KR20060073017A - Manufacturing method of thermoelectric materials - Google Patents

Manufacturing method of thermoelectric materials Download PDF

Info

Publication number
KR20060073017A
KR20060073017A KR1020040111838A KR20040111838A KR20060073017A KR 20060073017 A KR20060073017 A KR 20060073017A KR 1020040111838 A KR1020040111838 A KR 1020040111838A KR 20040111838 A KR20040111838 A KR 20040111838A KR 20060073017 A KR20060073017 A KR 20060073017A
Authority
KR
South Korea
Prior art keywords
granules
thermoelectric
reducing atmosphere
manufacturing
granulated
Prior art date
Application number
KR1020040111838A
Other languages
Korean (ko)
Other versions
KR101090867B1 (en
Inventor
황순철
김선욱
김태칠
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020040111838A priority Critical patent/KR101090867B1/en
Publication of KR20060073017A publication Critical patent/KR20060073017A/en
Application granted granted Critical
Publication of KR101090867B1 publication Critical patent/KR101090867B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 열전소자 제조방법에 관한 것으로서, 이는 순도 99%이상의 전해철분말 및 규소분말을 몰비로 1:2의 비율이 되게 혼합한 후 그를 고주파 용해로에서 용융하여 FeSi2 잉곳을 합성하고, 그 합성된 잉곳을 분쇄기를 통해 조 분쇄한 후 그를 평균입도 1㎛이하의 미립과 20㎛의 조립이 되게 볼밀로 분쇄하여 혼합한 뒤 분무건조기를 건조하여 과립화시키고, 그 과립을 냉간정수압성형기를 이용하여 성형한 후 그 성형체를 분위기 제어가 가능한 소결로에서 환원분위기로 소결하고, 진공 중에서 어닐링하는 방법으로 보다 우수한 특성을 갖는 열전재료를 얻게 되었다.The present invention The present invention relates to a method for manufacturing a thermoelectric device, which comprises mixing electrolytic iron powder and silicon powder having a purity of 99% or more in a molar ratio of 1: 2, melting the same in a high frequency melting furnace to synthesize FeSi 2 ingots, and milling the synthesized ingot. After crushing through coarse powder, it was pulverized and mixed with a ball mill so that granules with an average particle size of 1 μm or less and 20 μm were granulated, dried by a spray dryer, and granulated. The granules were formed using a cold hydrostatic molding machine and then The molded body was sintered in a reducing atmosphere in an sintering furnace capable of controlling the atmosphere and then annealed in vacuo to obtain a thermoelectric material having better characteristics.

열전소자, 냉간정수압성형, 환원분위기, 어닐링Thermoelectric element, cold hydrostatic molding, reducing atmosphere, annealing

Description

열전소자 제조방법{manufacturing method of thermoelectric materials} Manufacturing method of thermoelectric materials

본 발명은 열전소자 제조방법에 관한 것으로서, 더욱 상세하게는 열전소자 제조시 동일조성이나 입도가 상이한 미립과 조립의 출발원료를 혼합하여 전기전도도가 저하되지 않으면서 열전도도가 낮은 열전재료를 제조하고자 하는 것이다.The present invention relates to a method of manufacturing a thermoelectric element, and more particularly, to prepare a thermoelectric material having low thermal conductivity without mixing electrical particles and granules of different granules and granules having the same composition or particle size during manufacturing. It is.

일반적으로 열전재료는 열을 전기로 또는 전기를 열로 직접 변환시키는 기능을 갖는 금속 또는 세라믹 재료로서, 쓰레기 소각에 의한 폐열, 터빈발전 폐열, 자동차 배기가스의 열, 도시가스의 연소 배열 및 각종 산업 폐열 등을 사용하여 열전발전 또는 열전냉각 등에의 응용이 주목을 받고 있다. In general, thermoelectric material is a metal or ceramic material having a function of directly converting heat into electricity or electricity directly into heat. Waste heat from incineration of waste, waste heat from turbine power generation, heat from automobile exhaust gas, combustion arrangement of city gas, and various industrial waste heat Application to thermoelectric power generation, thermoelectric cooling, and the like has attracted attention.

열전재료를 이용한 열전발전은 온도차만 부여하면 가동부분 없이 발전이 가능한 특성 이외에 구조가 간단하고 고장이 적어 유지관리가 유용하고, 소음이 없고 이용열원의 선택범위가 넓다. 또한 열전냉각은 고장이 적고 소음이 없으며 미소부분의 선택적 냉각이 가능하고 열 응답 감도가 높아 온도제어가 정밀하고, 압축기나 냉매가 필요 없는 특징과 이점을 갖고 있다. Thermoelectric power generation using thermoelectric materials is possible to generate power without moving parts by simply giving a temperature difference, and the structure is simple and trouble-free, so maintenance is useful, there is no noise, and there is a wide range of heat sources to use. In addition, thermoelectric cooling has the features and advantages of low temperature, low noise, selective cooling of minute parts, high thermal response sensitivity, precise temperature control, and no need for compressor or refrigerant.

열전재료의 특성은 통상적으로 하기 [식1]로 표현되는 성능지수(Z)로 평가할 수 있다. The characteristics of the thermoelectric material can be generally evaluated by the performance index (Z) represented by the following [Formula 1].                         

[식1][Equation 1]

Z= α2σ/κZ = α 2 σ / κ

α : 제벡(Seebeck)계수α: Seebeck coefficient

σ : 전기전도도σ: electrical conductivity

κ : 열전도도κ: thermal conductivity

열전재료는 성능지수가 크면 클수록 발생되는 전위차가 커지므로 우수한 특성을 나타낸다. 따라서 상기 [식1]로부터 열전재료로서의 응용을 위해서는 제벡계수 및 전기전도도가 크고 열전도도가 작은 재료가 바람직하다. 여기서 제벡계수는 온도의 함수로 주어지는 재료 고유의 물성치로 형상과는 무관하지만, 전기전도도 및 열전도도는 재료의 형상 및 carrior 농도, 결정구조, 결합의 성질, 결합강도 등에 따라 최적화가 가능하다.The larger the performance index, the greater the potential difference, and thus, the thermoelectric material exhibits excellent characteristics. Therefore, for the application as a thermoelectric material from the above [Formula 1], a material having a high Seebeck coefficient and high electrical conductivity and low thermal conductivity is preferable. Here, the Seebeck coefficient is a material intrinsic property given as a function of temperature. The electrical and thermal conductivity can be optimized according to the shape and carrior concentration, crystal structure, bonding properties, and bonding strength of the material.

특히 분말소결체의 경우 무질서 구조의 결정입계가 존재하므로 장파장의 격자열진동은 입계에서, 그리고 단파장의 격자열진동은 결정내부의 미세한 스트래인(strain)에서 각각 산란되어 열전도율의 저하를 유도할 수 있다. 그러나 이 경우에는 carrior의 산란에 의한 전기전도도의 저하도 수반될 우려가 있으므로 정밀한 미세구조 제어 및 소결합성 기술의 필요성이 대두되고 있는 실정이다. Particularly, in the case of powder sintered bodies, since the grain boundary of disordered structure exists, lattice thermal vibration of long wavelengths is scattered at grain boundaries, and lattice thermal vibrations of short wavelengths are respectively scattered at fine strains in crystals, which can lead to a decrease in thermal conductivity. have. However, in this case, there is a possibility that the electrical conductivity may be accompanied by the scattering of the carrior, and therefore, the necessity of precise microstructure control and non-bonding technology is emerging.

또한 통상적으로 세라믹 소결체의 열전도도를 낮추기 위한 방법으로 소결온도의 제어를 통해 소결밀도를 낮추는 방법이 있으나 동시에 전기전도도가 저하되거나 기계적 강도가 떨어져서 실제 상용 소자로서 적용하기에 어려운 문제가 발생하 게 된다. In addition, there is a method for lowering the thermal conductivity of the ceramic sintered body as a method of lowering the sintered density by controlling the sintering temperature, but at the same time, the electrical conductivity is lowered or the mechanical strength is poor, which makes it difficult to apply as a practical commercial device.

본 발명은 상기와 같은 문제점을 해결하기 위하여 본 발명한 것으로서, 열전소자 제조시 동일조성이나 입도가 상이한 미립과 조립의 출발원료를 혼합하여 전기전도도가 저하되지 않으면서 열전도도가 낮은 열전소자의 제조가 가능하도록 함으로써 보다 우수한 성능의 열전소자를 제공함에 그 목적이 있다. The present invention has been made in order to solve the above problems, the production of thermoelectric elements with low thermal conductivity without mixing the granules and granules of the same composition or particle size and starting materials of the assembly when the thermoelectric device is manufactured, the electrical conductivity is not lowered It is an object of the present invention to provide a thermoelectric device with better performance.

상기 목적을 달성하기 위한 본 발명의 열전소자 제조방법은 순도 99%이상의 전해철분말 및 규소분말을 몰비로 1:2의 비율(중량%로는 약 50:50)이 되게 혼합한 후 그를 고주파 용해로에서 용융하여 FeSi2 잉곳을 합성하고, 그 합성된 잉곳을 분쇄기를 통해 조 분쇄한 후 그를 평균입도 1㎛이하의 미립과 20㎛의 조립이 되게 볼밀로 분쇄하여 혼합한 뒤 분무건조기를 건조하여 과립화시키고, 그 과립을 냉간정수압성형기를 이용하여 성형한 후 그 성형체를 분위기 제어가 가능한 소결로에서 환원분위기로 소결하고, 진공 중에서 어닐링하는 것으로 이루어진다.In the method of manufacturing a thermoelectric device of the present invention for achieving the above object, the electrolytic iron powder and silicon powder having a purity of 99% or more are mixed in a molar ratio of 1: 2 in a ratio of about 50:50 by weight and then melted in a high frequency melting furnace. FeSi 2 ingots were synthesized, and the synthesized ingots were coarsely pulverized through a pulverizer, and then pulverized and mixed in a ball mill to have granules having an average particle size of 1 탆 or less and 20 탆. The granules are formed by using a cold hydrostatic molding machine, and then the molded bodies are sintered in a reducing atmosphere in a sintering furnace capable of controlling the atmosphere and annealed in vacuo.

그리고, 상기 성형체를 소결로에서 환원분위기로 소결하는 조건은 Ar-H2를 이용하여 환원분위기에서 3℃/min.의 속도로 승온하여 1110∼1200℃에서 1∼4시간동안 유지시켜 소결하고, 상기 소결된 성형체를 진공 중에서 어닐링하는 조건은 750∼850℃에서 5∼20시간 동안이다.In addition, the conditions for sintering the molded body in a reducing atmosphere in a sintering furnace are sintered by heating at a rate of 3 ° C./min. In an reducing atmosphere using Ar—H 2 for 1 to 4 hours at 1110 to 1200 ° C., The conditions for annealing the sintered compacts in vacuum are for 5 to 20 hours at 750 to 850 캜.

또, 상기 평균입도 1㎛이하의 미립과 20㎛의 조립이 되게 볼밀로 분쇄하여 혼합할 때에 외삽으로 폴리비닐알골을 1∼4Wt%첨가하고, 조립분말의 비율은 1∼40Vol%가 되게 한다.In addition, when the ball mill is pulverized and mixed so that granules having an average particle size of 1 µm or less and 20 µm are granulated, 1 to 4 Wt% of polyvinyl algol is added by extrapolation, so that the proportion of the granulated powder is 1 to 40 vol%.

상기 본 발명에서 전해철 및 규소분말의 순도는 99% 이상인 것을 사용하는 것이 바람직하다. 그 이유는 순도가 99% 이하로 떨어지면 함유되어 있는 탄소나 실리카에 의해 입자성장을 과도하게 촉진시킬 뿐 아니라 소결이 과도하게 진행되어 열전소자의 제조에 어려움이 따른다.In the present invention, the purity of the electrolytic iron and silicon powder is preferably 99% or more. The reason is that when the purity falls below 99%, not only the grain growth is excessively promoted by the carbon or silica contained therein, but the sintering is excessively progressed, thus making it difficult to manufacture the thermoelectric element.

또, 상기 소결은 환원성분위기에서 함이 바람직하고 소결온도는 1100∼1200℃로 함이 바람직한데 1100℃ 미만에서는 소결이 이루어지지 않아 강도가 약하며, 1200℃를 초과면 과도한 입자성장과 과도한 소결로 다공체를 얻기 어렵다. In addition, the sintering is preferably carried out in the reducing component atmosphere and the sintering temperature is preferably 1100 ~ 1200 ℃ but less than 1100 ℃ sintering is weak strength, exceeding 1200 ℃ excessive grain growth and excessive sintering porous body Difficult to get.

또한, 상기 외삽으로 폴리비닐알골을 1∼4Wt%첨가하는 이유는 성형성을 좋게 하기 위한 것으로서 첨가량이 1중량% 미만이면 성형성 부족으로 성형체의 제조가 어렵고, 4중량%를 초과하면 성형체 분말 제조시 과량의 포리비닐알콜로 인해 분말이 딱딱해져 처리하는데 어려움이 있다. 가장 바람직하게는 1중량%이다. In addition, the reason for adding 1 to 4 Wt% of polyvinyl algol by the extrapolation is to improve moldability, and when the addition amount is less than 1% by weight, it is difficult to manufacture the molded product due to lack of moldability. Excess polyvinyl alcohol hardens the powder and makes it difficult to process. Most preferably 1% by weight.

이하 본 발명의 열간소자 제조방법을 실시예를 통하여 설명하면 다음과 같다.Hereinafter, a method of manufacturing a hot device of the present invention will be described with reference to the following Examples.

[실시예]EXAMPLE

본 발명의 다공성 열전소자를 제조하기 위하여 출발원료로서 99%이상의 전해철분말 및 99%이상의 규소분말을 몰비로 1:2의 비율이 되게 혼합한 후 그를 고주파 용해로에서 용융하여 FeSi2 잉곳을 합성하고, 그 합성된 잉곳을 분쇄기를 통해 조 분쇄한 후 통상의 볼밀로 분쇄하여 평균입도가 1㎛이하의 미립과 20㎛의 조립분말이 되도록 준비한다.In order to manufacture the porous thermoelectric device of the present invention, as a starting material, more than 99% of electrolytic iron powder and more than 99% of silicon powder are mixed in a molar ratio of 1: 2, and then melted in a high frequency melting furnace to synthesize FeSi 2 ingot, The synthesized ingot is roughly pulverized by a pulverizer and then pulverized by a conventional ball mill to prepare fine particles having an average particle size of 1 탆 or less and granulated powder of 20 탆.

상기 분말에 바인더로 폴리비닐알콜(PVA)을 1∼4wt% 첨가하고, 기공형성 정도를 변화시키기 위하여 조립분말의 비율을 0~40vol% 첨가한 범위를 갖도록 하기 표1의 비교예 1,2 내지 발명예3의 조성을 설계하였다.Polyvinyl alcohol (PVA) is added to the powder as a binder in an amount of 1 to 4 wt%, and the ratio of the granulated powder is changed to change the degree of pore formation. The compositions of Comparative Examples 1 and 2 to Inventive Example 3 of Table 1 were designed to have a range of 0 to 40 vol% added.

그리고, 상기 각각의 조성에 대하여 볼밀을 사용하여 에탄올 용매중에서 6시간 혼합한 후 분무건조기(Spray dryer)로 건조하여 과립화시킨 다음 그를 유압프레스를 이용하여 단면적이 20㎜ x 40㎜의 성형몰드로 가압 성형한 후, 냉간정수압프레스(Cold Isostatic Press)에 의하여 2.0톤/㎠의 압력으로 성형하였다.For each of the above compositions, the mixture was mixed for 6 hours in an ethanol solvent using a ball mill, dried in a spray dryer, and granulated. Then, the resultant was molded into a molding mold having a cross section of 20 mm x 40 mm using a hydraulic press. After pressure molding, the mold was molded at a pressure of 2.0 ton / cm 2 by cold isostatic press.

성형시편은 Ar-H2를 이용하여 환원분위기에서 3℃/min.의 속도로 승온하여 1150℃에서 3시간동안 유지시켜 소결을 행하였다. 소결된 시편들은 반도체화를 위해 진공중에서 800℃에서 10시간 동안 어닐링 한 후, 크기가 4㎜ x 4㎜ x 20㎜가 되도록 절단하여 최종 특성평가용 시편으로 사용하였다. The molded specimen was sintered using Ar-H 2 at a rate of 3 ° C./min. In a reducing atmosphere and maintained at 1150 ° C. for 3 hours. The sintered specimens were annealed at 800 ° C. for 10 hours in vacuo for semiconductorization, and then cut into 4 mm × 4 mm × 20 mm in size and used as final characterization specimens.

상기 비교예1,2 내지 발명예3에 대하여 소결성, 전기전도도, 열전도도도를 측정하여 그 결과를 표1에 나타내었다. Sinterability, electrical conductivity, and thermal conductivity of the Comparative Examples 1, 2 to 3 were measured, and the results are shown in Table 1.

[표1] Table 1

조립(Vol%)Assembly (Vol%) 소결성Sinterability 전기전도도 (S/m)Conductivity (S / m) 열전도도 (W/m.k)Thermal Conductivity (W / m.k) 비교예1Comparative Example 1 00 양호Good 345345 1010 발명예1Inventive Example 1 1010 양호Good 345345 99 발명예2Inventive Example 2 2020 양호Good 330330 88 발명예3Inventive Example 3 3030 양호Good 310310 77 비교예2Comparative Example 2 4040 불량Bad -- --

상기 표1에서 알 수 있는 바와 같이 발명예1 내지 발명예3의 경우 소결성이 양호하고 전기전도도가 크게 저하되지 않으면서 열전도도가 낮아져서 우수한 열전특성을 나타내었다.As can be seen from Table 1, in the case of Inventive Examples 1 to 3, the sinterability is good and the thermal conductivity is lowered without significantly lowering the electrical conductivity, thereby showing excellent thermoelectric properties.

상기와 같은 본 발명의 열전소자 제조방법은 열전소자의 성형 및 소결공정시 동일조성이나 입도가 상이한 미립과 조립의 출발원료를 혼합한 뒤 분무 건조기를 이용하여 과립화하고, 상기의 과립들을 냉간정수압성형기를 이용하여 성형한 후, 상기 성형체를 분위기 제어가 가능한 소결로에서 환원분위기로 소결하고, 진공중에서 어닐링하여 열전소자로 제조함으로서, 보다 우수한 특성을 갖는 열전재료를 얻게 되었다.The thermoelectric device manufacturing method of the present invention as described above in the forming and sintering process of the thermoelectric element is mixed granules and granules of different granules and granules of the same composition or particle size, and then granulated using a spray dryer, the granules are cold-static After molding using a molding machine, the molded body was sintered in a reducing atmosphere in an sintering furnace capable of controlling the atmosphere, and annealed in vacuum to produce a thermoelectric element, thereby obtaining a thermoelectric material having better characteristics.

Claims (4)

순도 99%이상의 전해철분말 및 규소분말을 몰비로 1:2의 비율이 되게 혼합한 후 그를 고주파 용해로에서 용융하여 FeSi2 잉곳을 합성하고, 그 합성된 잉곳을 분쇄기를 통해 조 분쇄한 후 그를 평균입도 1㎛이하의 미립과 20㎛의 조립이 되게 볼밀로 분쇄하여 혼합한 뒤 분무건조기를 건조하여 과립화시키고, 그 과립을 냉간정수압성형기를 이용하여 성형한 후 그 성형체를 분위기 제어가 가능한 소결로에서 환원분위기로 소결하고, 진공 중에서 어닐링하는 것을 특징으로 하는 열전소자 제조방법.Electrolytic iron powder and silicon powder with a purity of 99% or more are mixed in a molar ratio of 1: 2, and then melted in a high frequency melting furnace to synthesize FeSi 2 ingots, and the synthesized ingots are roughly pulverized through a grinder and then averaged to their average particle size. Grind and mix with a ball mill to make granules of less than 1 ㎛ and granules of 20 ㎛, dry and granulate the spray dryer, and shape the granules by using a cold hydrostatic molding machine. A method of manufacturing a thermoelectric element, which is sintered in a reducing atmosphere and annealed in vacuo. 제1항에 있어서, 상기 성형체를 소결로에서 환원분위기로 소결하는 조건은 Ar-H2를 이용하여 환원분위기에서 3℃/min.의 속도로 승온하여 1110∼1200℃에서 1∼4시간동안 유지시켜 소결하는 것을 특징으로 하는 열전소자 제조방법.According to claim 1, The conditions for sintering the molded body in a reducing atmosphere in the sintering furnace is heated at a rate of 3 ℃ / min. In the reducing atmosphere using Ar-H 2 and maintained for 1 to 4 hours at 1110 ~ 1200 ℃ Thermoelectric element manufacturing method characterized in that the sintering. 제1항에 있어서, 상기 소결된 성형체를 진공 중에서 어닐링하는 조건은 750∼850℃에서 5∼20시간 동안임을 특징으로 하는 열전소자 제조방법.The method of claim 1, wherein the annealing of the sintered molded body in a vacuum is performed at 750 to 850 ° C. for 5 to 20 hours. 제1항에 있어서, 상기 평균입도 1㎛이하의 미립과 20㎛의 조립이 되게 볼밀로 분쇄하여 혼합할 때에 외삽으로 폴리비닐알골을 1∼4Wt%첨가하고, 조립분말의 비율은 1∼40Vol%가 되게 함을 특징으로 하는 열전소자 제조방법. The method according to claim 1, wherein when the ball mill is pulverized and mixed so that granules having an average particle size of 1 µm or less and 20 µm are granulated, 1 to 4 Wt% of polyvinyl algal is added by extrapolation, and the proportion of granulated powder is 1 to 40 vol%. Thermoelectric device manufacturing method characterized in that to be.
KR1020040111838A 2004-12-24 2004-12-24 manufacturing method of thermoelectric materials KR101090867B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040111838A KR101090867B1 (en) 2004-12-24 2004-12-24 manufacturing method of thermoelectric materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040111838A KR101090867B1 (en) 2004-12-24 2004-12-24 manufacturing method of thermoelectric materials

Publications (2)

Publication Number Publication Date
KR20060073017A true KR20060073017A (en) 2006-06-28
KR101090867B1 KR101090867B1 (en) 2011-12-08

Family

ID=37166146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040111838A KR101090867B1 (en) 2004-12-24 2004-12-24 manufacturing method of thermoelectric materials

Country Status (1)

Country Link
KR (1) KR101090867B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123355B1 (en) * 2009-08-07 2012-03-23 한국세라믹기술원 NaxCo2O4 thermoelectric element and the manufacturing method of the same
US9444025B2 (en) 2013-06-10 2016-09-13 Industry-Academic Cooperation Foundation, Yonsei University Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102118314B1 (en) 2018-08-22 2020-06-03 (주) 앤에스알시 Manufacturing method for thermoelectric element and the thermoelectric element prepared therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123355B1 (en) * 2009-08-07 2012-03-23 한국세라믹기술원 NaxCo2O4 thermoelectric element and the manufacturing method of the same
US9444025B2 (en) 2013-06-10 2016-09-13 Industry-Academic Cooperation Foundation, Yonsei University Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator

Also Published As

Publication number Publication date
KR101090867B1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US4403017A (en) Low thermal expansion modified cordierites
JPS6128627B2 (en)
KR100795194B1 (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JPH029763A (en) Boron nitride sintered body and production thereof under ordinary pressure
KR101090867B1 (en) manufacturing method of thermoelectric materials
KR100805726B1 (en) Fabrication method of porous thermoelectric device
JP5356991B2 (en) Method for producing titanium silicon carbide ceramics
JP2999486B2 (en) Manufacturing method of machinable ceramics
KR101090868B1 (en) Manufacturing method of porous thermoelectric material
JPS6065726A (en) Partially stabilized ziroconia body
KR101316720B1 (en) P-type fe-sb thermoelectric material doped with yb and the manufacturing method of the same
KR101469759B1 (en) Manufacturing method for Fe-Sb thermoelectric material doped with Yb
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JPH11284237A (en) Manufacture of p-type thermoelectric conversion material
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP5673945B2 (en) Method for producing silicon nitride ceramics
Kiattisaksophon et al. The preparation of cordierite-mullite composite for thermal shock resistance material
JPH02225370A (en) Production of mica compounded ceramics
Jeffrey et al. Sintering behavior of forsterite with manganese oxide as doping agent
JPH09227223A (en) Production of free-cutting combined ceramics
JP2526598B2 (en) Method for manufacturing silicon nitride ceramics
JPH01131069A (en) Complex compact calcined under ordinary pressure
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
KR102560451B1 (en) Method for synthesizing Te-doped Magnesium-Antimonide thermoelectric materials
KR102052592B1 (en) Manufacturing Of Sintered Silicon Nitride Body With High Thermal Conductivity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 9