(2003) Serpins: structure, function and molecular evolution. Intl J Biochem Cell Biol 35: 1536-1547
Gettins GWP (2000) Keeping the serpin machine running smoothly. Genome Res 10: 1833-1835
Gils A, et al.(1998) Structure-function relationships in serpins: current concepts and controversies. Thromb Haemost 80: 531-541
Goa KL, et al.(1990) Intravenous streptokinase: a reappraisal of its therapeutic use in acute myocardial infarction. Drugs 39: 693-719
Godfrey T, West S (1996) Introduction to industrial enzymology. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 1-8
Graf L, et al.(1988) Electrostatic complementarity in the substrate binding pocket of trypsin. Proc Natl Acad Sci USA 85: 4961-4965
Graur D, Li WH (1988) Evolution of protein inhibitors of serine proteainases: positive Darwinian selection or compositional effects? J Mol Evol 28: 131-135
Graycar TP (1999) Proteolytic cleavage, reaction mechanism. In: Flickinger MC, Drew SW (eds) Bioprocess technology: fermentation, biocatalysis and bioseperation. Wiley, New York, pp 2214-2222
Gron H, Bredam K (1992) Interdependence of the binding subsites in subtilisin. Biochemistry 31: 8967-8971
Gupta R, et al.(1999) Bleach-stable, alkaline protease from Bacillus sp. Biotechnol Lett 21: 135-138
Henschen A (1983) On the structure of functional sites in fibrinogen. Thromb Res Suppl 5: 27-39
Hillgren KM, et al.(1995) In vitro systems for studying intestinal drug adsorption. Med Res Rev 15: 83-109
Holmes WE, et al.(1985) Cloning and expression of the gene for pro-urokinase in Eschericia coli. Biotechnology 3: 923
Hungtington JA, et al.(2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407: 923-926
Hunter J, et al.(1993) Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J Biol Chem 268: 14991-14997
Irving JA, et al.(2000) Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 10: 18945-1864
Jacobs I, et al.(1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13: 8913-8926
Janciauskiene S (2001) Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophy Res Commun 201: 222-227
Jewell DA, et al.(1992) The 3C cystein-protease from hepatic A virus. Biochemistry 31: 7862-7869
Juhan-Vague I, et al.(1995) Pathophysiology of fibrinolysis. Baillieres Clin Haematol 8: 329-343
Kalisz HM (1988) Microbial proteases. Adv Biochem Eng Biotechnol 36: 1-65
Kanehisa K (2000) Woven or knit fabrics manufactured using yarn dyed raw silk. US Patent 6, 080, 689
Karayadi D, Lukito W (2000) Functional food and contemporary nutrition-health paradigm: Tempeh and its potential beneficial effects in disease prevention and treatment. Nutrition 16: 679
Karlsson J, et al.(1993) Transport of celiprolol across human intestinal epithelial Caco-2 cells: mediation of secretion by multiple transporters including P-glycoprotein. Br J Pharmacol 110: 1009-1016
Kato T, et al.(1992) Purification of a new extracellular 90-kDa serine protease with isoelectric point of 3.9 from Bacillus subtilis (natto) and elucidation of its distinct mode of action. Biosci Biotech Biochem 56: 1166-1168
Kim HK, et al.(1999) Genestructure and expression of the gene from Beauveria basiana encoding bassiasin I, an insect cuticle-degrading serine protease. Biotechnol Lett 21: 777-783
Kim WK, et al.(1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. Strain CK 11-4 screened from Chungkook-jang. Appl Environ Microbiol 62: 2482-2488
Krishnamurti C, et al.(1987) Plasminogen activator inhibitor: a regulation of ancrod-induced fibrin deposition in rabbits. Blood 69: 798-803
Kruithhof EKO, et al.(1984) Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 64: 907-913
Kruithof EKO (1988) Plasminogen activator inhibitors: a review. Enzyme 40: 113
Kuhfeld MT, et al.(1994) An automated in vitro permeability screen using robotics. Pharm Res 11: 39
Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17: 561-594
Kunitz M (1947) Crystalline soybean trypsin inhibitor. General properties. J Gen Physiol 30: 291-310
Kunst F et. al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256
Kyon YT, et al.(1994) Extracellular alkaline proteases from alkalophilic Vibrio metschnikovii strain RH530. Biotechnol Lett 16: 413-418
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685
LATE Study Group (1993) Late accessment of thrombolytic efficacy (LATE) study with alterplase 6-24 hours after onset of acute myocardial infarction. Lancet 342: 759
Lecander I, Astedt B (1989) Occurrence of a specific plasminogen activator inhibitor of placental type, PAI-2, in men and non-pregnant women. Fibrinolysis 3: 27
Lee HJ, Im H (2003) Purification of recombinant plasminogen activator-1 in the active conformation by refolding from inclusion bodies. Protein Expr Purif 31: 99-107
Liao D, et al.(1992) Refined atomic model of wheat serine carboxypeptidase II at 2.2 ㅕ resolution. Biochemistry 31: 9796-9812
Lijnen HR, Collen D (1991) Strategies for the improvement of thrombolytic agents. Thromb Haemost 66: 88-110
Lijnen HR, et al.(1993) Interaction of staphylokinase with different molecular forms of plasminogen. Eur J Biochem 211: 91-97
Lu W, et al.(1997) Binding of amino acid side chain to S1 cavities of serine proteases. J Mol Biol 266: 441-461
Madison EL, et al. (1989) Serpin-resistant mutants of human tissue-type plasmingen activator. Nature 339: 721-724
Marder VJ, et al.(2001) Plasmin induces local thrombolysis without causing hemorrhage: a comparison with tissue plasminogen activator in the rabbit. Thromb Haemost 86: 739-745
Matsumoto SI, et al.(1994) Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: Interaction with dipeptide transport systems in apical and basolateral membranes. J Pharmacol Exp Ther 270: 498-504
McGrath KG, et al.(1985) Allergic reactions to streptokinase consistent with anaphylactic or antigen-antibody complex-mediated damage. J Allergy Clin Immunol 76: 453-457
McPhalen CA, James MNG (1988) Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry 27: 6582-6598
McPhalen CA, et al.(1988) Crystal and molecular structure of chymotrypsin inhibitor 2 from barley seeds in complex with subtilisin Novo. Proc Natl Acad Sci USA 82: 7242-7246
Morihara K (1974) Comparative specificity of microbial proteinases. Adv Enzymol 41: 179-243
Morita Y, et al. (1998) Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50: 669-674
Nakagawa A (1994) Method for cleaning a contact lens. US Patent 5, 314, 823
Nakamura T, et al.(1992) Nucleotide sequence of subtilisin NAT gene, aprT, of Bacillus subtilis (natto). Biosci Biotech Biochem 56: 1869-1871
Nakashima T, et al.(2000) Genomic cloning, mapping, structure and promoter analysis of HEADPIN, a serpin which is down-regulated in head and neck cancer cells. Biochim Biophys Acta 1492: 441-446
Nellans HN (1991) Paracellular intestinal transport: Modulation of adsorption. Adv Drug Deliv Rev 7: 339-364
Neurath H (1984) Evolution of proteolytic enzymes. Science 224: 350-357
Nienaber VL, et al.(1993) A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. Biochemistry 32: 11469-11475
Pannell R, Gurewich V (1987) Activation of plasminogen by single-chain urokinase or by two-chain urokinase a demonstration that single-chain urokinase has a low catalytic activity (pro-urokinase). Blood 69: 22-26
Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intracellular junctions to adsorption of nutrients by the small intestine of the rat. J Membr Biol 100: 123-136
Patson PA (2000) Serpins and other serine protease inhibitors. Immunol Today 21: 354
Patton JS (1996) Mechanism of macromolecular adsorption by the lungs. Adv Drug Del Rev 19: 3-36
Pennica D, et al.(1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301: 214-221
Phung-Ba V, et al.(1995) Interaction of pristinamycin IA with P-glycoprotein in human intestinal epithelial cells. Eur J Pharmacol 288: 187-192
Puri S, Beg QK, Gupta R (2002) Optimization of alkaline protease production from Bacillus sp. using response surface methodology. Curr Biocrobiol 44: 286-290
Qiu X, et al.(1996) Unique fold and active site in cytomegalovirus protease. Nuture 383: 275-279
Ragg H, et al.(2001) Vertebrate serpins: construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. Mol Biol Evol 18: 577-584
Ragg H, et al.(2001) Vertebrate serpins: construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. Mol Biol Evol 18: 577-584
Rao MB, et al.(1988) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62: 597-635
Rawling ND, Polgar L, Barrett AJ (1991) A new family of serine-type peptidases related to prolyl oligopeptide. Biochem J 279: 907-908
Robert FS (1997) Drug delivery takes a deep breath. Science 277: 1199-1200
Sakiyama T, et al.(1998) Performance of protease as a cleaning agent for stainless steel surfaces fouled with protein. J Ferment Bioeng 55: 297-301
Schleuning WD (2001) Vampire bat plasminogen activator DSPA-alpha-1 (desmoteplase): a thrombolytic drug optimized by natural selection. Haemostasis 31: 118-122
Shinde UP, et al.(1997) Protein memory through altered folding mediated by intermolecular chaperones. Nature 389: 520-522
Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serime proteases. Protein Sci 6: 501-523
Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like proteases. Protein Sci 6: 501-523
Silverman GA, et al.(2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. J Biol Chem 276: 33293-33296
Sottrup-Jensen L, Petersen TE, Magnusson S (1978) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research, Washington DC, Foundation, pp 91
Stahl M, Ferrari E (1984) Replacement of the Bacillus subtilis subtilisin structural gene with in vitro-derived deletion mutant. J Bacteriol 158: 411-418
Stennicke HR, et al.(1996) Characterization of the S1 binding site of glutamic acid-specific protease from Streptomyces griseus. Protein Sci 5: 2266-2275
Stevenson CL, et al.(1995) Permeability screen for synthetic peptide combinatorial libraries using Caco-2 cell monolayers and LC/MS/MS. Pharm Res 12: 94
Sumi H, et al.(1990) Enhancement of the fibrinolytic activity in plasma by oral administration of natokinase. Acta Haematol: 84: 139-143
Sumi H, et al.(1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111
Sumi H, et al.(1980) Oral administration of urokinase. Thromb Res 20: 711-714
Takanaga H, et al.(1994) pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells. J Pharm Pharmacol 46: 567-570
The GUSTO Investigators (1993) An international randomized trial comparing four thrombolytic strategies fir acute myocardial infarction. N Eng J Med 329: 673
Thomson JD, et al.(1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
Torr SR, et al.(1992) Plasminogen steal and clot lysis. J Am Coll Cardiol 19: 1085-1090
Urano T, et al.(2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276: 24690-24696
Van der Laan JC, et al.(1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57: 901-909
Van Hinsbergh VWM, et al.(1991) Regulation of plasminogen activator production by endothelial cells: role in fibrinolysis and local proteolysis. Int J Radiat Biol 60: 261-272
Vasalli JD (1994) The urokinase receptor. Fibrinolysis 8: 172
Vasantha N, et al.(1984) Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159: 811-819
Verstraete M (2000) Third-generation thrombolytic drugs. Am J Med 109: 52-58
Walker JB, Nesheim ME (1999) The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J Biol Chem 274: 5201-5212
Wall DA (1995) Pulmonary adsorption of peptide and proteins. Drug Deliv 2: 1-20
Wang J, et al.(1997) The structure of ClpP at 2.3 ㅕ resolution suggests a model for ATP-dependent proteolysis. Cell 14: 447-456
Ward OP (1985) Proteolytic enzymes. In: Moo-Young M (ed) Comprehensive biotechnology, the practice of biotechnology: current commodity products, vol 3. Pergamon Press, Oxford, pp 789-818
Weisberg WG, et al.(1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697-703
Wells JA, et al.(1987) Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci USA 84: 5167-5171
Wells JA, et al.(1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciences subtilisin in Bacillus subtilis. Nucleic Acids Res 11: 7911-7925
Wells JA, et al.(1987) Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci USA 84: 1219-1223
Wiman B, Collen D (1978) On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 84: 573-578
Yamagata Y, et al.(1995) Molecular cloning and and nucleotide sequence of the 90 k serine protease gene, hspK, from Bacillus subtilis (natto) No. 16. Curr Microbiol 31: 340-344
Yoshimoto T, et al.(1988) Cloning and expression of subtilisin amylosacchariticus gene. J Biochem 103: 1060-1065
Zang JZ, Redman CM (1994) Role of interchain disulfide bonds on the assembly and secretion of human fibrinogen. J Biol Chem 269: 652-658
<110> Biovan Ltd. PYUN, YU-RYANG <120> Novel Fibrinolytic Protease <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1149 <212> DNA <213> Bacillus subtilis TP6 <220> <221> CDS <222> (1)..(1146) <400> 1 atg aga agc aaa aag ttg tgg atc agt ttg ctg ttt gct tta gcg tta 48 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Ala Leu 1 5 10 15 atc ttt acg atg gcg ttc ggc agc acg act tct gcc cag gct gca ggg 96 Ile Phe Thr Met Ala Phe Gly Ser Thr Thr Ser Ala Gln Ala Ala Gly 20 25 30 aaa tca aac ggg gaa aag aaa tat att gtc gga ttt aag cag aca atg 144 Lys Ser Asn Gly Glu Lys Lys Tyr Ile Val Gly Phe Lys Gln Thr Met 35 40 45 agc acg atg agc gcc gcc aag aaa aaa gat gtc att tct gaa aaa ggc 192 Ser Thr Met Ser Ala Ala Lys Lys Lys Asp Val Ile Ser Glu Lys Gly 50 55 60 ggg aaa gtg caa aag caa ttc aaa tat gta gac gca gct tca gct aca 240 Gly Lys Val Gln Lys Gln Phe Lys Tyr Val Asp Ala Ala Ser Ala Thr 65 70 75 80 tta aat gaa aaa gct gta aaa gag ctg aaa aaa gac cct agc gtc gct 288 Leu Asn Glu Lys Ala Val Lys Glu Leu Lys Lys Asp Pro Ser Val Ala 85 90 95 tac gtt gaa gaa gat cac gtt gca cag gcg tac gcg cag tcc gtg cct 336 Tyr Val Glu Glu Asp His Val Ala Gln Ala Tyr Ala Gln Ser Val Pro 100 105 110 tac ggc gta tca cag att aaa gcc cct gct ctg cac tct caa ggc ttc 384 Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu His Ser Gln Gly Phe 115 120 125 acc gga tca aat gtt aaa gta gcg gtt atc gac agc ggt atc gat tct 432 Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp Ser Gly Ile Asp Ser 130 135 140 tct cat cct gat tta aag gta gca ggc gga gcc agc atg gtt cct tct 480 Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala Ser Met Val Pro Ser 145 150 155 160 gaa aca aat cct ttc caa gac aga aac tct cac gga act cac gtt gcc 528 Glu Thr Asn Pro Phe Gln Asp Arg Asn Ser His Gly Thr His Val Ala 165 170 175 ggt aca gtt gcg gct ctt aat aac tca gtc ggt gta tta ggc gtt gcg 576 Gly Thr Val Ala Ala Leu Asn Asn Ser Val Gly Val Leu Gly Val Ala 180 185 190 cca agc gca tct ctt tac gcg gta aaa gtt ctc ggc act gac ggt tcc 624 Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu Gly Thr Asp Gly Ser 195 200 205 ggc cag tac agc tgg atc att aac gga att gag tgg gcg atc gca aac 672 Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ala Asn 210 215 220 aat atg gac gtt att aac atg agc ctc ggc gga cct tct ggt tct gca 720 Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly Pro Ser Gly Ser Ala 225 230 235 240 gcg tta aaa gcg gca gtt gac aaa gcc gtt gct tcc ggc gtc gta gtg 768 Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala Ser Gly Val Val Val 245 250 255 gtt gcg gca gcc ggt aac gaa ggc act tcc ggc ggc tct agc aca gtg 816 Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly Gly Ser Ser Thr Val 260 265 270 ggc tac cct ggt aaa tac cct tct gtc att gca gta ggc gct gtt aac 864 Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala Val Gly Ala Val Asn 275 280 285 agc agc aac caa aga gca tct ttc tca agc gta ggt tct gag ctt gat 912 Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val Gly Ser Glu Leu Asp 290 295 300 gtc atg gca cca ggc gtc tct atc caa agc acg ctt cct gga aac aaa 960 Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr Leu Pro Gly Asn Lys 305 310 315 320 tac ggc gcg tac aat ggt acg tca atg gca tct ccg cac gtt gcc gga 1008 Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser Pro His Val Ala Gly 325 330 335 gcg gct gct ttg att ctt tct aag cac ccg aac tgg aca aac act caa 1056 Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn Trp Thr Asn Thr Gln 340 345 350 gtc cgc agc agt tta gaa aac acc act aca aaa ctt ggt gat gct ttc 1104 Val Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys Leu Gly Asp Ala Phe 355 360 365 tac tac gga aaa ggg cta atc aac gta caa gca gct gca cat taa 1149 Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala Ala Ala His 370 375 380 <210> 2 <211> 382 <212> PRT <213> Bacillus subtilis TP6 <400> 2 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Ala Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Gly Ser Thr Thr Ser Ala Gln Ala Ala Gly 20 25 30 Lys Ser Asn Gly Glu Lys Lys Tyr Ile Val Gly Phe Lys Gln Thr Met 35 40 45 Ser Thr Met Ser Ala Ala Lys Lys Lys Asp Val Ile Ser Glu Lys Gly 50 55 60 Gly Lys Val Gln Lys Gln Phe Lys Tyr Val Asp Ala Ala Ser Ala Thr 65 70 75 80 Leu Asn Glu Lys Ala Val Lys Glu Leu Lys Lys Asp Pro Ser Val Ala 85 90 95 Tyr Val Glu Glu Asp His Val Ala Gln Ala Tyr Ala Gln Ser Val Pro 100 105 110 Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu His Ser Gln Gly Phe 115 120 125 Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp Ser Gly Ile Asp Ser 130 135 140 Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala Ser Met Val Pro Ser 145 150 155 160 Glu Thr Asn Pro Phe Gln Asp Arg Asn Ser His Gly Thr His Val Ala 165 170 175 Gly Thr Val Ala Ala Leu Asn Asn Ser Val Gly Val Leu Gly Val Ala 180 185 190 Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu Gly Thr Asp Gly Ser 195 200 205 Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ala Asn 210 215 220 Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly Pro Ser Gly Ser Ala 225 230 235 240 Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala Ser Gly Val Val Val 245 250 255 Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly Gly Ser Ser Thr Val 260 265 270 Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala Val Gly Ala Val Asn 275 280 285 Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val Gly Ser Glu Leu Asp 290 295 300 Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr Leu Pro Gly Asn Lys 305 310 315 320 Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser Pro His Val Ala Gly 325 330 335 Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn Trp Thr Asn Thr Gln 340 345 350 Val Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys Leu Gly Asp Ala Phe 355 360 365 Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala Ala Ala His 370 375 380

Claims (7)

  1. 다음의 특성을 갖는 혈전용해 프로테아제:
    (a) Bacillus subtilis로부터 유래;
    (b) 최적 온도가 40-60℃;
    (c) 최적 pH가 5.0-6.5;
    (d) 분자량이 26-28 kDa;
    (e) PMSF(phenylmethanesulfonyl fluoride), EDTA 및 β-머캅토에탄올에 의해 비활성화 되고 칼슘 이온 및 철이온에 의해 활성화 되며; 그리고
    (f) 피브리노겐의 α사슬의 Glu11와 Gly12 및 Asn383와 Ala384, β사슬의 Glu141와 Tyr142, Gln189와 Met190 및 Gln332와 Asn333, 그리고 γ사슬의 Asp80와 Ala81 및 Asn207와 Trp208 사이를 절단한다.
  2. 서열목록 제2서열의 아미노산 서열을 포함하는 혈전용해 프로테아제.
  3. 상기 제 2 항의 혈전용해 프로테아제를 코딩하는 핵산 분자.
  4. 제 3 항에 있어서, 상기 핵산 분자의 염기 서열은 서열목록 제1서열을 포함하는 것을 특징으로 하는 혈전용해 프로테아제를 코딩하는 핵산 분자.
  5. 상기 제 3 항 또는 제 4 항의 혈전용해 프로테아제를 코딩하는 핵산 분자를 포함하는 벡터.
  6. 상기 제 5 항의 벡터를 포함하는 형질전환체.
  7. 상기 제 1 항의 혈전용해 프로테아제를 생산하는 Bacillus subtilis TP6(KFCC 11343P).
KR1020050008322A 2005-01-29 2005-01-29 신규한 혈전용해 프로테아제 KR100753002B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050008322A KR100753002B1 (ko) 2005-01-29 2005-01-29 신규한 혈전용해 프로테아제

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050008322A KR100753002B1 (ko) 2005-01-29 2005-01-29 신규한 혈전용해 프로테아제

Publications (2)

Publication Number Publication Date
KR20060087627A true KR20060087627A (ko) 2006-08-03
KR100753002B1 KR100753002B1 (ko) 2007-08-31

Family

ID=37176334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050008322A KR100753002B1 (ko) 2005-01-29 2005-01-29 신규한 혈전용해 프로테아제

Country Status (1)

Country Link
KR (1) KR100753002B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146036A1 (de) * 2009-06-19 2010-12-23 Henkel Ag & Co. Kgaa Neue proteasen und mittel enthaltend diese proteasen
CN107937372A (zh) * 2017-12-19 2018-04-20 江南大学 一种耐酸性提高的纳豆激酶

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146036A1 (de) * 2009-06-19 2010-12-23 Henkel Ag & Co. Kgaa Neue proteasen und mittel enthaltend diese proteasen
CN107937372A (zh) * 2017-12-19 2018-04-20 江南大学 一种耐酸性提高的纳豆激酶
CN107937372B (zh) * 2017-12-19 2020-03-24 江南大学 一种耐酸性提高的纳豆激酶

Also Published As

Publication number Publication date
KR100753002B1 (ko) 2007-08-31

Similar Documents

Publication Publication Date Title
Ko et al. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02
Peng et al. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food
Wang et al. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007
Kim et al. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish
Kim et al. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh
Jeong et al. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17
Agrebi et al. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: purification, biochemical and molecular characterization
Elhoul et al. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650
Peng et al. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis
Jeong et al. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from Cheonggukjang and its expression in protease-deficient Bacillus subtilis strains
WO2006101140A1 (ja) 新規プロテアーゼ、該プロテアーゼを生産する微生物、及びこれらの利用
Jo et al. Cloning and overexpression of aprE3-17 encoding the major fibrinolytic protease of Bacillus licheniformis CH 3-17
Jeong et al. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1
Morel et al. Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis
US7601807B2 (en) Protease, DNA encoding the same, and method for manufacturing protease
KLEIN et al. Cloning, DNA sequence analysis and partial characterization of pepN, a lysyl aminopeptidase from Lactobacillus delbrueckii ssp. lactis DSM7290
Peek et al. Some characteristics of a proteinase from a thermophilic Bacillus sp. expressed in Escherichia coli: comparison with the native enzyme and its processing in E. coli and in vitro
Sasagawa et al. Purification and properties of collagenase from Cytophaga sp. L43-1 strain
lan Liu et al. Purification and characterization of a fibrinolytic enzyme from the food-grade fungus, Neurospora sitophila
Suzuki et al. A novel member of the subtilisin-like protease family from Streptomyces albogriseolus
Yeo et al. Biochemical analysis of a fibrinolytic enzyme purified from Bacillus subtilis strain A1
KR100753002B1 (ko) 신규한 혈전용해 프로테아제
Olędzka et al. High-level expression, secretion, and purification of the thermostable aqualysin I from Thermus aquaticus YT-1 in Pichia pastoris
Arima et al. Isolation and characterization of a serine protease from the sprouts of Pleioblastus hindsii Nakai
Jeong et al. Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120810

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180731

Year of fee payment: 12