KR20060080952A - Synthesis method of metal tungstates - Google Patents

Synthesis method of metal tungstates Download PDF

Info

Publication number
KR20060080952A
KR20060080952A KR1020050001164A KR20050001164A KR20060080952A KR 20060080952 A KR20060080952 A KR 20060080952A KR 1020050001164 A KR1020050001164 A KR 1020050001164A KR 20050001164 A KR20050001164 A KR 20050001164A KR 20060080952 A KR20060080952 A KR 20060080952A
Authority
KR
South Korea
Prior art keywords
metal
cooh
metal tungstate
tungstate
synthesis method
Prior art date
Application number
KR1020050001164A
Other languages
Korean (ko)
Other versions
KR100620480B1 (en
Inventor
심광보
류정호
윤종원
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020050001164A priority Critical patent/KR100620480B1/en
Publication of KR20060080952A publication Critical patent/KR20060080952A/en
Application granted granted Critical
Publication of KR100620480B1 publication Critical patent/KR100620480B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은, 금속 텅스테이트의 합성방법에 관한 것으로서, 금속염과 텅스텐 화합물을 출발물질로 용액상태에서 마이크로파를 주사시켜 고체상태로 변화될 때까지 상온에서 반응시키는 제1단계와, 상기 제1단계에서 생성된 반응물을 300℃ ~ 600℃의 저온에서 가열함에 의해 나노 수준의 입자 크기를 가지는 금속 텅스테이트를 얻는 제2단계로 이루어지므로, 전체 공정이 몇시간 안에 이뤄짐으로써 매우 빠르고 효율적이며 우수한 합성방법이다The present invention relates to a method for synthesizing a metal tungstate, the first step of reacting a metal salt and a tungsten compound as a starting material in a solution state at room temperature until it is changed to a solid state, and in the first step The second step is to obtain a metal tungstate with nanoscale particle size by heating the reactant at a low temperature of 300 ℃ ~ 600 ℃, so the whole process is done in a few hours, which is very fast, efficient and excellent synthesis method.

Description

금속 텅스테이트의 합성방법{synthesis method of metal tungstates}Synthesis method of metal tungstates

도1은 본 발명에 의한 합성방법 중의 마이크로파 주사과정을 나타내는 개략 구성도1 is a schematic block diagram showing a microwave scanning process in the synthesis method according to the present invention

도2는 본 발명에 따라 합성된 금속 텅스테이트의 가열온도별 X-선 회절패턴 그래프, 2 is an X-ray diffraction pattern graph according to heating temperature of a metal tungstate synthesized according to the present invention;

도3은 본 발명에 따라 합성된 금속 텅스테이트의 투과전자현미경 사진,3 is a transmission electron micrograph of a metal tungstate synthesized according to the present invention;

도4는 본 발명에 따라 합성된 금속 텅스테이트의 형광특성을 나타낸 그래프이다.4 is a graph showing the fluorescence characteristics of the metal tungstate synthesized according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

2 : 도가니 4 : 마이크로파 발진기2: crucible 4: microwave oscillator

L : 용액L: Solution

본 발명은 금속 텅스테이트의 합성방법에 관한 것으로서, 보다 상세하게는 마이크로파 주사를 이용한 금속 텅스테이트의 저온 합성방법에 관한 것이다.The present invention relates to a method for synthesizing a metal tungstate, and more particularly, to a low temperature synthesis method for a metal tungstate using microwave scanning.

금속 텅스테이트 [MWO4(M=Ca,Sr,Ba,Pb)]는 회중석(scheelite) 구조를 가지며 MASER (Microwave Amplication by Stimulated Emission of Radiation) 특성을 갖는 물질로서, 우주통신, 군사용 레이다, 전파망원경 등의 소자에 응용되어 왔다. 특히 금속 텅스테이트는 종래에 사용되던 Bi4Ge3O12(BGO)에 비해 흡습성(hydroscopicity)이 낮고 제조비가 낮은 장점 때문에 신틸레이터(scintillator) 소자로의 연구가 보다 활발히 진행되고 있다. Metal tungstate [MWO 4 (M = Ca, Sr, Ba, Pb)] is a material with a scheelite structure and MASER (Microwave Amplication by Stimulated Emission of Radiation), which is a space communication, military radar, radio telescope It has been applied to such devices. In particular, metal tungstate has been actively researched as a scintillator device due to its low hydroscopicity and low manufacturing cost compared to Bi 4 Ge 3 O 12 (BGO).

이러한 금속 텅스테이트는 금속산화물과 산화텅스텐 분말을 백금 도가니에서 완전용융 시킨 후 장시간 반응시켜 단결정을 제조하는 방법과, 금속 산화물과 나트륨텅스텐염 분말을 장시간 고상합성법으로 1000℃ 이상의 온도에서 제조하는 방법이 있다. The metal tungstate is a method of preparing a single crystal by completely melting the metal oxide and tungsten oxide powder in a platinum crucible and reacting for a long time, and the method of producing a metal oxide and sodium tungsten salt powder at a temperature of 1000 ℃ or more by a long time solid phase synthesis method. have.

또한, 미국특허 5874056에 개시된 바와 같이 금속산화물과 텅스텐 화합물을 습식으로 혼합한 후 고온에서 가열하여 마이크로미터 크기 수준의 분말을 합성하는 방법이 있다.In addition, as disclosed in US Pat. No. 58,740,56, there is a method of wet-mixing a metal oxide and a tungsten compound and then heating at high temperature to synthesize a powder having a micrometer size level.

그런데, 종래 고상합성법을 이용하여 금속 텅스테이트를 합성하는 경우에는 합성 온도가 1000 ℃ 이상이며, 나노크기의 입도를 균일하게 갖는 물질을 제조하기 어려우며, WO3가 높은 증기압을 가지고 있어 쉽게 휘발되기 때문에 원하지 않는 중간생성물이나 미반응 물질이 존재하여 균일한 단일 조성의 금속 텅스테이트 물질을 제조하기 힘들며, 미국특허 5874056호에 개시된 방법으로는 나노수준의 금속 텅스 테이트 입자로 제조하기가 용이하지 않다는 문제점이 있었다.However, in the case of synthesizing the metal tungstate using the conventional solid phase synthesis method, the synthesis temperature is more than 1000 ℃, it is difficult to produce a material having a uniform particle size of nano-size, WO 3 has a high vapor pressure and is easily volatilized The presence of unwanted intermediates or unreacted materials makes it difficult to produce a uniform single composition of metal tungstate materials, and the method disclosed in US Pat. No. 58,740,56 is not easy to produce nanoscale metal tungstate particles. there was.

따라서 본 발명은 상기 문제점을 해결하기 위해 이루어진 것으로서, 본 발명의 목적은 합성된 금속 텅스테이트 화합물의 조성을 균일하게 하고 나노수준의 입자 크기와 청색의 형광특성을 가지는 금속 텅스테이트의 합성방법을 제공하는 데 있다.Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for synthesizing a metal tungstate having a uniform composition of the synthesized metal tungstate compound and having a nano-level particle size and blue fluorescent properties. There is.

본 발명에 의한 금속 텅스테이트의 합성방법은, 금속염과 텅스텐 화합물을 출발물질로 용액상태에서 마이크로파를 주사시켜 고체상태로 변화될 때까지 상온에서 반응시키는 제1단계와, 상기 제1단계에서 생성된 반응물을 300℃ ~ 600℃의 저온에서 가열함에 의해 나노 수준의 입자 크기를 가지는 금속 텅스테이트를 얻는 제2단계로 이루어지는 것을 특징으로 한다.The method for synthesizing a metal tungstate according to the present invention comprises a first step of reacting a metal salt with a tungsten compound as a starting material in a solution state at room temperature until it is changed into a solid state, and is produced in the first step. The second step is to obtain a metal tungstate having a nano size particle size by heating the reactant at a low temperature of 300 ℃ ~ 600 ℃.

상기 금속염은 금속아세테이트염[Ca(COOH)2, Sr(COOH)2, Ba(COOH)2, Pb(COOH)2]을 사용하고, 상기 텅스텐 화합물은 텅스텐산(H2WO4)을 사용한다. The metal salt uses a metal acetate salt [Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 , Pb (COOH) 2 ], and the tungsten compound uses tungstic acid (H 2 WO 4 ). .

그리고, 상기 제1단계의 마이크로파 주사시간은 10분~ 60분으로 하고, 상기 제2단계의 가열시간은 1~ 3시간으로 한다. 또한, 상기 제2단계의 가열시 승온 속도는 분당 10℃로 하는 것이 바람직하다.The microwave scanning time of the first step is 10 minutes to 60 minutes, and the heating time of the second step is 1 to 3 hours. In addition, the heating rate during the heating of the second step is preferably set to 10 ℃ per minute.

이하, 본 발명에 대하여 실시예와 함께 상세히 설명한다. Hereinafter, the present invention will be described in detail with examples.

본 발명에 의한 금속 텅스테이트의 합성방법은 금속염과 텅스텐 화합물을 출발물질로 용액상태에서 마이크로파를 주사시켜 고체상태로 변화될 때까지 상온에서 반응시키는 제1단계와, 상기 제1단계에서 생성된 반응물을 300℃ ~ 500℃의 저온에서 가열함에 의해 나노 수준의 입자 크기를 가지는 금속 텅스테이트를 얻는 제2단계로 이루어진다. The method for synthesizing a metal tungstate according to the present invention comprises a first step of reacting a metal salt and a tungsten compound as a starting material in a solution state at a room temperature until a microwave is injected into the solid state, and the reactant produced in the first step The second step is to obtain a metal tungstate having a nano-level particle size by heating at a low temperature of 300 ℃ to 500 ℃.

출발물질로서, 상기 금속염은 금속아세테이트염[Ca(COOH)2, Sr(COOH)2, Ba(COOH)2, Pb(COOH)2]을 사용하고, 상기 텅스텐 화합물은 텅스텐산(H2WO 4)을 사용하는데, 상기 금속아세트산염(금속아세테이트염)과 텅스텐산을 구연산(citric acid)과 함께 에틸렌글리콜(ethylene glycol)이나 물을 용매로 사용하여 용액상태로 녹인다. 상기 용액을 마이크로파를 사용하여 10 분 ~ 60 분 동안 주사하여 용액이 고체상태의 유무기 혼합물로 될 때까지 균일하게 반응시킨다. 다음에, 고체상태인 유무기 혼합물을 가열로에서 분당 10 ℃ 의 승온속도로 가열하여 300 ~ 500 ℃에서, 1 ~ 3 시간 가열하여 합성하면, 청색계열의 형광특성을 가지는 금속 텅스테이트가 얻어진다. 상기 용액의 제조시에는 구연산을 물에 녹여 용액을 제조한 후, 화학 양론적으로 칭량된 금속 아세테이트염과 텅스텐산을 용액에 동시에 용해시켜 용해가 균일하게 이루어지게 한다.As a starting material, the metal salt may be a metal acetate salt [Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 , Pb (COOH) 2 ], and the tungsten compound may be tungstic acid (H 2 WO 4). ), The metal acetate (metal acetate salt) and tungstic acid are dissolved in solution using ethylene glycol (ethylene glycol) or water together with citric acid as a solvent. The solution is injected for 10 minutes to 60 minutes using microwave to react uniformly until the solution is a solid organic-inorganic mixture. Next, when a solid organic-inorganic mixture is heated in a heating furnace at a heating rate of 10 ° C. per minute and heated at 300 to 500 ° C. for 1 to 3 hours to synthesize, a metal tungstate having a blue series of fluorescent properties is obtained. . In preparing the solution, the solution is prepared by dissolving citric acid in water, and then dissolving uniformly by dissolving the stoichiometrically weighed metal acetate salt and tungstic acid in the solution.

마이크로파의 주사는 도1에 도시한 바와 같이, 용액(L)이 담긴 도가니(2)의 주위에 마이크로파 발진기(4)를 설치하여 행하게 된다.As shown in Fig. 1, the microwave scanning is performed by providing a microwave oscillator 4 around the crucible 2 in which the solution L is contained.

이와 같은 합성공정에 의하면, 마이크로파 주사 공정을 통해 용액을 건조로에서 장시간 건조시켜야 하는 과정이 불필요하며, 용액 내부에 균질한 에너지를 전달하는 마이크로파의 특성을 활용하여 매우 빠른 시간 안에 반응을 완료할 수 있으 며, 균질하고 나노크기 수준의 미세한 형광체를 합성할 수 있다. 본 발명에 의해 합성된 [MWO4(M=Ca,Sr,Ba,Pb)]계 형광물질은 분석결과 청색계열의 형광특성을 나타낸다.According to this synthesis process, the process of drying the solution in the drying furnace for a long time through the microwave scanning process is unnecessary, and the reaction can be completed in a very short time by utilizing the characteristics of the microwave which delivers homogeneous energy inside the solution. It is possible to synthesize homogeneous and nanoscale microscopic phosphors. The [MWO 4 (M = Ca, Sr, Ba, Pb)]-based fluorescent substance synthesized by the present invention shows the fluorescence characteristics of the blue series as a result of the analysis.

[실시예]EXAMPLE

원료물질로서 금속아세트산염[Ca(COOH)2, Sr(COOH)2, Ba(COOH)2, Pb(COOH) 2] 과 텅스텐산(H2WO4)을 사용한다. 먼저 물과 구연산(citric acid)을 4:1 의 몰비로 녹여 용액을 생성한 후, 금속아세트산염과 텅스텐산을 1:1의 몰비로 칭량하여 구연산 용액에 첨가하여 완전히 녹인다. 이 용액에 마이크로파(2.45 GHz)를 주사하여 금속아세트산염과 텅스텐산 및 구연산을 균질하게 반응시킨다. 마이크로 파 주사시에 40초간 주사시키고 20초간 주사를 정지시키는 과정을 반복한다. 이 과정을 10 분에서 60분 동안 지속하면서 용액이 고체화하는 과정을 주시한다. 마이크로파를 주사하는 과정에서 용액의 점도가 높아지고 색깔이 갈색으로 변하는 과정을 관찰 할 수 있으며, 용액이 고체상태로 완전히 변화된 것을 확인한 뒤 반응을 종료시킨다. 이 고체상태의 유무기 합성체를 300 ~ 500 ℃의 온도에서 1 ~ 3시간 동안 가열하여 백색의 화합물을 얻을 수 있었다. Metal acetates [Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 , Pb (COOH) 2 ] and tungstic acid (H 2 WO 4 ) are used as raw materials. First, water and citric acid are dissolved in a molar ratio of 4: 1 to form a solution. Then, metal acetate and tungstic acid are weighed in a molar ratio of 1: 1 and added to the citric acid solution to dissolve completely. Microwaves (2.45 GHz) are injected into the solution to homogeneously react metal acetate, tungstic acid and citric acid. The procedure is repeated for 40 seconds at the time of microwave scanning and 20 seconds to stop the scanning. Continue this process for 10 to 60 minutes and watch the solution solidify. In the process of injecting microwaves, the solution becomes more viscous and the color turns brown. After confirming that the solution has completely changed to a solid state, the reaction is terminated. The solid organic-inorganic composite was heated at a temperature of 300 to 500 ° C. for 1 to 3 hours to obtain a white compound.

도2a 내지 도2d는 각 Ca(COOH)2, Sr(COOH)2, Ba(COOH)2, Pb(COOH)2 에 대해 상기한 방법으로 합성된 금속 텅스테이트(CaWO4, SrWO4, BaWO4, PbWO4 )의 가열온도별 X선 회절패턴이다. 도2에서 확인하는 바와 같이 300 ℃의 온도에서 합성물들의 특성 들이 나타나기 시작하였으며 400 ℃ 에서는 완전한 X-선 상을 확인할 수 있었다. 또한 CaO, SrO, BaO, BaCO3, WO3 같은 미반응물이나 여타의 반응물들이 전혀 나타나지 않음을 확인할 수 있다. 2a to 2d are metal tungstates (CaWO 4, SrWO 4 , BaWO 4 synthesized in the above-described manner for each Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 , Pb (COOH) 2 ). , PbWO 4 ) is an X-ray diffraction pattern for each heating temperature. As shown in FIG. 2, the properties of the composites began to appear at a temperature of 300 ° C., and a complete X-ray image was confirmed at 400 ° C. FIG. In addition, CaO, SrO, BaO, BaCO 3 , it can be seen that the unreacted or other reactants such as WO 3 does not appear at all.

도3a 내지 도3d는 각 Ca(COOH)2, Sr(COOH)2, Ba(COOH)2, Pb(COOH)2 에 대해 상기한 방법으로 합성된 금속 텅스테이트(CaWO4, SrWO4, BaWO4, PbWO4 )의 투과전자현미경(TEM) 사진으로, 나타난 바와 같이 합성물의 미세구조를 조사한 결과 입자의 크기가 20 ~ 50 nm 인 극히 미세한 나노크기의 합성물이었다. 3A to 3D show metal tungstates (CaWO 4, SrWO 4 , BaWO 4 synthesized in the above-described manner for each Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 , Pb (COOH) 2 ). , PbWO 4 ), as shown in the transmission electron microscope (TEM), as a result of examining the microstructure of the composite was a very fine nano-sized composite having a particle size of 20 ~ 50 nm.

도4는 각 Ca(COOH)2, Sr(COOH)2, Ba(COOH)2, Pb(COOH)2 에 대해 상기한 방법으로 합성된 금속 텅스테이트(CaWO4, SrWO4, BaWO4, PbWO4)의 형광특성을 조사한 결과를 나타내었다. 표시된 바와 같이 합성한 금속 텅스테이트 들은 400 nm 파장영역의 청색형광특성을 나타내었다.Figure 4 is a metal tungstate (CaWO 4, SrWO 4 , BaWO 4 , PbWO 4 synthesized in the above-described method for each Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 , Pb (COOH) 2 Investigation of the fluorescence characteristics of the The metal tungstates synthesized as shown showed blue fluorescence in the 400 nm wavelength region.

본 발명에 의한 합성방법에 의해 제조된 금속 텅스테이트는, 플라즈마 디스플레이 패널(PDP) 과 필드 에미션 디스플레이(FED) 제작을 위한 청색 나노형광체로 특히 많이 사용될 수 있다.The metal tungstate prepared by the synthesis method according to the present invention can be particularly used as a blue nanophosphor for the production of plasma display panel (PDP) and field emission display (FED).

본 발명에 의한 금속 텅스테이트의 합성방법에 의하면, 금속아세테이트염과 텅스텐산을 이용하여 금속 텅스테이트를 합성하는 과정에서 마이크로파를 주사하여 저온에서 나노크기 수준의 입도를 갖는 입자를 형성하므로써, 전체 공정이 몇시간 안에 이뤄짐으로써 종래의 금속 텅스테이트 합성방법에 비해서 매우 빠르고 효율적이며 우수한 합성방법이다.  According to the method for synthesizing a metal tungstate according to the present invention, in the process of synthesizing the metal tungstate using a metal acetate salt and tungstic acid to form particles having a nano-sized particle size at low temperatures, This is achieved within a few hours, which is very fast, efficient and superior to the conventional metal tungstate synthesis method.

Claims (6)

금속염과 텅스텐 화합물을 출발물질로 용액상태에서 마이크로파를 주사시켜 고체상태로 변화될 때까지 상온에서 반응시키는 제1단계와,  A first step of reacting a metal salt and a tungsten compound with a starting material in a solution state at room temperature until it is changed into a solid state by scanning microwaves, 상기 제1단계에서 생성된 반응물을 300℃ ~ 500℃의 저온에서 가열함에 의해 나노 수준의 입자 크기를 가지는 금속 텅스테이트를 얻는 제2단계로 이루어지는 것을 특징으로 하는 금속 텅스테이트의 합성방법.Method for synthesizing a metal tungstate, characterized in that the second step of obtaining a metal tungstate having a nano-particle size by heating the reactant produced in the first step at a low temperature of 300 ℃ ~ 500 ℃. 제1항에 있어서 The method of claim 1 상기 금속염은 금속아세테이트염을 사용하고, 상기 텅스텐 화합물은 텅스텐산(H2WO4)을 사용하는 것을 특징으로 하는 금속 텅스테이트의 합성방법. The metal salt is a metal acetate salt, the tungsten compound is tungstic acid (H 2 WO 4 ) characterized in that the metal tungstate synthesis method. 제2항에 있어서, The method of claim 2, 상기 금속아세테이트염은, Ca(COOH)2, Sr(COOH)2, Ba(COOH)2 및 Pb(COOH) 2 중의 하나인 것을 특징으로 하는 금속 텅스테이트의 합성방법.Said metal acetate salt is Ca (COOH) 2 , Sr (COOH) 2 , Ba (COOH) 2 and Pb (COOH) 2 The synthesis method of the metal tungstate characterized by the above-mentioned. 제1항에 있어서, The method of claim 1, 상기 제1단계의 마이크로파 주사시간은 10분~ 60분으로 하고, 상기 제2단계의 가열시간은 1~ 3시간으로 하는 것을 특징으로 하는 금속 텅스테이트의 합성방 법. The microwave scanning time of the first step is 10 minutes to 60 minutes, the heating time of the second step is a synthesis method of the metal tungstate, characterized in that 1 to 3 hours. 제1항 내지 제4항 중의 어느 한 항에 있어서 The method according to any one of claims 1 to 4. 상기 제2단계의 가열시 승온 속도는 분당 10℃로 하는 것을 특징으로 하는 금속 텅스테이트의 합성방법.The method of synthesizing a metal tungstate, characterized in that the temperature increase rate during heating of the second step is 10 ℃ per minute. 제1항의 합성방법에 의해 합성된 금속 텅스테이트.Metal tungstate synthesized by the synthesis method of claim 1.
KR1020050001164A 2005-01-06 2005-01-06 synthesis method of metal tungstates KR100620480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050001164A KR100620480B1 (en) 2005-01-06 2005-01-06 synthesis method of metal tungstates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050001164A KR100620480B1 (en) 2005-01-06 2005-01-06 synthesis method of metal tungstates

Publications (2)

Publication Number Publication Date
KR20060080952A true KR20060080952A (en) 2006-07-12
KR100620480B1 KR100620480B1 (en) 2006-09-08

Family

ID=37172072

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050001164A KR100620480B1 (en) 2005-01-06 2005-01-06 synthesis method of metal tungstates

Country Status (1)

Country Link
KR (1) KR100620480B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718262A (en) * 2012-03-02 2012-10-10 河北联合大学 Preparation of nanowire assembled calcium tungstate spherical structure
CN103771520A (en) * 2014-01-24 2014-05-07 重庆文理学院 Preparation method of twinborn spheroidal calcium tungstate microcrystallines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1068071A (en) 1976-01-29 1979-12-18 Hans P. Kasserra Process for the manufacture of ammonium and alkali metal tungstates
DE4419575C1 (en) 1994-06-03 1995-10-19 Starck H C Gmbh Co Kg Metal tungstate for prodn. of lead perovskite electro-ceramics and X=ray improving luminescent materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718262A (en) * 2012-03-02 2012-10-10 河北联合大学 Preparation of nanowire assembled calcium tungstate spherical structure
CN103771520A (en) * 2014-01-24 2014-05-07 重庆文理学院 Preparation method of twinborn spheroidal calcium tungstate microcrystallines
CN103771520B (en) * 2014-01-24 2015-08-19 重庆文理学院 A kind of preparation method of twin spherical calcium wolframate crystallite

Also Published As

Publication number Publication date
KR100620480B1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
Abreu et al. Effect of process parameters on photophysical properties and barium molybdate phosphors characteristics
Morozov et al. Crystal Structure and Luminescent Properties of R2–x Eu x (MoO4) 3 (R= Gd, Sm) Red Phosphors
Zhang et al. Energy transfer from Bi 3+ to Ho 3+ triggers brilliant single green light emission in LaNbTiO 6: Ho 3+, Bi 3+ phosphors
Bai et al. Novel multi-wavelength effectively excited ZnWO4-WO3: Eu3+ multiphase red phosphor for white light-emitting diodes
Ding et al. Brightly luminescent and color-tunable CaMoO4: RE3+ (RE= Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes
Chang et al. Fabrication of Microcrystalline NaPbLa (WO4) 3: Yb Yb3+/Ho3+ Phosphors and Their Upconversion Photoluminescent Characteristics
KR100620480B1 (en) synthesis method of metal tungstates
Uhlich et al. Preparation and characterization of nanoscale lutetium aluminium garnet (LuAG) powders doped by Eu3+
Noh et al. Organic solvent-assisted synthesis of the K 3 SiF 7: Mn 4+ red phosphor with improved morphology and stability
Liu et al. Hydrothermal synthesis, multicolor tunable luminescence and energy transfer of Eu 3+ or/and Tb 3+ activated NaY (WO 4) 2 nanophosphors
Zalga et al. On the sol–gel preparation of different tungstates and molybdates
JP2007217202A (en) Method for producing complex metal oxide
Pawlikowska et al. Solid state and combustion synthesis of Mn2+-doped scheelites–Their optical and magnetic properties
He et al. Cation-induced variation of micromorphology and luminescence properties of tungstate phosphors by a hydrothermal method
Zhu et al. An efficient strategy of charge compensation for Ni2+-activated SrTiO3 perovskite near-infrared phosphor toward optical imaging illumination
Yu et al. Comparative study of Ca 3 Bi (PO 4) 3: Eu 3+ phosphors prepared by three methods
KR101703369B1 (en) Low thermal expansion filler, method for producing same, and glass composition
KR100620466B1 (en) Synthesis method of metal molybdates
David et al. Enhanced near-infrared downconversion luminescence in ZnxNb (1-x) O composite host co-doped Bi3+/Yb3+ phosphor for Si solar cell applications
Tang et al. Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations
Zhai et al. Synthesis and luminescent properties of NaLa (MoO 4) 2: Eu 3+, Tb 3+ phosphors by microwave-assisted sol–gel method
Stephen et al. Effect of Yb3+ substitution on the structural and optical properties of Ba1-xYbxWO4 nanoparticles-NIR luminescence emissions for optical communication and bioanalyses
Roh et al. Enhanced Red Light Emission of OH–-Substituted Sr5 (PO4) 3Cl: Eu3+ Nanophosphors
Visweswara Rao et al. Color tunable luminescence from LaAlO 3: Bi 3+, Ho 3+ doped phosphors for field emission displays
Öztürk et al. Luminescence properties of M 2 TiO 4: Eu 3+, Li+(M: Mg, Ca) and MgAl 2 O 4: RE 3+(RE 3+: Ho 3+, Sm 3+, and Yb 3+)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110711

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee