KR20060074664A - Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties - Google Patents

Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties Download PDF

Info

Publication number
KR20060074664A
KR20060074664A KR1020040113469A KR20040113469A KR20060074664A KR 20060074664 A KR20060074664 A KR 20060074664A KR 1020040113469 A KR1020040113469 A KR 1020040113469A KR 20040113469 A KR20040113469 A KR 20040113469A KR 20060074664 A KR20060074664 A KR 20060074664A
Authority
KR
South Korea
Prior art keywords
coating
steel sheet
phosphate
electrical steel
insulating
Prior art date
Application number
KR1020040113469A
Other languages
Korean (ko)
Other versions
KR101141282B1 (en
Inventor
한민수
최규승
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020040113469A priority Critical patent/KR101141282B1/en
Publication of KR20060074664A publication Critical patent/KR20060074664A/en
Application granted granted Critical
Publication of KR101141282B1 publication Critical patent/KR101141282B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

본 발명은 밀착성이 우수한 절연 피막을 가지면서 피막에 의한 인장응력이 큰 방향성 전기강판 및 그 제조방법에 관한 것이며, 그 목적하는 바는 적절한 점도로 조정된 인산염과 콜로이달 실리카 및 여기에 피막특성을 개선시키고 인산염과 적당한 반응을 유도하는 화학성분을 첨가함으로써 건전한 절연피막이 얻어지는 절연피막형성용 피복조성물을 제공하고자 하는데 있다. The present invention relates to a grain-oriented electrical steel sheet having a high tensile stress due to the coating and an insulating film having excellent adhesion, and to a method of manufacturing the same, the object of which is to adjust the phosphate and colloidal silica adjusted to an appropriate viscosity and the coating properties The present invention aims to provide a coating composition for forming an insulating coating, by which a chemically insulating component is improved and a chemical reaction inducing a proper reaction with a phosphate is obtained.

상기 목적을 달성하기 위해 본 발명은 방향성 전기강판 절연코팅제의 주요성분인 제1인산 마그네슘(Mg(H2PO4)2)과 제1인산 알루미늄(Al(H2PO 4)3 인산염액에, 상기인산 100 g에 대하여 콜로이달 실리카를 고형분인때의 중량으로 10 - 50 g, 산화크롬을 5 -15g, 그리고 붕산을 3 - 7 g 의 함유량으로 첨가하는 절연 피막조성물을 제조하고, 상기 피막조성물을 방향성 전기강판의 표면에 건조 피막 두께가 편면당 2 - 7 ㎛ 범위가 되도록 도포한 후, 550 - 900 ℃의 온도 범위에서 10 - 50 초간 가열처리하여 방향성 전기강판의 절연피막을 형성하는 방법에 관한 것을 그 요지로 한다. In order to achieve the above object, the present invention relates to a first magnesium phosphate (Mg (H 2 PO 4 ) 2 ) and a first aluminum phosphate (Al (H 2 PO 4 ) 3 phosphate solution, which is a main component of an insulating electrical steel sheet coating agent, To 100 g of the phosphoric acid, an insulating coating composition was prepared, which added 10-50 g of colloidal silica as a solid content, 5-15 g of chromium oxide, and 3-7 g of boric acid. Is applied to the surface of the grain-oriented electrical steel sheet so that the dry film thickness is in the range of 2-7 µm per side, and then heat-treated for 10-50 seconds at a temperature range of 550-900 ℃ to form an insulating coating of the grain-oriented electrical steel sheet Let that point be about that.

Description

피막 밀착성이 우수하고 장력부여능이 뛰어난 방향성 전기강판의 절연피막 조성물{Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties}Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties

제1도는 전기강판 표면에 존재하는 산화층과 인산과의 반응을 나타내는 화학식이고,1 is a chemical formula showing a reaction between an oxide layer present on the surface of an electrical steel sheet and phosphoric acid,

제2도는 제1인산 알루미늄 또는 제1인산 마그네슘과 붕산과의 반응을 나타내는 화학식,2 is a chemical formula showing the reaction of aluminum monophosphate or mono magnesium phosphate with boric acid,

제3도는 곡률반경을 이용한 피막장력 측정법의 설명도이다3 is an explanatory diagram of a film tension measuring method using a radius of curvature.

♠도면의 주요부분에 대한 부호의 설명 ♠♠ Explanation of the symbols for the main parts of the drawings ♠

(작성례)(Example)

A: 전기강판 산화층과 반응한 인산 복합물, A: phosphoric acid composite reacted with an electrical steel sheet oxide layer,

B: 제1인산 알루미늄 또는 제1인산 마그네슘과 반응한 붕산 복합물B: Boric acid complex reacted with monobasic aluminum phosphate or magnesium monophosphate

본 발명은 방향성전기강판 생산시 절연피막의 특성 즉 절연피막의 표면 외관결함이 없으면서 우수한 장력특성을 갖는 절연피막을 형성시킬 수 있는 절연피막 조성물에 관한 것이다. 특히, 기존 절연코팅제의 피막장력을 향상시키기 위하여 코팅제와 소재와의 밀착성을 높이고 코팅제의 도포량을 적정 관리함에 의하여 평탄화소둔시 고장력의 피막특성을 갖는 절연피막을 갖는 방향성 전기강판의 절연피막 조성물에 관한 것이다.The present invention relates to an insulating coating composition capable of forming an insulating coating having excellent tensile properties without producing defects in the surface of the insulating coating, that is, the surface appearance of the insulating coating. In particular, in order to improve the film tension of the existing insulating coating agent to improve the adhesion between the coating material and the material and by appropriately managing the coating amount of the coating agent related to the insulating film composition of a grain-oriented electrical steel sheet having an insulating film having an insulating film having a high tensile coating properties during planarization annealing will be.

통상 방향성전기강판이란 3.1% Si성분을 함유한 것을 특징으로 하여 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며 이 제품은 압연방향으로 극히 우수한 자기적특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기타 전자기기등의 철심 재료로 사용된다.Ordinary grain-oriented electrical steel sheet contains 3.1% Si, and has grain structure in which grain orientation is aligned in the (110) [001] direction. This product has very good magnetic properties in the rolling direction. It is used as a core material for transformers, electric motors, generators and other electronic devices.

방향성전기강판은 일반적으로 2-4%의 Si와 입성장억제제로 AlN 및 MnS를 함유하는 강을 이용하여 (열간압연) - (예비소둔) - (1회 또는 소둔이 낀 2회 냉간압연) - (탈탄소둔) - (MgO주성분의 소둔분리제 도포) - (고온 마무리소둔) - (절연코팅 및 평탄화 소둔)등의 공정을 거처서 제조되는데, 여기서 '절연코팅 및 평탄화소둔'은 방향성 전기강판 1차코팅위에 재코팅을 시행한 후 소둔하는 공정을 말하며 소둔후 냉각과정에서 피막과 소재와의 열팽창 계수차에 의해 부가되는 인장응력으로 소재의 자기적 특성을 향상시키는 역할을 한다. A grain-oriented electrical steel sheet is generally made of 2-4% Si and steel containing AlN and MnS as grain growth inhibitors. (Hot rolled)-(Pre-annealed)-(Single or two-annealed cold rolled)- (Decarbon annealing)-(MgO main component annealing separator applied)-(High temperature finish annealing)-(Insulation coating and planarization annealing), etc., where 'insulation coating and planarization annealing' is the primary electrical steel sheet It refers to the process of annealing after recoating on the coating, and it improves the magnetic properties of the material by the tensile stress added by the thermal expansion coefficient difference between the film and the material in the cooling process after annealing.

우수한 절연코팅은 기본적으로 외관에 결함이 없는 균일한 색상을 가져야 하지만, 기능성을 부여하려는 여러가지 기술의 접목에 의하여 전기절연성을 향상시키고 피막의 밀착성을 강화시키는 것이 주로 이용되는 기술이었다. 그러나 최근 고자속밀도급의 방향성 전기강판이 상용화되면서 최종 절연피막의 고장력화를 추구하게 되었고 실제 고장력 절연피막이 최종제품의 자기적 특성 개선에 크게 기여함이 확 인되었다. The excellent insulation coating should basically have a uniform color without defects in appearance, but it was mainly used to improve the electrical insulation and enhance the adhesion of the film by incorporating various techniques to provide functionality. However, with the recent commercialization of high magnetic flux density oriented electrical steel sheets, the high tensile strength of the final insulating film has been pursued, and it has been confirmed that the high tensile insulating film contributes to the improvement of the magnetic properties of the final product.

장력피막의 특성 향상을 위해서 여러가지 공정인자의 제어 기법이 응용되고 있었으며, 현재 상품화 되어 있는 방향성 전기강판은 강판과 폴스테라이트계 바탕피막위에 형성된 절연피막의 열팽창계수 차이를 이용하는 것에 의해 강판에 인장응력을 부가함으로써 철손감소 효과를 도모하고 있다. 이 대표적인 절연피막 형성방법으로서, 일본특허 특공소 53-28375호 공보에 개시되어 있는 인산 알루미늄(Aluminium)과 콜로이달 실리카(Colloidal silica)와 산화크롬(Chrome)을 주성분으로 하는 코팅액을 이용하는 방법 및 일본특허 특공소 56-52117호 공보에 개시되어 있는 인산 마그네슘(Magnesium)과 콜로이달 실리카와 산화크롬을 주성분으로 하는 코팅액을 이용하는 방법을 들 수 있다. 최근에는 일본특허 특허제3098691호, 특허제2688147호에서와 같이 알루미나 주체의 알루미나 솔(alumina sol)과 붕산 혼합액을 이용, 전기강판에 고장력의 산화물 피막을 형성하는 기술이 제안되었다. 또한 한국특허특원 10-0377566 같이 폴스테라이트계 바탕피막위에 특정 금속원자를 함유한 인산수소염과 실리카로 구성된 제1층을 형성시킴으로써 폴스테라이트계 바탕피막과 절연피막과의 밀착성 향상을 유도하고, 그 위에 재차 붕산 알루미늄을 주성분으로 하는 제2층을 형성시킴으로써 더욱 강력한 피막장력 효과를 내는 기술이 제안되었다. 그러나 알루미나 솔과 같은 물질은 산화성 분위기에 매우 민감하게 작용하여 절연코팅 후 강판 표면의 색을 변화 시킬 수 있으며 코팅용액 제조후 안정성 측면에 문제가 있는 것으로 지적되어 오고 있다. 또한 위에서 제시된 바와 같은 두 층이상의 절연코팅을 구성할 때 최대의 효과를 얻기 위해서는 1층과 2층의 도포량 을 목표수준으로 균일하게 관리하여야 하며, 이를 현장에서 안정적으로 구현하는 것은 매우 어려운 것으로 알려져 있는 실정이다.In order to improve the characteristics of the tension coating, various process factors control techniques have been applied, and currently commercialized oriented electrical steel sheets use tensile stress in the steel sheet by using the thermal expansion coefficient difference between the steel sheet and the insulation film formed on the base layer of the foliarite. By adding, it is possible to reduce the iron loss. As a typical insulating film forming method, a method using a coating liquid containing aluminum phosphate, colloidal silica and chromium oxide disclosed in Japanese Patent Application Laid-Open No. 53-28375 and Japan The method of using the coating liquid which has magnesium phosphate, colloidal silica, and chromium oxide which are disclosed by Unexamined-Japanese-Patent No. 56-52117 is mentioned. Recently, as in Japanese Patent Nos. 3098691 and 2688147, a technique of forming a high tensile oxide film on an electrical steel sheet by using alumina sol and a mixture of boric acid is proposed. In addition, by forming a first layer composed of hydrogen phosphate containing a specific metal atom and silica on the foliar base film, as shown in Korean Patent Application No. 10-0377566, induction of adhesion between the foliar base film and the insulation film is induced. On the other hand, a technique for producing a stronger film tension effect by forming a second layer containing aluminum borate as a main component thereon has been proposed. However, materials such as alumina sol have been very sensitive to oxidizing atmosphere and can change the color of steel sheet surface after insulation coating, and it has been pointed out that there is a problem in terms of stability after coating solution preparation. In addition, in order to obtain the maximum effect when constructing two or more layers of insulation coatings as described above, the coating amount of the first and second layers should be managed uniformly to the target level, and it is known that it is very difficult to stably implement them in the field. It is true.

본 발명자들은 상기와 같이 방향성전기강판 생산시 절연피막의 특성 즉 절연피막의 표면 외관결함이 없으면서 우수한 장력특성을 갖는 절연피막을 형성시킬 수 있는 방법을 연구와 실험을 거듭하고, 그 결과에 근거하여 본 발명을 제안하게 되었다. 본 발명은 방향성 전기강판의 절연코팅제의 주요 성분인 인산염의 점도를 적절히 조정함과 동시에 붕산을 도입하여 코팅제와 소재와의 밀착성을 높이고, 아울러 코팅제의 도포량을 적정 관리함에 의하여 평탄화소둔시 고장력의 피막특성을 갖는 절연피막을 갖는 방향성 전기강판을 제공하고자 하는데 그 목적이 있다.The present inventors have conducted research and experiments on how to form an insulating film having excellent tensile properties without the defect of the surface of the insulating film, that is, the surface appearance of the insulating film in the production of oriented electrical steel sheet as described above, based on the results The present invention has been proposed. The present invention adjusts the viscosity of the phosphate, which is the main component of the insulating coating agent of the grain-oriented electrical steel sheet, and at the same time introduces boric acid to increase the adhesion between the coating agent and the material, and also by appropriately managing the coating amount of the coating agent, the film of high tension during flattening annealing An object of the present invention is to provide a grain-oriented electrical steel sheet having an insulating coating having characteristics.

방향성 전기강판의 절연코팅에 의한 장력부여능을 향상 시키기 위해서는 위에서 언급한 바와 같이 강판과 절연코팅제간의 밀착성을 향상 시키는 일과 강판과 코팅제간의 열팽창 계수 차이를 크게 하는 두 가지 방법이 제시되고 있다. In order to improve the tension imparting ability of the grain-oriented electrical steel sheet by the insulating coating, two methods for improving the adhesion between the steel sheet and the insulating coating agent and increasing the thermal expansion coefficient difference between the steel sheet and the coating agent have been proposed.

상기 목적을 달성하기 위해 본 발명은 인산에 수산화 마그네슘 또는 수산화 알루미늄을 첨가하여 제조된 제1인산 마그네슘(Mg(H2PO4)2)과 제1인산 알루미늄(Al(H2PO4)3 의 혼합형태의 인산염액에, 상기인산 100 g에 대하여 콜로이달 실리카를 고형분인때의 중량으로 10 - 50 g, 산화크롬을 5 - 15g, 그리고 붕산을 3 - 7 g 의 함유량으로 첨가하는 절연 피막조성물을 제공한다. In order to achieve the above object, the present invention provides a solution of the first magnesium phosphate (Mg (H 2 PO 4 ) 2 ) and the first aluminum phosphate (Al (H 2 PO 4 ) 3 ) prepared by adding magnesium hydroxide or aluminum hydroxide to phosphoric acid. Insulating coating composition which adds 10-50 g of colloidal silica as a solid content with respect to 100 g of said phosphate, 5-15 g of chromium oxide, and 3-7 g of boric acid to mixed phosphate liquid of the mixed form. To provide.

또한 본 발명은 상기 피막조성물을 방향성 전기강판의 표면에 건조 피막 두께가 편면당 2 - 7 ㎛ 범위가 되도록 도포한 후, 550 -900 ℃의 온도 범위에서 10 - 50 초간 가열처리하여 절연피막을 형성하는 방향성 전기강판의 절연피막 형성방법을 제공한다. In addition, the present invention is applied to the coating composition so that the dry film thickness on the surface of the grain-oriented electrical steel sheet in the range of 2-7 ㎛ per side, and then heat treated for 10-50 seconds in the temperature range of 550-900 ℃ to form an insulating film It provides a method of forming an insulating coating of a grain-oriented electrical steel sheet.

본 발명은 크게 다음과 같은 두 가지 방법에 의존하고 있다.The present invention is largely dependent on the following two methods.

첫째 강판과 절연코팅제간의 밀착성을 향상 시키기 위하여 코팅제의 주성분인 인산염의 성분을 최적화 하였다. 절연코팅제에 사용되는 인산염은 정확하게 인산수소염으로 명명되고 화합물내에 해리성의 수소원자를 함유하고, 금속원자가 2가 및 3가의 가수를 가진다. 인산 수소염의 형태로는 인산의 해리상태에 따라 제1염, 제2염, 제3염의 3 형태가 존재하지만, 본 발명에 있어서는 제1인산 마그네슘(Mg(H2PO4)2)과 제1인산 알루미늄(Al(H2PO4)3 의 혼합형태의 인산 수소염이 사용되었다. 이러한 상기 인산염 용액들의 제조방법 또는 그들간의 배합비는 특별히 한정하지는 않으나, 표 1에서 보는 바와 같이 제조후 적당한 점도가 유지됨을 기본으로 한다. First, in order to improve the adhesion between the steel sheet and the insulating coating agent, the component of the phosphate, the main component of the coating agent was optimized. Phosphates used in insulating coatings are precisely named hydrogen phosphates and contain dissociable hydrogen atoms in the compound, and metal atoms have divalent and trivalent valences. As the form of hydrogen phosphate salt, there are three forms of first salt, second salt and third salt according to the dissociation state of phosphoric acid. However, in the present invention, the first magnesium phosphate (Mg (H 2 PO 4 ) 2 ) and Hydrogen phosphate salt in a mixed form of aluminum monophosphate (Al (H 2 PO 4 ) 3 was used, but the method of preparing such phosphate solutions or the mixing ratio therebetween is not particularly limited, but as shown in Table 1, suitable viscosity after preparation Is maintained by default.

또한 제1인산 마그네슘(Mg(H2PO4)2)과 제1인산 알루미늄(Al(H2PO 4)3 의 혼합 인산 수소염에 제조에 사용된 인산도 특별히 한정하지는 않고, 통상적으로 사용되는 농도범위의 것을 사용할 수 있다. In addition, the phosphoric acid used in the preparation of the mixed hydrogen phosphate salt of magnesium phosphate mono (Mg (H 2 PO 4 ) 2 ) and aluminum monophosphate (Al (H 2 PO 4 ) 3 ) is not particularly limited, and is usually used. Concentration ranges can be used.

본 발명에서는 여러종류의 인산수소염중 제1인산 마그네슘(Mg(H2PO4)2)과 제1인산 알루미늄(Al(H2PO4)3 의 혼합형태의 인산수소염이 다른 인산수소염 종류, 즉 제 1인산 마그네슘(Mg(H2PO4)2) +제1인산 알루미늄(Al(H2PO4 )3 )+ 제1인산 칼슘 (Ca(H2PO4)2) 혼합형태나 제1인산 알루미늄(Al(H2PO4) 3 ) 또는 제1인산 마그네슘(Mg(H2PO4)2) 단독 형태의 인산수소염 보다 우수한 밀착성을 나타내었다. In the present invention, hydrogen phosphate in which hydrogen phosphate in a mixed form of magnesium phosphate (Mg (H 2 PO 4 ) 2 ) and aluminum monophosphate (Al (H 2 PO 4 ) 3 ) is different among several hydrogen phosphates. Type, that is, mixed form of magnesium phosphate (Mg (H 2 PO 4 ) 2 ) + aluminum monophosphate (Al (H 2 PO 4 ) 3 ) + calcium phosphate (Ca (H 2 PO 4 ) 2 ) The adhesion was better than that of hydrogen phosphate in the form of monobasic aluminum phosphate (Al (H 2 PO 4 ) 3 ) or monobasic magnesium phosphate (Mg (H 2 PO 4 ) 2 ) alone.

둘째는 절연피막 형성시 낮은 소부온도에서 코팅제의 주요성분인 붕산과 인산수소염과의 축합반응에 의해 Al-B 또는 Mg-B 같은 복합물의 생성이 예상되고, 이러한 복합물들은 소부온도 800 ℃ 이상에서 콜로이달 실리카에 의해 생성된 세라믹층과의 또다른 축합반응을 유도해 종래의 절연 피막보다 장력이 우수한 피막을 형성한다고 생각된다. Secondly, the formation of complexes such as Al-B or Mg-B is expected by the condensation reaction of boric acid and hydrogen phosphate, which are the main components of the coating, at low baking temperature when forming an insulating film. It is thought to induce another condensation reaction with the ceramic layer produced by the colloidal silica to form a film having a better tension than the conventional insulating film.

상기 사용된 콜로이달 실리카는 코팅제 소부시 열팽창 계수가 낮은 세라믹층을 형성하여 소재에 인장응력을 부여하는 작용을 하며, 그 첨가량은 인산 100g에 대하여 고형분인때의 중량으로 10g 이하인 경우는 적절한 세라믹층을 형성하지 못하여 소재에 인장응력을 부여하는 것이 부족하게 되고, 50g 이상에서는 코팅제의 점도가 증가하여 작업성이 매우 나빠진다. 따라서 본 발명에서는 상기 콜로이달 실리카의 함유량을 상기 인산 100g 대비 고형분인때의 중량으로 10 -50 g의 범위로 제한하는 것이다. The colloidal silica used acts to impart tensile stress to the material by forming a ceramic layer having a low thermal expansion coefficient upon firing of the coating agent, and the amount of the added colloidal silica is 10 g or less by weight at a solid content of 100 g of phosphoric acid. It is not possible to form a tensile stress to the material is insufficient, at 50g or more, the viscosity of the coating agent increases, the workability is very bad. Therefore, in the present invention, the content of the colloidal silica is limited to the range of 10-50 g by weight when the solid content is 100 g of the phosphoric acid.

상기 붕산은 인산 100g당 3g 이하로 첨가되는 경우 인산염에 존재하는 마그네슘이나 알루미나와 적절한 축합반응을 형성하기 어렵고, 7g 이상으로 첨가될 경우 과량 첨가로 인한 석출 현상이 발생하므로 상기 인산 100 g에 대하여 3 - 7g 으로 제한함이 바람직하다. The boric acid is difficult to form an appropriate condensation reaction with magnesium or alumina present in the phosphate when added to less than 3g per 100g of phosphoric acid, and when added to 7g or more, precipitation occurs due to excessive addition. Preferably limited to 7 g.                     

상기 산화크롬은 인산 100g당 5g 이하로 첨가되는 경우 코팅제의 내식성 저하를 15g이상일 경우 절연피막의 산화성 결함이 우려되므로 인산 100g당 5 -15g으로 제한함이 바람직하다.  When the chromium oxide is added in less than 5g per 100g of phosphoric acid, if the corrosion resistance of the coating agent is more than 15g, it is preferable to limit to 5-15g per 100g of phosphoric acid because the oxidative defect of the insulating film is concerned.

방향성전기강판의 제조공정은 제조사 마다 다소의 공정차이는 있지만 통상적으로 제강에서의 성분조정, 연주스라브제조, 재가열 및 열간압연, 열연판소둔 및 냉간압으로 두께조정, 탈탄 및 질화소둔, 2차재결정을 위한 고온소둔 및 최종 절연코팅공정으로 제조되는 것이 보통이다. 이러한 제조공정의 확립은 대량 생산체제를 기본으로 한 공정이며, 대량 생산체제의 중요한 인자가 마무리고온소둔 공정의 확립이다. 최근 고자속밀도급의 방향성전기강판생산이 방향성전기강판생사의 중심이 되고, 더구나 박물제품화로 생산비의 중심이 이동하면서 더더욱 우수한 자기적특성의 확보가 핵심 기술이며 이러한 자성개선의 하나로 절연피막의 고장력화에 의한 자성 개선의 기능적인 새로운 역할이 부가되게 된 것이다.Although the manufacturing process of grain-oriented electrical steel sheet has some process differences among manufacturers, it is common to adjust the thickness in steelmaking, manufacture slab manufacturing, reheat and hot rolling, thickness adjustment by hot roll annealing and cold pressure, decarburization and nitride annealing, and secondary recrystallization. It is usually manufactured by high temperature annealing and final insulation coating process. The establishment of such a manufacturing process is a process based on a mass production system, and an important factor of the mass production system is the establishment of a finishing high temperature annealing process. In recent years, the production of high magnetic flux oriented electrical steel sheet becomes the center of directional electrical steel sheet production. Moreover, as the center of production cost is shifted due to the commercialization of thin products, securing excellent magnetic characteristics is a key technology. The new functional role of the improvement of magnetism by hwa has been added.

통상의 절연 피막에 의한 장력 부여능은 0.23mm 방향성전기강판의 경우 0.30~0.36 kg/mm2의 수준이 되고 이 정도의 장력부여에 의해서도 최종 제품에 자성 기여율은 약 2~3%의 개선효과가 있다고 보고 되고 있다. 따라서 절연피막의 고장력 부여량 증가는 그대로 자성 개선율에 직접 기여를 할 수 있다. 피막층의 고장력부여에 의한 자성개선은 자성중의 철심손실 즉 철손에 영향을 주고있으며, 소재에 부여하는 장력에 의하여 와류손실을 축소 할 수 있기 때문에 자성의 개선이 가능하다. In the case of 0.23mm oriented electrical steel sheet, the tension imparting ability of the conventional insulating film is 0.30 to 0.36 kg / mm 2 , and the magnetic contribution to the final product is improved by about 2 to 3% even after applying the tension. It is reported that. Therefore, the increase in the amount of high tension applied to the insulating film can directly contribute to the magnetic improvement rate. The improvement of magnetism by imparting high tensile strength to the coating layer affects the iron core loss, ie iron loss in the magnet, and it is possible to improve the magnetism because the vortex loss can be reduced by the tension applied to the material.

일반적으로 절연코팅 피막이 소재에 비하여 아주 적을 때 압연 방향에서의 잔류응력 (Residual stress) dRD 은 다음과 같은 식으로 표현될 수 있다 (A.J.Moses and J.E. Thompson, Proc. IEEE,119, 1222 [1972]).In general, the residual stress d RD in the rolling direction when the insulation coating film is very small compared to the material can be expressed as follows (AJMoses and JE Thompson, Proc. IEEE, 119, 1222 [1972]). .

Figure 112004061845563-PAT00001
Figure 112004061845563-PAT00001

여기서

Figure 112004061845563-PAT00002
= 온도차 (oC),
Figure 112004061845563-PAT00003
= Si-Fe의 열팽창 계수,
Figure 112004061845563-PAT00004
= 코팅층의 열팽창 계수,
Figure 112004061845563-PAT00005
=
Figure 112004061845563-PAT00006
영역에서의 코팅층의 Young's Modulus의 평균값,
Figure 112004061845563-PAT00007
= 소재와 코팅층의 두께비,
Figure 112004061845563-PAT00008
= 압연방향에서의 Poisson's ratiohere
Figure 112004061845563-PAT00002
= Temperature difference ( o C),
Figure 112004061845563-PAT00003
= Thermal expansion coefficient of Si-Fe,
Figure 112004061845563-PAT00004
= Coefficient of thermal expansion of the coating layer,
Figure 112004061845563-PAT00005
=
Figure 112004061845563-PAT00006
Average value of Young's Modulus of the coating layer in the region,
Figure 112004061845563-PAT00007
= Thickness ratio of material to coating layer,
Figure 112004061845563-PAT00008
= Poisson's ratio in rolling direction

상기 식으로부터 피막에 의한 인장응력 향상 계수로는 소재와 코팅제간의 열팽창계수의 차를 들 수 있으며 이 값을 크게 함으로써 효과를 볼 수 있다. 본 발명의 작용에 대해서는 상세함이 불분명하지만, 대체적으로 도면1과 도면2에 나타낸 메커니즘을 통해 작용할 것이라 사료된다. As a tensile stress improvement coefficient by the film | membrane from said Formula, the difference of the thermal expansion coefficient between a raw material and a coating agent is mentioned, The effect can be seen by increasing this value. Although the details of the operation of the present invention are unclear, it will be assumed that they will generally work through the mechanism shown in FIGS.

도면 1에서 보는 바와 같이 낮은 소부온도에서 코팅제에 과량으로 포함되어 있는 자유인산은 전기강판 표면에 존재하는 산화성 물질과 결합해서 표면에 도면 1의 A로 표시된 상태로 존재 하리라 생각된다. 한편 제1인산 마그네슘(Mg(H2PO4)2 )과 제1인산 알루미늄(Al(H2PO4)3 은 붕산과의 축합반응을 통해 도면 2 의 B와 같은 형태로 존재하리라 생각된다. 따라서 피막형성이 진행됨에 따라 절연피막 형성초기 형성된 A와 B의 반응을 예상 할 수 있으며(예; A-A반응, A-B반응, 또는 B-B 반응), 이렇게 생성된 A-A, A-B, 그리고 B-B 복합 생성물은 절연피막 형성말기 800 ℃ 이 상에서 콜로이달 실리카에 의해 생성된 세라믹층에 존재하는 -OH 그룹과 또다른 축합반응을 유도해 종래의 방법으로 유도할 수 없었던 복합 생성물을 형성하리라 생각된다. 따라서 상기에서 제시된 화학메카니즘으로 인해 생성된 복합물질이 피막장력의 밀착성을 좋게하고 결과적으로 피막장력을 향상시키는데 중요한 역할을 하는것으로 판단된다.As shown in FIG. 1, it is thought that free phosphoric acid contained in the coating agent at low baking temperature is present in the state indicated by A in FIG. Meanwhile, the first magnesium phosphate (Mg (H 2 PO 4 ) 2 ) and the first aluminum phosphate (Al (H 2 PO 4 ) 3 may be present in the form as shown in FIG. 2 through condensation reaction with boric acid. Therefore, as the film formation progresses, the reaction between A and B formed at the initial stage of the insulation film formation can be predicted (eg, AA reaction, AB reaction, or BB reaction), and the resulting AA, AB, and BB composite products are insulated. It is thought that another condensation reaction with the -OH group present in the ceramic layer produced by the colloidal silica above 800 ° C at the end of the formation will form a complex product which could not be derived by the conventional method. It is believed that the composite material produced by the mechanism plays an important role in improving the adhesion of the film tension and consequently improving the film tension.

상기 화학반응은 절연코팅제의 소둔온도에 상관없이 사용한 인산 수소염의 종류, 금속원자와의 비율, 또는 각종 반응촉진제등의 영향을 강하게 받고, 반응의 최종 상태에 큰 차가 발생하는 일은 있지만, 근본적으로 인산수소염을 이용하여 가열함에 따라 붕산과 반응하리라 생각된다. Regardless of the annealing temperature of the insulating coating agent, the chemical reaction is strongly influenced by the type of hydrogen phosphate salt used, the ratio with metal atoms, or various reaction promoters, and a large difference may occur in the final state of the reaction. It is thought that it will react with boric acid by heating with hydrogen phosphate.

본 발명에서 있어서 코팅제에는 상기 설명된 바와 같이 인산 수소염외에 실리카를 함유하는 일이 필요하다. 실리카는 피막의 균일성의 관점 및 점적율의 관점으로부터 콜로이달 실리카를 사용하는 것이 바람직하고 특히 입경이 평균 7 - 20 nm 정도의 비교적 작은 입경의 것이 적당하다. 상기 실리카의 작용은 명확하게 밝혀진 것은 아니지만 인산수소염의 축합반응을 촉진하는 것과 동시에 그 피막 형성 형태에 따라 세밀한 피막 형성을 돕는것으로 추정된다. In the present invention, the coating agent needs to contain silica in addition to the hydrogen phosphate salt as described above. It is preferable to use colloidal silica from a viewpoint of the uniformity of a film, and a viewpoint of a droplet ratio, and it is suitable for a silica with a comparatively small particle diameter of 7-20 nm on average especially. Although the action of the silica is not clear, it is assumed that it promotes the condensation reaction of hydrogen phosphate and also helps to form a fine film according to the form of the film.

이러한 코팅제에 붕산을 도입하기 위해서는 특별한 배합순서대로 진행되어야 하는데, 일단 콜로이달 실리카에 붕산을 첨가하여 용액상태로 제조되어야 함을 기본으로 한다. 만약 콜로이달 실리카에 붕산, 인산수소염을 동시에 넣고 용액을 제조하게 되면 붕산이 인산수소염의 방해로 제대로 코팅액에 용해되지 않은채 고체입자상으로 존재할 수 있으며, 이러한 경우 소기의 목적을 달성하기 힘들다. 따라서 반드시 콜로이달 실리카에 붕산을 완전히 용해시킨 후 인산수소염과 산화크롬을 차례대로 첨가하여 코팅액을 제조한다. In order to introduce boric acid into the coating agent, it is necessary to proceed in a special compounding order, based on the fact that the boric acid is added to colloidal silica and prepared in solution. If boric acid and hydrogen phosphate are added to colloidal silica at the same time to prepare a solution, boric acid may exist as a solid particle without being properly dissolved in the coating solution due to the interference of hydrogen phosphate, in which case it is difficult to achieve its intended purpose. Therefore, after completely dissolving boric acid in colloidal silica, hydrogen phosphate and chromium oxide are sequentially added to prepare a coating solution.

본 발명에서는 상기와 같이 구성된 처리액을 방향성 전기강판 표면에 건조 피막 두께가 편면당 2 - 7 ㎛ 범위가 되도록 도포한 후, 550 - 900 ℃의 온도 범위에서 10 - 50 초간 가열처리하면 방향성 전기강판 절연코팅제가 갖추어야 할 밀착성 및 피막에 의한 장력이 우수한 제품을 얻을 수 있다.In the present invention, after applying the treatment liquid configured as described above to the surface of the grain-oriented electrical steel sheet so that the dry film thickness is in the range of 2-7 ㎛ per side, and heat-treated for 10-50 seconds in the temperature range of 550-900 ℃, the grain-oriented electrical steel sheet It is possible to obtain a product having excellent adhesion to the insulation coating agent and tension due to the film.

피막외관 특성을 결정하는 인자의 하나는 소둔온도와 시간과의 관계이다. 허용 최고 온도인 850℃일 경우 10초 이하로 유지할 경우, 미소둔상태로 되어 피막형성이 미흡하게 되어 흡습성이 남게되는 문제점이 나타나 불량하게 된다. 반면 허용최저온도는 550℃에서 50초를 유지시키면 산화층과 화학적으로 결합되어 있던 코팅제가 산화로 인해 피막색상도 적갈색-흑갈색으로 불량하게 나타난다.One of the factors that determine the appearance of film is the relationship between annealing temperature and time. If it is maintained at 10 seconds or less at the maximum allowable temperature of 850 ° C., it becomes a micro-dull state and the film formation is insufficient, resulting in the problem that the hygroscopicity remains. On the other hand, if the minimum allowable temperature is maintained at 550 ° C. for 50 seconds, the coating agent, which is chemically bonded to the oxide layer, is poorly colored as reddish brown to black brown due to oxidation.

롤(Roll)등에 의한 도포후 상기의 소둔조건을 충족하여 피막을 형성하였다 하더라도 본 발명의 방법에 의한 건조 피막의 두께가 2 ㎛ 이하인 경우 밀착성이 양호하더라도 층간저항 특성 및 충분한 장력부여가 어렵고, 7 ㎛ 이상인 경우 점적율을 증가시켜 적정한 피막두께는 편면당 2 - 7 ㎛로 제한함이 바람직하다.Even if the film was formed by satisfying the annealing conditions after application by a roll or the like, if the thickness of the dry film according to the method of the present invention is 2 μm or less, even if the adhesion is good, the interlayer resistance characteristics and sufficient tension imparting are difficult. In the case where the thickness is larger than or equal to one, it is preferable to increase the spot ratio so that the appropriate film thickness is limited to 2 to 7 µm per side.

이하, 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

실시예 1Example 1

중량비로 Si: 3.1%를 함유하고, 판 두께 0.23mm 마무리 소둔된 1차 피막을 가진 방향성 전기강판 (300 ×60 mm)을 공시재로 하고, 표1에서 나타내어진 조성의 수용액을 도포량이 5.0 ±0.5 g/m2 되도록 시료 일면에 도포하였다. 그 후 750℃ 에서 30초 동안 소부시키면 코팅된 면은 코팅제에 의한 인장응력 부가로 도면3과 같이 한 쪽 방향으로 휘게되고 이러한 휨의 정도(H')를 측정하여 피막에 의한 장력을 평가할 수 있다. Si: 3.1% by weight, a thickness of 0.23mm, oriented electrical steel sheet (300 × 60 mm) with a primary film annealed with a finish annealing as a test material, the coating amount of the aqueous solution of the composition shown in Table 1 5.0 ± It was applied to one surface of the sample so that 0.5 g / m 2 . Thereafter, when the plate is baked at 750 ° C. for 30 seconds, the coated surface is bent in one direction as shown in FIG. 3 by the addition of tensile stress by the coating agent, and the tension due to the film can be evaluated by measuring the degree of warpage (H ′). .

상기 형태에 따라 얻어진 방향성 전기강판의 피막특성 즉, 피막에 의한 장력을 표2에 나타내었다. 또한 비교재에 있어서, 표1의 조성을 가진 수용액을 사용하여 시험하였다.Table 2 shows the film properties of the grain-oriented electrical steel sheet obtained according to the above form, that is, the tension due to the film. In addition, the comparative material was tested using the aqueous solution which has a composition of Table 1.

표1 Table 1

번호number 구분division 인산염종류 (중량부)Type of phosphate (parts by weight) 인산염 점도 (cp)Phosphate Viscosity (cp) 콜로이드 실리카 (고체 중량부)Colloidal silica (solid parts by weight) 붕산Boric acid 산화 크롬Chromium oxide 1One 비교재Comparative material 제1인산 Al + Mg+ Ca (40)Monophosphate Al + Mg + Ca (40) 640640 16.216.2 00 44 22 시험재Test article 제1인산 Al + Mg (40)Monophosphate Al + Mg (40) 250250 16.216.2 00 44 33 시험재Test article 제1인산 Mg (40)Monophosphate Mg (40) 100100 16.216.2 00 44 44 시험재Test article 제1인산 Al + Mg+ Ca (40)Monophosphate Al + Mg + Ca (40) 640640 16.216.2 1.781.78 44 55 시험재Test article 제1인산 Al + Mg (40)Monophosphate Al + Mg (40) 250250 16.216.2 1.781.78 44 66 시험재Test article 제1인산 Mg (40)Monophosphate Mg (40) 100100 16.216.2 1.781.78 44





[표2][Table 2]

번호number 구분division 인산염종류 (중량부)Type of phosphate (parts by weight) 도포량 (g/m2)Coating amount (g / m 2 ) 장력부여능 (Kg/mm2)Tension imparting ability (Kg / mm 2 ) 1One 비교재 1Comparative material 1 제1인산 Al + Mg+ Ca (40)Monophosphate Al + Mg + Ca (40) 5.5 ±0.55.5 ± 0.5 0.4600.460 22 시험재 1Test article 1 제1인산 Al + Mg (40)Monophosphate Al + Mg (40) 5.5 ±0.55.5 ± 0.5 0.6490.649 33 시험재 2Test article 2 제1인산 Mg (40)Monophosphate Mg (40) 5.5 ±0.55.5 ± 0.5 0.3700.370 44 시험재 3Test article 3 제1인산 Al + Mg+ Ca (40)Monophosphate Al + Mg + Ca (40) 5.5 ±0.55.5 ± 0.5 0.6230.623 55 시험재 4Test article 4 제1인산 Al + Mg (40)Monophosphate Al + Mg (40) 5.5 ±0.55.5 ± 0.5 0.8900.890 66 시험재 5Test article 5 제1인산 Mg (40)Monophosphate Mg (40) 5.5 ±0.55.5 ± 0.5 0.3910.391

표2는 인산염의 종류 및 코팅제 내에 붕산 유무에 따른 장력부여능을 나타내고 있다. 표2에서 확인할 수 있듯이 붕산을 첨가하지 않은 코팅제(비교재1, 시험재1, 2) 중에서 인산염의 종류에 따라 장력부여능이 40 - 75% 차이를 보이고 있으며 특히 비교재에 사용되었던 인산염에서 Ca 성분을 뺀 인산염 (시험재1)의 경우 장력부여능이 비교재 대비 45% 증가한 반면 Al과 Ca를 모두 뺀 종류에서는 오히려 장력부여능이 비교재에 비해 20% 감소하는 결과를 보였다. 이러한 이유로 인산염의 종류에 따라 코팅제와 소재간의 밀착성이 다를 수 있으며 인산염의 점도가 적정하였을 때 소재와의 최적의 밀착성을 나타낸다고 사료된다. Table 2 shows the tension imparting ability according to the type of phosphate and the presence or absence of boric acid in the coating agent. As can be seen from Table 2, the tension imparting ability was different from 40 to 75% according to the kind of phosphate among the coating materials without boric acid (Comparative Materials 1, Test Materials 1, 2). In the case of phosphate (Tester 1) excluding the increase of the tension imparting ability 45% compared to the comparative material, the tension imparting ability was reduced by 20% compared to the comparative material in the type without both Al and Ca. For this reason, the adhesion between the coating agent and the material may be different according to the type of phosphate, and the optimum adhesion with the material may be obtained when the viscosity of the phosphate is appropriate.

또한 붕산의 첨가 유무에 따라 동일 인산염에서 차이를 확인할 수 있다. 예를 들어 비교재 1과 시험재 3을 비교했을 때 붕산이 첨가된 코팅제에서는 장력부여능이 35% 증가하였으며, 시험재 1과 시험재 4의 경우 37%, 그리고 시험재 2와 시험재 5의 경우 6% 가 증가하였다. 이는 상기에서 설명한 바와 같이 코팅제 소부시 제1인산 알루미늄 또는 제1인산 마그네슘과 붕산간에 축합반응이 발생되는것으로 생각되며 이러한 축합반응에 의해 생성된 Al-B 또는 Mg-B 복합물질 (도면2)이 최종적으로 콜로이달 실리카에 존재하는 OH 그룹과 연쇄 축합반응 일으켜 더욱 공고한 피막을 이룬다고 생각된다. In addition, it can be seen that the difference in the same phosphate depending on the addition of boric acid. For example, when comparing Comparative 1 and Test 3, the boric acid-added coating increased 35% in tension, 37% in Test 1 and Test 4, and Test 2 and Test 5 6% increase. It is thought that the condensation reaction occurs between aluminum monophosphate or magnesium monophosphate and boric acid when the coating agent is burned as described above, and the Al-B or Mg-B composite material produced by such condensation reaction (Fig. 2) Finally, it is thought that a condensation reaction is performed with the OH group present in the colloidal silica to form a more firm film.

상술한 바와 같이, 본 발명은 붕산 적당량을 콜로이달 실리카에 용해 시킨 용액에제1인산 알루미늄과 제1인산 마그네슘 혼합용액을 적정비율 혼합한 인산염을 사용 하여 코팅제를 사용하여 방향성 전기강판의 절연피막을 형성하였을 경우 피막의 외관 및 소재와 피막간에 밀착성이 우수한 절연피막을 제조할 수 있었다. 또한 이렇게 제조된 절연피막은 피막에 의한 장력부여능도 기존재에 비하여 월등히 향상됨을 확인하였다. As described above, in the present invention, an insulating film of a grain-oriented electrical steel sheet is formed by using a coating agent using a phosphate obtained by mixing an appropriate amount of a mixture of aluminum monophosphate and magnesium phosphate monobasic in a solution in which a suitable amount of boric acid is dissolved in colloidal silica. When formed, an insulating coating having excellent adhesion between the appearance and material of the coating and the coating could be prepared. In addition, it was confirmed that the insulation coating thus prepared is significantly improved as compared with the existing material.

Claims (3)

제1인산 알루미늄과 제1인산 마그네슘 혼합 형태의 인산염100g 당 고형분비로 콜로이달 실리카10-50g, 붕산3-7g의 비율로 첨가하여서 된 피막밀착성이 우수하고 장력부여능이 뛰어난 방향성 전기강판의 절연피막조성물Insulation coating composition of oriented electrical steel sheet with excellent film adhesion and tension-bearing ability, added by the ratio of 10-50g of colloidal silica and 3-7g of boric acid in solid ratio per 100g of phosphate mixed with aluminum monophosphate and magnesium phosphate 제 1항에 있어서,The method of claim 1, 상기 절연피막 조성물은 인산염 100g 당 산화크롬 5-15g을 더 첨가한 것을 특징으로 하는 피막 밀착성이 우수하고 장력부여능이 뛰어난 방향성 전기강판의 절연피막 조성물The insulating coating composition is an insulating coating composition of a grain-oriented electrical steel sheet having excellent film adhesion and excellent tension imparting ability, characterized in that 5-15g of chromium oxide is further added per 100g of phosphate. 제1항에 있어서,The method of claim 1, 상기 절연피막 조성물은 먼저 콜로이달 실리카에 붕산을 첨가하여 용액상태로 한 후, 인산염을 첨가하여 제조된 것을 특징으로 하는 피막 밀착성이 우수하고 장력부여능이 뛰어난 방향성 전기강판의 절연피막 조성물The insulating coating composition is first prepared by adding boric acid to the colloidal silica to make a solution state, and then added to the phosphate, the coating film is excellent and excellent in film adhesion, characterized in that the tension coating ability excellent insulating film composition of the electrical steel sheet
KR1020040113469A 2004-12-28 2004-12-28 Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties KR101141282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040113469A KR101141282B1 (en) 2004-12-28 2004-12-28 Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040113469A KR101141282B1 (en) 2004-12-28 2004-12-28 Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties

Publications (2)

Publication Number Publication Date
KR20060074664A true KR20060074664A (en) 2006-07-03
KR101141282B1 KR101141282B1 (en) 2012-05-07

Family

ID=37167403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040113469A KR101141282B1 (en) 2004-12-28 2004-12-28 Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties

Country Status (1)

Country Link
KR (1) KR101141282B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016658A2 (en) * 2008-08-08 2010-02-11 주식회사 포스코 Non-chromium coating agent for a grain-oriented electrical steel sheet, preparation method thereof, electrical steel sheet using the same, and manufacturing method thereof
KR101243210B1 (en) * 2010-12-28 2013-03-13 주식회사 포스코 Coating solution for forming an insulation film and and electrical steel sheet including the same, method for forming an insulation film on electrical steel sheet
KR101308732B1 (en) * 2011-11-21 2013-09-13 주식회사 포스코 Tension coating agent for forming insulating film with excellent glossy property, electrical resistance and method for forming insulation film using that, and oriented ecectrical steel sheet with coated insulating film that method
KR101366610B1 (en) * 2011-04-08 2014-02-25 도카로 가부시키가이샤 Substrate processing apparatus, and method for forming coating film on surface of reaction tube used for the substrate processing apparatus
WO2017069336A1 (en) * 2015-10-20 2017-04-27 주식회사 포스코 Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein
EP3561084A4 (en) * 2016-12-21 2019-10-30 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
KR102255349B1 (en) * 2019-12-06 2021-05-25 주식회사 포스코 Method for removing insulting coationg layer of oriented electric steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900008907B1 (en) * 1988-08-18 1990-12-11 포항종합제철 주식회사 Insulate coating for excellant grain oriented electrical steel sheets to close adhesion and to endow with tension
JP3935664B2 (en) 2000-08-01 2007-06-27 住友金属工業株式会社 Treatment liquid for insulating film formation of electrical steel sheet and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016658A2 (en) * 2008-08-08 2010-02-11 주식회사 포스코 Non-chromium coating agent for a grain-oriented electrical steel sheet, preparation method thereof, electrical steel sheet using the same, and manufacturing method thereof
WO2010016658A3 (en) * 2008-08-08 2010-04-01 주식회사 포스코 Non-chromium coating agent for a grain-oriented electrical steel sheet, preparation method thereof, electrical steel sheet using the same, and manufacturing method thereof
KR100966819B1 (en) * 2008-08-08 2010-06-29 주식회사 포스코 Cr -free coating solution, manufacturing method and steel sheet, manufacturing method
KR101243210B1 (en) * 2010-12-28 2013-03-13 주식회사 포스코 Coating solution for forming an insulation film and and electrical steel sheet including the same, method for forming an insulation film on electrical steel sheet
KR101366610B1 (en) * 2011-04-08 2014-02-25 도카로 가부시키가이샤 Substrate processing apparatus, and method for forming coating film on surface of reaction tube used for the substrate processing apparatus
KR101308732B1 (en) * 2011-11-21 2013-09-13 주식회사 포스코 Tension coating agent for forming insulating film with excellent glossy property, electrical resistance and method for forming insulation film using that, and oriented ecectrical steel sheet with coated insulating film that method
WO2017069336A1 (en) * 2015-10-20 2017-04-27 주식회사 포스코 Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein
US11667985B2 (en) 2015-10-20 2023-06-06 Posco Co., Ltd Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein
EP3561084A4 (en) * 2016-12-21 2019-10-30 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
US11174525B2 (en) 2016-12-21 2021-11-16 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
KR102255349B1 (en) * 2019-12-06 2021-05-25 주식회사 포스코 Method for removing insulting coationg layer of oriented electric steel

Also Published As

Publication number Publication date
KR101141282B1 (en) 2012-05-07

Similar Documents

Publication Publication Date Title
KR101195220B1 (en) Coating solution for forming insulating film with excellent insulation film adhesion property, tension allowance ability and a method for making the insulation film on grain-oriented electrical steel sheet by using it
KR100966819B1 (en) Cr -free coating solution, manufacturing method and steel sheet, manufacturing method
KR101596446B1 (en) Pre-coating composition for forsterite film-eliminated grain oriented electrical steels, grain oriented electrical steels manufactured by using the same, and method for manufacturing the same grain oriented electrical steels
KR101448596B1 (en) Oriented electrical steel steet and method for the same
WO2017111507A1 (en) Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
KR101944901B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
JP3482374B2 (en) Grain-oriented electrical steel sheet with excellent coating properties and method for producing the same
JP2019508577A (en) Directional electrical steel sheet and method of manufacturing directional electrical steel sheet
JP5309735B2 (en) Insulating coating treatment agent, grain-oriented electrical steel sheet coated with the coating treatment agent, and insulation coating treatment method thereof
KR101141282B1 (en) Composition for insulated coating of the grain oriented eletrical steel sheet having good contact coating and tension properties
KR101141280B1 (en) A composition for insulated coating having a good tension property and the method for making a insulated coating on the grain oriented electrical steel sheet
JP2022512570A (en) Annealing Separator Composition for Electrical Steel Sheets, Manufacturing Methods for Electrical Steel Sheets and Electrical Steel Sheets
KR100733344B1 (en) Coating solution for forming insulating film with excellent insulation film adhesion property, tension allowance ability and manufacturing method thereof
KR101356066B1 (en) Oriented electrical steel sheets and method for manufacturing the same
US20050247374A1 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property
KR101356053B1 (en) Oriented electrical steel sheets and method for manufacturing the same
KR102080165B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
KR101480504B1 (en) Tension coating composite for oriented electrical steel steet, forming method of tension coating using the same and oriented electrical steel steet using the method
CN114106593A (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
KR100711470B1 (en) Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
KR101253857B1 (en) Insulation coating method of electrical steel sheet
KR100544535B1 (en) chromium-free Insulation coating material for grain-oriented electrical steel sheet having no glass film and method for manufacturing grain-oriented electrical steel sheet by using it
KR100918642B1 (en) Methode for measuring coating strength of tention insulting coationg layer of oriented electric steel
KR101059216B1 (en) Method for manufacturing oriented electrical steel sheet with excellent glass coating properties
KR100482205B1 (en) An insulation coating material with tacky resistant property for grain-oriented electrical steel sheet having high punching property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150422

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160421

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190225

Year of fee payment: 8