KR20060084238A - Method for improvement of hydrogen storage and hydrogen storage medium according to said method - Google Patents

Method for improvement of hydrogen storage and hydrogen storage medium according to said method Download PDF

Info

Publication number
KR20060084238A
KR20060084238A KR1020050004965A KR20050004965A KR20060084238A KR 20060084238 A KR20060084238 A KR 20060084238A KR 1020050004965 A KR1020050004965 A KR 1020050004965A KR 20050004965 A KR20050004965 A KR 20050004965A KR 20060084238 A KR20060084238 A KR 20060084238A
Authority
KR
South Korea
Prior art keywords
hydrogen storage
storage medium
storage capacity
fluorine
present
Prior art date
Application number
KR1020050004965A
Other languages
Korean (ko)
Inventor
이영석
박일남
엄영미
조세호
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020050004965A priority Critical patent/KR20060084238A/en
Publication of KR20060084238A publication Critical patent/KR20060084238A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 수소저장능력을 향상시키는 방법 및 그에 따른 수소저장매체에 관한 것으로, 보다 구체적으로는 수소저장매체에 불소를 이용한 표면처리를 가함으로써 수소저장능력을 향상시키는 방법 및 상기의 방법에 의하여 수소저장능력이 향상된 수소저장매체 관한 것이다. 본 발명에 의하면 수소저장매체의 수소저장능력을 대폭 향상시킬 수 있게 되며, 또한 상온, 상압하에서 처리가 이루어지고, 별도의 개시제나 에너지를 요구하지 않으므로 경제성 면에서도 우수하다. The present invention relates to a method for improving hydrogen storage capacity and a hydrogen storage medium according to the present invention, and more particularly, to a method for improving hydrogen storage capacity by applying a surface treatment using fluorine on a hydrogen storage medium and the hydrogen by the above method. The present invention relates to a hydrogen storage medium having an improved storage capacity. According to the present invention, it is possible to greatly improve the hydrogen storage capacity of the hydrogen storage medium, and the treatment is performed at room temperature and atmospheric pressure, and it is excellent in terms of economical efficiency since it does not require a separate initiator or energy.

수소저장능력, 수소저장매체, 탄소재료, 탄소나노튜브, 활성탄소섬유, 불소Hydrogen storage capacity, hydrogen storage medium, carbon material, carbon nanotube, activated carbon fiber, fluorine

Description

수소저장능력을 향상시키는 방법 및 그에 따른 수소저장매체{Method for Improvement of Hydrogen Storage and Hydrogen Storage Medium according to said Method} Method for Improvement of Hydrogen Storage and Hydrogen Storage Medium according to said Method}             

도 1은 본 발명의 일실시예에 의한 다중벽 탄소나노튜브의 수소저장량을 나타낸 그래프이다.1 is a graph showing the hydrogen storage amount of a multi-walled carbon nanotubes according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 의한 활성탄소섬유의 수소저장량을 나타낸 그래프이다. 2 is a graph showing the hydrogen storage amount of the activated carbon fiber according to an embodiment of the present invention.

본 발명은 수소저장능력을 향상시키는 방법 및 그에 따른 수소저장매체에 관한 것으로, 보다 구체적으로는 수소저장매체에 불소를 이용한 표면처리를 가함으로써 수소저장능력을 향상시키는 방법 및 상기의 방법에 의하여 수소저장능력이 향상된 수소저장매체 관한 것이다.The present invention relates to a method for improving hydrogen storage capacity and a hydrogen storage medium according to the present invention, and more particularly, to a method for improving hydrogen storage capacity by applying a surface treatment using fluorine on a hydrogen storage medium and the hydrogen by the above method. The present invention relates to a hydrogen storage medium having an improved storage capacity.

산업혁명 이후, 화석연료의 사용은 지속적으로 증가하여 왔고, 이로 인한 환경오염, 지구 온난화 등의 문제가 크게 대두되고 있다. 현재에는 화석연료를 대체할 수 있는 에너지원에 관한 연구가 다방면에서 진행되고 있고, 태양열, 지열, 풍력, 해양에너지 등의 자연에너지와 물을 원료로 하는 수소에너지가 화석연료의 대체 에너지원으로 부각되고 있다. 그 중에서도 수소에너지는 지구상에 풍부하게 존재하는 물을 원료로 하고, 어떤 연소과정에서도 용이하게 원래의 수소로 되돌아가기 때문에 이상적인 청정에너지로 부각되고 있다. 수소는 그 상태로 연소시키면 열에너지로, 내연기관을 이용하면 기계에너지로, 또 산소와 반응시켜 전기를 발생하는 연료전지에도 이용할 수 있다. 그러나 수소는 고밀도로 안전하게 저장하기가 어렵기 때문에 에너지원으로서의 수소의 활용은 크게 제한받고 있는 실정이다. 따라서, 에너지원으로 수소를 활용하기 위해서는 수소저장량을 획기적으로 증대시킬수 있는 저장재료 및 저장방법에 관한 연구가 선행되어야 할 것이다. Since the Industrial Revolution, the use of fossil fuels has been steadily increasing, resulting in environmental pollution and global warming. Currently, researches on energy sources that can replace fossil fuels have been conducted in various fields, and natural energy such as solar, geothermal, wind, and marine energy and hydrogen energy using water are emerging as alternative energy sources for fossil fuels. It is becoming. Among them, hydrogen energy is emerging as an ideal clean energy because water is abundantly present on the earth as a raw material and easily returns to the original hydrogen in any combustion process. Hydrogen can be used as a thermal energy when it is burned as it is, as a mechanical energy when an internal combustion engine is used, and as a fuel cell that generates electricity by reacting with oxygen. However, since hydrogen is difficult to store safely at a high density, the use of hydrogen as an energy source is greatly limited. Therefore, in order to utilize hydrogen as an energy source, studies on storage materials and storage methods that can drastically increase the storage capacity of hydrogen should be preceded.

현재까지 개발된 수소저장 방법으로는 액체수소저장법, 기체수소저장법, 그 리고 수소저장합금의 형태로 저장하는 방법이 있다. 기체수소저장법이나 액체수소저장법은 상온에서 폭발 위험성이 있으며 저장비용이 높다는 단점이 있다. 수소저장합금의 형태로 저장하는 방법은 상온에서 20~40 atm 이하의 압력으로 수소를 안전하게 저장할 수 있지만, 무게가 무겁고 가격이 비싸며 수소저장능력에서도 가솔린이나 디젤보다 떨어진다는 문제점이 있다. Hydrogen storage methods developed to date include liquid hydrogen storage, gaseous hydrogen storage, and hydrogen storage alloys. Gas hydrogen storage and liquid hydrogen storage have the disadvantages of explosion risk at room temperature and high storage costs. The storage method in the form of a hydrogen storage alloy can safely store hydrogen at a pressure of 20-40 atm or less at room temperature, but has a problem in that it is heavy, expensive, and inferior to gasoline or diesel in hydrogen storage capacity.

상기와 같은 문제점으로 인해 탄소재료를 이용한 수소저장 방법이 시도되기 시작하였다. 탄소재료는 단일의 원소로 구성되어 있음에도 불구하고, 결합의 형태가 다양하며, 화학적 안정성, 우수한 전기 및 열전도성, 고강도, 고탄성율, 생체친화성 등의 특성을 가진 우수한 재료이다. 또한 탄소재료는 경량이며 자원량이 풍부하다는 장점도 지니고 있다. 탄소재료 중에서도 탄소나노튜브(Carbon Nanotube; CNT)는 우수한 기계적 특성, 전기적 선택성, 뛰어난 전계방출 특성, 고효율의 수소저장매체로서의 특성을 지니는 것으로 알려지고 있다. 탄소나노튜브의 합성방법으로는 전기방전법, 열분해법, 레이저증착법, 플라즈마 화학 기상 증착법, 열화학기상증착법, 전기분해방법, Flame합성방법 등이 있다. 현재의 탄소나노튜브에 관한 연구는 합성방법과 소재로서의 응용에 관한 부분에 집중되고 있으며, 수소저장능력을 향상시키기 위한 방면의 연구에 있어서는 알칼리금속을 도핑하는 방법에 집중되고 있다. 탄소나노튜브가 우수한 수소저장매체로서의 특성을 지니고는 있으나, 현재의 수준으로는 미흡한 실정이며, 탄소나노튜브를 수소저장매체로 활용하기 위해서는 현재 알려진 것보다 향상된 수소저장능력이 필수적으로 요구된다. Due to the above problems, a hydrogen storage method using a carbon material has been attempted. Although the carbon material is composed of a single element, it is a good material having various forms of bonding and having properties such as chemical stability, excellent electrical and thermal conductivity, high strength, high elastic modulus, and biocompatibility. Carbon materials also have the advantage of being lightweight and resource-rich. Among carbon materials, carbon nanotubes (CNTs) are known to have excellent mechanical properties, electrical selectivity, excellent field emission characteristics, and high efficiency hydrogen storage media. Examples of carbon nanotube synthesis include electro discharge, pyrolysis, laser deposition, plasma chemical vapor deposition, thermochemical vapor deposition, electrolysis, and flame synthesis. Current researches on carbon nanotubes have focused on synthetic methods and their application as materials, and researches on improving the hydrogen storage ability have focused on the doping of alkali metals. Although carbon nanotubes have characteristics as excellent hydrogen storage media, they are inadequate at the present level, and in order to utilize carbon nanotubes as hydrogen storage media, improved hydrogen storage capacity is required.

본 발명은 상기의 문제점을 해결하기 위한 것으로, 수소저장매체에 불소를 이용한 표면처리를 가함으로써 수소저장능력을 향상 시킬 수 있게 됨을 목적으로 한다.
The present invention is to solve the above problems, an object of the present invention is to improve the hydrogen storage capacity by applying a surface treatment using fluorine to the hydrogen storage medium.

상기의 목적을 달성하기 위하여 본 발명은 수소저장매체에 소정의 온도, 압력, 반응시간의 조건하에서 불소를 이용한 표면처리를 수행함으로써 수소저장능력을 향상시키는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for improving the hydrogen storage capacity by performing a surface treatment using fluorine on a hydrogen storage medium under the conditions of a predetermined temperature, pressure, and reaction time.

본 발명은 또한 상기 방법에 의하여 수소저장능력이 향상된 수소저장매체를 제공한다. The present invention also provides a hydrogen storage medium having improved hydrogen storage capacity by the above method.

이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

우선 본 발명에서의 수소저장매체는 탄소재료를 이용한다. 보다 구체적으로는 탄소나노튜브, 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 흑연 등이 이용된다. First, the hydrogen storage medium in the present invention uses a carbon material. More specifically, carbon nanotubes, activated carbon, activated carbon fibers, pitch-based nanofibers, graphite, and the like are used.

본 발명은 수소저장매체에 소정의 조건하에서 불소(Fluorine)를 이용한 표면처리를 가함을 특징으로 한다. 불소는 반응성이 강하며, 전기음성도(electronegativity)가 4.0으로 모든 원소 중에서 가장 크다는 특성을 지니고 있다. 탄소재료의 표면특성은 bulk 특성과 같은 구성 원소 간에 작용되는 모든 요소뿐만 아니라 추가로 free surface라는 독특한 환경에서 나타나는 상호작용의 종합 적인 결과에 의해 결정된다. 따라서 이러한 상호 작용력이 발현되도록 하는 기능성들을 표면에 도입함으로써 소재의 표면특성을 조절할 수 있다. The present invention is characterized in that the hydrogen storage medium is subjected to a surface treatment using fluorine under predetermined conditions. Fluorine is highly reactive and has the highest electronegativity of 4.0, the largest of all elements. The surface properties of the carbon material are determined by the overall result of the interactions that occur in the unique environment of the free surface, as well as all the elements that act between the constituent elements, such as the bulk properties. Therefore, it is possible to control the surface properties of the material by introducing the functionalities that allow such interaction force to be expressed on the surface.

본 발명에서의 표면처리는 Direct Fluorination법에 의한다. Direct Fluorination법은 불소가스에 의해 표면을 개질하는 화학적 처리방법으로, 개질하고자하는 매체에 불소가스를 직접적으로 접촉시키는 방법이다. Direct Fluorination법은 표면처리를 위한 장치가 간단하고, 상온, 저진공 하에서 장치를 운전하므로 경제적이며, 표면처리 반응의 개시를 위한 개시제나 촉매 또는 에너지가 필요 없고, 처리조건에 따라 친수?발수성, 접착성, WBL(weak boundary layer)의 제거 및 기능성기의 도입 등과 같은 다양한 기능성을 소재의 표면에 부여할 수 있다. Surface treatment in the present invention is by the direct fluorination method. Direct fluorination is a chemical treatment that modifies the surface by fluorine gas. It is a method in which fluorine gas is brought into direct contact with a medium to be reformed. Direct Fluorination method is simple because the device for surface treatment is simple and economical because it operates at room temperature and low vacuum. It does not require initiator, catalyst or energy for initiating the surface treatment reaction. Various functionalities may be imparted to the surface of the material, such as, for example, removal of a weak boundary layer (WBL) and introduction of functional groups.

이하에서 본 발명을 바람직한 실시예에 의하여 더욱 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

실시예 1Example 1

다중벽 탄소나노튜브(Multiwalled Carbon Nanotube; MWCNT)에 불소를 이용한 표면처리를 하고 수소저장량을 측정하였다. 본 실시예에 사용된 다중벽 탄소나노튜브는 NanoKarbon사 로부터 입수하였다. 불소를 이용한 표면처리는 상온에서 총 반응압력을 1기압으로 하여 10분간 실시하였으며, 불소 대 질소비를 0.2 : 0.8로 하여 실시하였다. 수소저장량의 측정은 300K, 100기압에서 샘플량 100mg으로 하여, PCT 장치를 이용한 Volumetric method로 하였고 그 결과를 아래의 표에 나타내었다. Multiwalled Carbon Nanotubes (MWCNTs) were treated with fluorine and surface hydrogen was measured. The multi-walled carbon nanotubes used in this example were obtained from NanoKarbon. Surface treatment with fluorine was carried out at room temperature for 10 minutes with a total reaction pressure of 1 atmosphere, and a fluorine to nitrogen ratio of 0.2: 0.8. Hydrogen storage was measured at 300K and 100 atm, with a sample volume of 100 mg. The volumetric method using a PCT device was used and the results are shown in the table below.

〔표 1〕MWCNT에서의 불소처리 결과Table 1 Result of fluorine treatment in MWCNT

Figure 112005003020420-PAT00001
Figure 112005003020420-PAT00001

탄소재료에서의 수소저장능력은 물리흡착으로 간주되므로, 비표면적(specific surface area)이 크고, 미세공면적(micro pore area)이 크면 수소저장능력이 우수하다고 알려져 있다. 본 실시예에서의 불소처리 전?후의 비표면적과 미세공면적을 살펴보면, 상기의 표 1에서 알 수 있듯이 비표면적은 크게 감소하였고, 미세공면적은 다소 증가하였다. 따라서 비표면적과 미세공면적의 변화에 의하면 수소저장량은 감소되어야 한다. 그러나 본 실시예에서 불소처리 후의 수소저장량은 불소처리 전에 비하여 약 40%가 증가하였다(1.18 → 1.65). 상기의 결과로부터 불소화 반응이 수소저장능력을 향상시킨다는 것을 알 수 있다. 도 1은 본 실시예에 의한 수소저장량을 나타낸 그래프이다. Since the hydrogen storage capacity in the carbon material is regarded as physical adsorption, it is known that the hydrogen storage capacity is excellent when the specific surface area is large and the micro pore area is large. Looking at the specific surface area and the micropore area before and after the fluorine treatment in the present embodiment, as shown in Table 1 above, the specific surface area was greatly reduced, and the micropore area was slightly increased. Therefore, according to the change of specific surface area and micropore area, hydrogen storage volume should be reduced. However, in this embodiment, the amount of hydrogen storage after fluorination increased about 40% compared to that before fluorination (1.18 → 1.65). From the above results, it can be seen that the fluorination reaction improves the hydrogen storage capacity. 1 is a graph showing the hydrogen storage amount according to the present embodiment.

실시예 2Example 2

활성탄소섬유(Activated Carbon Fiber; ACF)에 불소를 이용한 표면처리를 하고 수소저장량을 측정하였다. 본 실시예에 사용된 활성탄소섬유는 (주)오사카가스(상품명 adol 15) 로부터 입수하였다. 불소를 이용한 표면처리는 상 온에서 총 반응압력을 1기압으로 하여 10분간 실시하였으며, 불소 대 질소비를 0.1 : 0.9로 하여 실시하였다. 수소저장량의 측정은 300K, 100기압에서 샘플량 100mg으로 하여, PCT 장치를 이용한 Volumetric method로 하였고 그 결과를 아래의 표에 나타내었다. Activated Carbon Fiber (ACF) was surface treated with fluorine and hydrogen storage was measured. The activated carbon fibers used in this example were obtained from Osaka Gas Co., Ltd. (trade name adol 15). Surface treatment with fluorine was carried out at room temperature for 10 minutes with a total reaction pressure of 1 atmosphere, and a fluorine to nitrogen ratio of 0.1: 0.9. Hydrogen storage was measured at 300K and 100 atm, with a sample volume of 100 mg. The volumetric method using a PCT device was used and the results are shown in the table below.

〔표 2〕ACF에서의 불소처리 결과Table 2 Fluoride Treatment Results in ACF

Figure 112005003020420-PAT00002
Figure 112005003020420-PAT00002

본 실시예에서의 불소처리 전?후의 비표면적과 미세공면적을 살펴보면, 상기의 표 2에서 알 수 있듯이 비표면적은 다소 증가하였고, 미세공면적은 크게 감소하였다. 따라서 비표면적과 미세공면적의 변화에 의하면 수소저장량은 감소되어야 한다. 그러나 본 실시예에서 불소처리 후의 수소저장량은 불소처리 전에 비하여 약 15%가 증가하였다(1.44 → 1.65). 상기의 결과로부터 불소화 반응이 수소저장능력을 향상시킨다는 것을 알 수 있다. 도 2는 본 실시예에 의한 수소저장량을 나타낸 그래프이다. Looking at the specific surface area and the micropore area before and after the fluorine treatment in the present embodiment, as shown in Table 2 above, the specific surface area was slightly increased, and the micropore area was greatly reduced. Therefore, according to the change of specific surface area and micropore area, hydrogen storage volume should be reduced. However, in this embodiment, the hydrogen storage after fluorination was increased by about 15% compared to before fluorination (1.44 → 1.65). From the above results, it can be seen that the fluorination reaction improves the hydrogen storage capacity. 2 is a graph showing the hydrogen storage amount according to the present embodiment.

실시예 3Example 3

다중벽 탄소나노튜브(Multiwalled Carbon Nanotube ; MWCNT)에 불소를 이용 한 표면처리를 하고 수소저장량을 측정하였다. 본 실시예에 사용된 다중벽 탄소나노튜브는 일진나노텍 으로부터 입수하였다. 불소를 이용한 표면처리는 상온에서 총 반응압력을 1기압으로 하여 10분간 실시하였으며, 불소의 부분압 0.2의 조건에서 실시하였다. 수소저장량의 측정은 300K, 100기압에서 샘플량 100mg으로 하여, PCT 장치를 이용한 Volumetric method로 하였고 그 결과를 아래의 표에 나타내었다. Multiwalled Carbon Nanotubes (MWCNTs) were treated with fluorine and subjected to hydrogen storage. The multi-walled carbon nanotubes used in this example were obtained from Iljin Nanotech. Surface treatment with fluorine was carried out for 10 minutes at a total reaction pressure of 1 atm at room temperature, and under a condition of 0.2 partial pressure of fluorine. Hydrogen storage was measured at 300K and 100 atm, with a sample volume of 100 mg. The volumetric method using a PCT device was used and the results are shown in the table below.

〔표 3〕MWCNT에서의 불소처리 결과Table 3 Fluorine treatment results in MWCNT

Figure 112005003020420-PAT00003
Figure 112005003020420-PAT00003

본 실시예에서의 불소처리 전?후의 비표면적과 미세공면적을 살펴보면, 상기의 표 3에서 알 수 있듯이 비표면적과 미세공면적이 모두 감소하였다. 따라서 비표면적과 미세공면적의 변화에 의하면 수소저장량은 감소되어야 한다. 그러나 본 실시예에서 불소처리 후의 수소저장량은 불소처리 전에 비하여 약 37%가 증가하였다(0.95 → 1.30). 상기의 결과로부터 불소화 반응이 수소저장능력을 향상시킨다는 것을 알 수 있다. Looking at the specific surface area and the micropore area before and after the fluorine treatment in this embodiment, as shown in Table 3 above, both the specific surface area and the micropore area were reduced. Therefore, according to the change of specific surface area and micropore area, hydrogen storage volume should be reduced. However, in this embodiment, the amount of hydrogen storage after fluorination increased by about 37% compared to that before fluorination (0.95 → 1.30). From the above results, it can be seen that the fluorination reaction improves the hydrogen storage capacity.

본 발명은 상기한 바람직한 실시예와 첨부한 도면을 참조하여 설명되었지만, 본 발명의 개념 및 범위 내에서 상이한 실시예를 구성할 수도 있다. 따라서 본 발명의 범위는 첨부된 청구범위에 의해 정해지며, 본 명세서에 기재된 특정 실시예에 의해 한정되지 않는 것으로 해석되어야 한다.Although the present invention has been described with reference to the above-described preferred embodiments and the accompanying drawings, different embodiments may be constructed within the spirit and scope of the invention. Therefore, the scope of the present invention is defined by the appended claims, and should be construed as not limited to the specific embodiments described herein.

상기한 바와 같은 본 발명에 의하면 수소저장매체의 수소저장능력을 대폭 향상시킬 수 있게 된다. 또한 상온, 상압하에서 처리가 이루어지고, 별도의 개시제나 에너지를 요구하지 않으므로 경제성 면에서도 우수하다. According to the present invention as described above it is possible to significantly improve the hydrogen storage capacity of the hydrogen storage medium. In addition, since the treatment is performed at room temperature and atmospheric pressure, and does not require a separate initiator or energy, it is also excellent in economics.

향후 에너지원으로서의 수소의 중요도를 감안하여 볼 때, 본 발명은 수소저장매체의 수소저장능력을 향상시키는 기술로서 매우 유용하게 될 것이다. In view of the importance of hydrogen as an energy source in the future, the present invention will be very useful as a technique for improving the hydrogen storage capacity of the hydrogen storage medium.

Claims (6)

수소저장매체의 수소저장능력을 향상시키는 방법에 있어서,In the method of improving the hydrogen storage capacity of the hydrogen storage medium, 밀폐된 반응기 내에 불소를 주입하여 소정의 조건하에서 수소저장매체와 불소를 직접 반응시킴으로써 수소저장능력을 향상시키는 방법Method of improving hydrogen storage capacity by injecting fluorine into a closed reactor and directly reacting hydrogen storage medium and fluorine under predetermined conditions. 제1항에 있어서,The method of claim 1, 상기의 수소저장매체와 불소의 반응은 상온에서 총 반응압력 1기압의 조건에서 이루어짐을 특징으로 하는 수소저장능력을 향상시키는 방법The reaction between the hydrogen storage medium and fluorine is carried out under conditions of a total reaction pressure of 1 atm at room temperature. 제2항에 있어서, The method of claim 2, 상기의 총 반응압력 중에서 불소의 부분압이 0.1 내지 0.5임을 특징으로 하는 수소저장능력을 향상시키는 방법Method for improving hydrogen storage capacity, characterized in that the partial pressure of fluorine in the total reaction pressure of 0.1 to 0.5 제1항 내지 제3항의 어느 하나의 항에 있어서, The method according to any one of claims 1 to 3, 상기의 수소저장매체는 탄소재료임을 특징으로 하는 수소저장능력을 향상시키는 방법The hydrogen storage medium is a method of improving the hydrogen storage capacity, characterized in that the carbon material 제4항에 있어서,The method of claim 4, wherein 상기의 탄소재료는 탄소나노튜브, 활성탄, 활성탄소섬유 피치계 나노섬유, 흑연 중의 어느 하나임을 특징으로 하는 수소저장능력을 향상시키는 방법The carbon material is a carbon nanotube, activated carbon, activated carbon fiber pitch-based nanofibers, graphite, any one of the method of improving the hydrogen storage capacity, characterized in that 제1항 내지 제3항의 어느 하나의 항에 의한 방법에 의하여 수소저장능력이 향상된 수소저장매체Hydrogen storage medium with improved hydrogen storage capacity by the method according to any one of claims 1 to 3.
KR1020050004965A 2005-01-19 2005-01-19 Method for improvement of hydrogen storage and hydrogen storage medium according to said method KR20060084238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050004965A KR20060084238A (en) 2005-01-19 2005-01-19 Method for improvement of hydrogen storage and hydrogen storage medium according to said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050004965A KR20060084238A (en) 2005-01-19 2005-01-19 Method for improvement of hydrogen storage and hydrogen storage medium according to said method

Publications (1)

Publication Number Publication Date
KR20060084238A true KR20060084238A (en) 2006-07-24

Family

ID=37174365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050004965A KR20060084238A (en) 2005-01-19 2005-01-19 Method for improvement of hydrogen storage and hydrogen storage medium according to said method

Country Status (1)

Country Link
KR (1) KR20060084238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064834A (en) * 2018-11-29 2020-06-08 충남대학교산학협력단 Photocatalytic composite activated carbon material introduced TiOF2 and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064834A (en) * 2018-11-29 2020-06-08 충남대학교산학협력단 Photocatalytic composite activated carbon material introduced TiOF2 and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Paul et al. 3D heteroatom‐doped carbon nanomaterials as multifunctional metal‐free catalysts for integrated energy devices
Hu et al. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis
Ravi et al. Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation
Makgabutlane et al. Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review
Ströbel et al. Hydrogen storage by carbon materials
David An overview of advanced materials for hydrogen storage
Oriňáková et al. Recent applications of carbon nanotubes in hydrogen production and storage
Zhu et al. One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction
Lu et al. Monolithic 3D cross-linked polymeric graphene materials and the likes: preparation and their redox catalytic applications
Hou et al. Bulk storage capacity of hydrogen in purified multiwalled carbon nanotubes
Rimza et al. Carbon‐based sorbents for hydrogen storage: challenges and sustainability at operating conditions for renewable energy
Atkinson et al. Carbon nanostructures: An efficient hydrogen storage medium for fuel cells
Sano et al. Hydrogen storage in porous single-walled carbon nanohorns dispersed with Pd–Ni alloy nanoparticles
Veerasubramani et al. Effective use of an idle carbon-deposited catalyst for energy storage applications
CN1986894B (en) Integrated hydrogen producing and storing process and apparatus
Daulbayev et al. A mini-review on recent trends in prospective use of porous 1D nanomaterials for hydrogen storage
JP2005219950A (en) Carbon material, method of manufacturing carbon material, gas adsorption apparatus and composite material
Qin et al. Preparing nitrogen-doped multiwalled carbon nanotubes with regionally controllable heterojunction structure by nondestructive postdoping with the assistance of heating fluorination
Thomas et al. Electrochemical efficacies of coal derived nanocarbons
KR100745567B1 (en) Nano-sized Ni doped Carbon Nanotubes for hydrogen storage and its preparation method
Wee et al. Boron-doped edges as active sites for water adsorption in activated carbons
Attar et al. Carbon nanotubes and its environmental applications
Pacheco et al. Green applications of carbon nanostructures produced by plasma techniques
KR20060084238A (en) Method for improvement of hydrogen storage and hydrogen storage medium according to said method
Xuesong et al. Effects of structure and surface properties on carbon nanotubes’ hydrogen storage characteristics

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
SUBM Submission of document of abandonment before or after decision of registration