KR20060055291A - Solid polymer electrolyte membrane, manufacturing method thereof and fuel cell using the same - Google Patents

Solid polymer electrolyte membrane, manufacturing method thereof and fuel cell using the same Download PDF

Info

Publication number
KR20060055291A
KR20060055291A KR1020050023240A KR20050023240A KR20060055291A KR 20060055291 A KR20060055291 A KR 20060055291A KR 1020050023240 A KR1020050023240 A KR 1020050023240A KR 20050023240 A KR20050023240 A KR 20050023240A KR 20060055291 A KR20060055291 A KR 20060055291A
Authority
KR
South Korea
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
formula
carbon
Prior art date
Application number
KR1020050023240A
Other languages
Korean (ko)
Other versions
KR100657955B1 (en
Inventor
후사키 후지바야시
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US11/272,642 priority Critical patent/US7879506B2/en
Publication of KR20060055291A publication Critical patent/KR20060055291A/en
Application granted granted Critical
Publication of KR100657955B1 publication Critical patent/KR100657955B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 100 내지 300 ℃정도의 작동 온도에서, 무가습 혹은 상대 습도 50% 이하의 작동 조건에서의 발전성능을 장기간 안정적으로 나타내는 고체 고분자 전해질막, 그 제조 방법 및 이를 이용한 연료전지를 제공한다. 상기 고분자 전해질막은 하기 화학식 (a) 로 표시되는 구성단위(a)를 함유하는 측쇄를 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자 부위에 가진 고분자 화합물을 포함한다.The present invention provides a solid polymer electrolyte membrane, a method of manufacturing the same, and a fuel cell using the same, which exhibits a long-term stable performance under operating conditions of 100% to 300 ° C and operating conditions of no humidification or relative humidity of 50% or less. The polymer electrolyte membrane includes a polymer compound having a side chain containing a structural unit (a) represented by the following formula (a) at a nitrogen-containing heterocyclic nitrogen atom site constituting polybenzimidazoles.

[화학식 1][Formula 1]

Figure 112005014707019-PAT00001
Figure 112005014707019-PAT00001

Description

고체 고분자 전해질막, 그 제조방법 및 이를 이용한 연료전지{Solid polymer electrolyte membrane, manufacturing method thereof and fuel cell using the same}Solid polymer electrolyte membrane, manufacturing method and fuel cell using the same

도 1은 실시예 1 및 비교예 1에 대해 초기상태에서의 전류밀도와 전지전압과의 관계를 나타내는 그래프이고, 1 is a graph showing the relationship between the current density in the initial state and the battery voltage for Example 1 and Comparative Example 1,

도 2는 실시예 1 및 비교예 1에 대해 개방 회로 전압 및 전류밀도 0.3A/cm2에서의 발전시 전지전압과, 연료전지의 운전시간과의 관계를 나타내는 그래프이다. 2 is a graph showing the relationship between the battery voltage during power generation at the open circuit voltage and the current density of 0.3 A / cm 2 and the operating time of the fuel cell for Example 1 and Comparative Example 1. FIG.

본 발명은 고체 고분자 전해질막, 그 제조방법 및 이를 이용한 연료전지에 관한 것이다.The present invention relates to a solid polymer electrolyte membrane, a manufacturing method thereof and a fuel cell using the same.

종래, 전압을 인가함으로써 이온이 이동하는 이온 전도체가 알려져 있다. 이 이온전도체는 전지나 전기화학센서 등의 전기화학 장치로서 널리 이용되고 있다.Background Art Conventionally, ion conductors in which ions move by applying a voltage are known. This ion conductor is widely used as an electrochemical device, such as a battery and an electrochemical sensor.

예를 들어, 연료전지에 있어서는 발전 효율, 시스템 효율, 구성 부재의 장기내구성의 관점에서, 100 내지 300℃의 작동온도에서 무가습 혹은 상대 습도 50% 이 하의 저가습 작동조건에서 양호한 프로톤 전도성을 장기 안정적으로 나타내는 프로톤 전도체가 요구되고 있다.For example, in fuel cells, in terms of power generation efficiency, system efficiency, and long-term durability of a component, good proton conductivity can be obtained in a low-humidity operating condition of 100% to 300 ° C at an operating temperature of 100 to 300 ° C. There is a demand for a stable proton conductor.

종래의 고체 고분자형 연료전지의 개발에 있어서는, 상기 요구를 감안하여 검토되어 왔는데, 퍼플루오르카본술폰산막을 전해질막으로 이용한 고체고분자형 연료전지에서는 100 내지 300℃의 작동온도에서, 상대습도 50% 이하에서는 충분한 발전성능을 얻을 수 없는 단점이 있다.In the development of a conventional polymer electrolyte fuel cell, it has been considered in view of the above requirements. In a solid polymer fuel cell using a perfluorocarbon sulfonic acid membrane as an electrolyte membrane, the relative humidity is 50% or less at an operating temperature of 100 to 300 ° C. In this case, there is a disadvantage in that sufficient power generation performance cannot be obtained.

또한, 종래 프로톤 전도성 부여제를 함유시킨 전해질막을 사용한 연료전지 (예를 들어, 일본특허공개 2001-035509호), 실리카 분산막을 사용한 연료전지 (예를 들어, 일본특개평 06-111827호), 무기-유기복합막을 사용한 연료전지 (예를 들어, 일본특허공개 2000-090946호), 인산 도프 그래프트막을 사용한 연료전지 (예를 들어, 일본특허공개 2001-213978호), 또는 이온성 액체복합막을 사용한 연료전지 (예를 들어, 일본특허공개 2001-167629호 및 2003-123791호)가 있다.In addition, a fuel cell using an electrolyte membrane containing a conventional proton conductivity imparting agent (for example, Japanese Patent Application Laid-Open No. 2001-035509), a fuel cell using a silica dispersion film (for example, Japanese Patent Application Laid-Open No. 06-111827), inorganic Fuel cells using organic composite membranes (e.g., Japanese Patent Application Laid-Open No. 2000-090946), fuel cells using phosphate dope graft membranes (e.g., Japanese Patent Publication No. 2001-213978), or fuels using ionic liquid composite membranes Batteries (for example, Japanese Patent Laid-Open Nos. 2001-167629 and 2003-123791).

또한, 미국특허 제5,525,436호에는, 인산 등의 강산을 도핑시킨 폴리벤즈이미다졸로 이루어진 고체 고분자 전해질막이 개시되어 있다.In addition, US Patent No. 5,525,436 discloses a solid polymer electrolyte membrane made of polybenzimidazole doped with a strong acid such as phosphoric acid.

그러나 일본 특허 공개 2001-035509호, 2000-090946호, 2001-213978호, 일본특개평06-111827호에 기재된 기술에서는, 모두 발전 성능을 장기간 안정적으로 발휘할 수 없다는 문제가 있다. 특히, 100 내지 300℃의 작동온도, 무가습 혹은 상대습도 50% 이하의 사용 환경하에서의 장기안정성은 충분하지 않다.However, in the techniques described in Japanese Patent Laid-Open Nos. 2001-035509, 2000-090946, 2001-213978, and Japanese Patent Laid-Open No. 06-111827, there is a problem in that power generation performance can not be stably exhibited for a long time. In particular, long-term stability under operating environments of 100 to 300 ° C., no humidification or relative humidity of 50% or less is not sufficient.

또한, 인산형 연료전지, 고체 산화물형 연료전지, 용융염형 연료전지에서는, 작동온도가 300℃보다 매우 높기 때문에 구성 부재의 장기안정성에 문제가 생기는 등과 같이 비용의 관점에서 요구를 충분히 충족시키지 못한다.In addition, in the phosphoric acid fuel cell, the solid oxide fuel cell, and the molten salt fuel cell, since the operating temperature is much higher than 300 ° C., the requirements are not sufficiently met in terms of cost, such as a problem in the long-term stability of the constituent members.

한편, 미국특허 제5,525,436호에 기재된 기술에 의하면, 유일하게 200oC 까지의 고온에서도 비교적 양호한 발전성능을 나타내는 고체 고분자형 연료전지를 얻을 수 있다.On the other hand, according to the technique described in US Pat. No. 5,525,436, it is possible to obtain a solid polymer fuel cell that exhibits relatively good power generation performance even at a high temperature up to 200 ° C.

그렇지만, 미국특허 제5,525,436호에 기재된 기술에서는, 비교적 고온에서의 발전이 가능하지만, 이 고체 고분자형 연료전지에 대해서도 장기간 안정적으로 발전성능을 유지하는 것은 어렵다.However, in the technique described in US Pat. No. 5,525,436, power generation at a relatively high temperature is possible, but it is difficult to maintain power generation performance stably even for this solid polymer fuel cell.

이와 같이, 연료전지의 발전 효율, 시스템 효율, 구성 부재의 장기내구성의 관점에서, 100 내지 300℃의 작동온도에 있어서, 무가습 혹은 상대습도 50% 이하의 저가습 작동조건에서의 발전 성능을 장기간 안정적으로 나타내는 연료전지가 요구되고 있는데, 종래 기술에서는 어려워서 아직 충분한 성능을 얻지 못하고 있다.Thus, in view of the generation efficiency of the fuel cell, the system efficiency, and the long-term durability of the constituent members, the generation performance under low-humidity operation conditions with no humidification or a relative humidity of 50% or less at an operating temperature of 100 to 300 ° C is long term. There is a demand for a stable fuel cell, which is difficult in the prior art and has not yet achieved sufficient performance.

본 발명은 상기 과제를 해결하기 위해 이루어진 것으로 100 내지 300℃의 작동온도에 있어서, 무가습 혹은 상대 습도 50% 이하의 작동조건에서의 발전성능을 장기간 안정적으로 나타내는 고체 고분자 전해질막, 그 제조방법 및 이를 이용한 연료전지를 제공하는 것을 목적으로 한다. The present invention has been made to solve the above problems, a solid polymer electrolyte membrane exhibiting long-term stable performance under operating conditions of 100% to 300 ° C, operating conditions of no humidification or relative humidity of 50% or less, a method for producing the same, and It is an object to provide a fuel cell using the same.

상기 목적을 달성하기 위해, 본 발명은 이하의 구성을 채용한다.In order to achieve the above object, the present invention adopts the following configuration.

본 발명의 고체고분자 전해질막은, 하기 화학식(a) 로 표시되는 구성단위(a) 를 함유하는 측쇄를, 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자 부위에 가지는 고분자 화합물을 포함하는 것을 특징으로 한다.The solid polymer electrolyte membrane of the present invention comprises a polymer compound having a side chain containing a structural unit (a) represented by the following formula (a) at a nitrogen-containing heterocyclic nitrogen atom site constituting polybenzimidazoles It features.

[화학식 1][Formula 1]

Figure 112005014707019-PAT00002
Figure 112005014707019-PAT00002

또한, 구성단위란, 고분자(고분자)를 구성하는 모노머 단위를 나타내는 것으로 한다.In addition, a structural unit shall represent the monomeric unit which comprises a polymer (polymer).

또한, 본 발명의 고체 고분자 전해질막의 제조방법은 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자에 탄소-탄소 이중결합을 가진 치환기가 결합된 고분자 화합물에 비닐포스폰산을 도핑한 후에, 부가중합을 수행함으로써 상기 탄소-탄소 이중결합에 비닐포스폰산이 부가중합된 고분자 화합물을 제조하는 공정을 가진 것을 특징으로 한다.In addition, the manufacturing method of the solid polymer electrolyte membrane of the present invention, after doping the vinyl phosphonic acid to the polymer compound having a substituent having a carbon-carbon double bond bonded to the nitrogen-containing heterocyclic nitrogen atoms constituting the polybenzimidazoles, It characterized by having a step of producing a polymer compound in which the vinyl phosphonic acid is polymerized by the carbon-carbon double bond by performing the polymerization.

또한, 본 발명의 연료전지는, 탄소극; 연료극; 상기 탄소극 및 연료극에 협지된 고체 고분자 전해질막을 구비하고, 산화제 유로를 형성한 산화제 바이폴라 플레이트를 탄소극쪽에 마련하고, 연료 유로를 형성한 연료 유로판을 연료극쪽에 마련한 것을 단위셀로 하는 연료전지에 있어서, 상기 고체고분자 전해질막이 상기 본 발명의 고체고분자 전해질막인 것을 특징으로 한다.In addition, the fuel cell of the present invention, the carbon electrode; Fuel electrode; In a fuel cell comprising a unitary cell comprising a solid polymer electrolyte membrane sandwiched between the carbon electrode and the fuel electrode, an oxidant bipolar plate having an oxidant flow path formed on the carbon electrode side, and a fuel flow path plate having the fuel flow path formed on the fuel electrode side. The solid polymer electrolyte membrane is characterized in that the solid polymer electrolyte membrane of the present invention.

이하, 본 발명의 실시형태를 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail.

고체 고분자 전해질막 및 이 제조방법Solid polymer electrolyte membrane and its manufacturing method

본 발명의 고체 고분자 전해질막은, 상기 화학식(a)로 표시되는 구성단위(a)를 함유하는 측쇄를, 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자 부위에 가지는 고분자 화합물을 포함한다. 고체 고분자 전해질막 중의 해당 고분자 화합물의 비율은, 특별히 제한하지 않지만, 바람직하게는 80 중량% 이상이고, 더욱 바람직하게는 90 중량% 이상이며, 가장 바람직하게는 100 중량%이다. 또한, 상기 고분자 화합물에는, 비닐포스폰산 등 제조공정에서 이용하는 미반응 재료가 소량 포함되는 일이 있는데, 이 경우에도 문제없이 이용할 수 있다.The solid polymer electrolyte membrane of the present invention contains a polymer compound having a side chain containing the structural unit (a) represented by the formula (a) at a nitrogen-containing heterocyclic nitrogen atom site constituting polybenzimidazoles. Although the ratio of the said high molecular compound in a solid polymer electrolyte membrane is not specifically limited, Preferably it is 80 weight% or more, More preferably, it is 90 weight% or more, Most preferably, it is 100 weight%. In addition, although the said high molecular compound may contain a small amount of unreacted materials used at a manufacturing process, such as vinyl phosphonic acid, it can use without a problem also in this case.

또한, 상기 측쇄는 구성단위(a)를 하나 이상 갖고 있으면 된다. 하나의 측쇄당 구성단위(a)의 수의 상한값은, 특별히 한정하지 않지만, 20 이하가 된다. 또한, 구성단위(a)가 측쇄의 말단에 있는 경우는 해당 측쇄의 마지막에는 수소원자가 결합되어 있다.In addition, the said side chain should just have one or more structural unit (a). The upper limit of the number of structural units (a) per one side chain is not particularly limited, but is 20 or less. When the structural unit (a) is at the end of the side chain, hydrogen atoms are bonded at the end of the side chain.

구성단위(a)의 도입량 등의 바람직한 양태에 대해서는 후술한다.The preferable aspect, such as the introduction amount of a structural unit (a), is mentioned later.

또한, 본 발명의 고체고분자 전해질막의 제조방법은, 바람직하게는, 다음 공정을 가진 것이다.In addition, the method for producing a solid polymer electrolyte membrane of the present invention preferably has the following steps.

(1) 폴리벤즈이미다졸류(이하, "고분자 1" 이라고도 함)를 구성하는 질소함유 복소환식 질소원자에 탄소-탄소이중결합을 가진 치환기를 도입함으로써, 폴리벤즈이미다졸류를 구성하는 질소 복소환식 질소원자에 탄소-탄소이중결합을 가진 치환기가 결합된 고분자 화합물(이하, "고분자 2"라고도 함)을 얻는다.(1) Nitrogen complex constituting polybenzimidazoles by introducing a substituent having a carbon-carbon double bond to a nitrogen-containing heterocyclic nitrogen atom constituting polybenzimidazoles (hereinafter also referred to as "polymer 1"). A high molecular compound (hereinafter referred to as "polymer 2") having a cyclic nitrogen atom bonded to a substituent having a carbon-carbon double bond is obtained.

(2) 고분자 2에 대해, 비닐 포스폰산을 도핑(첨가)한 후에 부가중합을 수행 함으로써 상기 탄소-탄소 이중결합에 비닐포스폰산을 부가중합시킴으로써, 상기 화학식(a)로 표시되는 구성단위(a)를 함유하는 측쇄를 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자 부위에 가진 고분자 화합물(이하, "고분자 3"라고도 함)을 얻는다.(2) A structural unit represented by the above formula (a) by polymerizing vinyl phosphonic acid to the carbon-carbon double bond by performing addition polymerization after doping (adding) vinyl phosphonic acid to polymer 2 The polymer compound (henceforth "polymer 3") which has the side chain containing () in the nitrogen-containing heterocyclic nitrogen atom site which comprises polybenzimidazoles is obtained.

이하, 고체 고분자 전해질막의 제조방법의 절차에 따라 설명함으로써, 고체 고분자 전해질막의 실시형태에 대해서도 설명한다.Hereinafter, embodiment of a solid polymer electrolyte membrane is also demonstrated by demonstrating according to the procedure of the manufacturing method of a solid polymer electrolyte membrane.

먼저, 고분자 1에 대해 설명한다.First, the polymer 1 will be described.

고분자 1로는 하기 화학식 (b-1)-(b-3)에 예시되는 고분자 혹은 그 유도체를 예시할 수 있다.Polymer 1 may be a polymer exemplified in the following formulas (b-1)-(b-3) or a derivative thereof.

[화학식 2][Formula 2]

Figure 112005014707019-PAT00003
Figure 112005014707019-PAT00003

이들 고분자는 내열성이 뛰어남과 동시에 산을 많이 함유할 수 있고, 연료전지용 고체 고분자 전해질막의 구성성분으로 바람직하다.These polymers are excellent in heat resistance and can contain a lot of acid, and are preferable as a component of a solid polymer electrolyte membrane for a fuel cell.

또한, 상기 화학식 (b-1)-(b-3)에 있어서, n은 10-100,000이다.In addition, in the said General formula (b-1)-(b-3), n is 10-100,000.

n이 10이상이면, 기계적 강도는 충분하고, n이 100000 이하이면, 유기용매 등에의 용해성이 양호하여 고체 고분자 전해질막의 제조에 적합하다. 만약 n이 10 미만이면, 전해질막을 만들기가 어렵게 되어 바람직하지 못하다. If n is 10 or more, mechanical strength is enough, and if n is 100,000 or less, solubility in an organic solvent etc. is favorable and it is suitable for manufacture of a solid polymer electrolyte membrane. If n is less than 10, it is not preferable to make the electrolyte membrane difficult.

이들 고분자는, 공지의 기술에 의해 제조할 수 있다. 예를 들어, 상기 고분자는 미국 특허 제3,313,783호, 미국 특허 제3,509,108호, 미국 특허 제3,555,389호 등에 기재되어 있는 제조 방법에 따라 제조되는 것이 바람직하다.These polymers can be manufactured by a well-known technique. For example, the polymer is preferably prepared according to the manufacturing method described in US Pat. No. 3,313,783, US Pat. No. 3,509,108, US Pat. No. 3,555,389 and the like.

Figure 112005014707019-PAT00004
Figure 112005014707019-PAT00004

상기 고분자 1은 1종 또는 2종이상 혼합하여 이용할 수 있다.The polymer 1 may be used alone or in combination of two or more thereof.

이어서, 고분자 2에 대해 설명한다.Next, the polymer 2 will be described.

고분자 2는 고분자 1을 구성하는 질소함유 복소환식 질소원자에, 탄소-탄소 이중결합을 가진 치환기가 결합한 고분자 화합물이다.Polymer 2 is a polymer compound in which a substituent having a carbon-carbon double bond is bonded to a nitrogen-containing heterocyclic nitrogen atom constituting Polymer 1.

고분자 2는, 고분자 1에 상기 치환기를 도입함으로써 얻을 수 있다.The polymer 2 can be obtained by introducing the substituents into the polymer 1.

고분자 2로는, 예를 들어, 상술한 화학식(b-1)-(b-3)로 표시되는 구성단위에서, 질소함유 복소환식 활성수소(질소에 결합한 수소원자)를 상기 치환기로 기환함으로써 해당 치환기를 도입한 구조를 가진 것을 들 수 있다.As the polymer 2, for example, in a structural unit represented by the above formulas (b-1)-(b-3), a nitrogen-containing heterocyclic active hydrogen (hydrogen atom bonded to nitrogen) is ringed with the substituent to provide the substituent. The one which has the structure which introduce | transduced is mentioned.

예를 들어, 상술한 화학식(b-1)로 표시되는 구성단위로 이루어진 폴리벤즈이미다졸류(고분자 1)를 이용한 경우는, 이하의 화학식(c)로 표시되는 구조를 갖는 다.For example, when polybenzimidazoles (polymer 1) composed of the structural units represented by the above formula (b-1) are used, they have a structure represented by the following formula (c).

Figure 112005014707019-PAT00005
Figure 112005014707019-PAT00005

[화학식 3][Formula 3]

Figure 112005014707019-PAT00006
Figure 112005014707019-PAT00006

상기식중, R1, R2는 각각 독립하여 탄소-탄소 이중결합을 가진 치환기 또는 수소 원자이고, R1, R2중 적어도 하나는 상기 치환기중에서 선택된다.In the above formula, R 1 and R 2 are each independently a substituent having a carbon-carbon double bond or a hydrogen atom, and at least one of R 1 and R 2 is selected from the above substituents.

R1, R2는 탄소-탄소이중결합을 가진 치환기 또는 수소 원자이고, R1, R2 중 적어도 하나는 상술한 치환기중에서 선택될 수 있고, 그중에서도 R1, R2 모두가 상기 치환기인 것이 보다 바람직하다.R 1, R 2 is a carbon-a substituent or a hydrogen atom with a carbon-carbon double bond, at least one of R 1, R 2 is more preferably a may be selected from the above-mentioned substituents, among others R 1, R 2 both have the substituent desirable.

치환기 중 탄소-탄소이중결합의 수는 특별히 한정되지 않지만, 하나인 것이 바람직하다. 또한 치환기에서의 탄소-탄소 이중결합의 위치는 특별히 한정하지 않고, 말단에 존재해 있는 것이 바람직하다.Although the number of carbon-carbon double bonds in a substituent is not specifically limited, It is preferable that it is one. In addition, the position of a carbon-carbon double bond in a substituent is not specifically limited, It is preferable to exist in the terminal.

또한, 치환기는 탄소-탄소 이중결합을 가지고 있으면 되고, 그 이외의 구조 는 특별히 한정되지 않지만, 바람직한 치환기는 고리식기를 포함하지 않는 사슬모양(직쇄모양이라도 분기사슬모양이면 된다)인 것이다. 치환기로서 더욱 바람직한 것은 에테르결합이나, 카르보닐기가 그 탄소-탄소결합 사이에 삽입되어 있어도 되는 탄화수소기 등을 들 수 있다.In addition, the substituent should just have a carbon-carbon double bond, and the structure other than that is not specifically limited, A preferable substituent is a chain shape which does not contain a cyclic group (even if it is a straight chain | strand may be branched). More preferable examples of the substituent include an ether bond and a hydrocarbon group in which a carbonyl group may be inserted between the carbon-carbon bonds.

고분자 2는, 예를 들어 하기 반응식 1 및 2로 표시되는 것과 마찬가지로, 고분자 1과 분자 중에 이소시아네이트기 또는 글리시딜기와 탄소-탄소 이중결합을 가진 분자(이하, "치환기를 도입하는 분자"라고 함)와의 반응에 의해 얻을 수 있다.The polymer 2 is, for example, a molecule having an isocyanate group or glycidyl group and a carbon-carbon double bond in the molecule with the polymer 1 (hereinafter referred to as "molecule which introduces a substituent group"), as represented by the following Schemes 1 and 2 It can be obtained by reaction with).

[화학식 4][Formula 4]

Figure 112005014707019-PAT00007
Figure 112005014707019-PAT00007

상기식중, R3는 2가의 유기기이고, R4는 수소원자 또는 1가의 유기그룹이다.In the above formula, R 3 is a divalent organic group, and R 4 is a hydrogen atom or a monovalent organic group.

[화학식 5][Formula 5]

Figure 112005014707019-PAT00008
Figure 112005014707019-PAT00008

상기식중, R5는 2가의 유기 그룹이고, R6는 수소 원자 또는 1가의 유기 그룹이다.In the above formula, R 5 is a divalent organic group, and R 6 is a hydrogen atom or a monovalent organic group.

상기 치환기를 도입하는 분자로는, 그 필수 관능기가 분자 속에 존재하면 되고, 그 밖의 분자구조에 대해서는 특별히 제한하지 않는다.As a molecule which introduce | transduces the said substituent, the essential functional group should just exist in a molecule | numerator, and there is no restriction | limiting in particular about other molecular structure.

예를 들어, 반응식 (1)에서 이용되고 있는 치환기를 도입하는 분자에 있어서, R3는 2가의 유기기이고, 직쇄형 또는 분기 사슬형인 것이 바람직하다. R3으로서 보다 바람직하게는 에테르결합이나 카르보닐기가 그 탄소-탄소결합 사이에 삽입되어 있어도 되는 탄화수소기를 들 수 있다. 이 탄화수소기는 포화인 것이 바람직하 다. 또한 이 탄화수소기의 바람직한 탄소수는 예를 들어 1-5이다.For example, in the molecule | numerator which introduce | transduces the substituent group used by reaction formula (1), it is preferable that R <3> is a divalent organic group and is linear or branched chain type. As R 3 , more preferably, a hydrocarbon group in which an ether bond or a carbonyl group may be inserted between the carbon-carbon bonds is mentioned. This hydrocarbon group is preferably saturated. Moreover, preferable carbon number of this hydrocarbon group is 1-5, for example.

또한, R4는 수소 원자 또는 1가의 유기 그룹이고, 유기 그룹으로는 알킬기가 바람직하고, 그 탄소수는 1-3인 것이 바람직하다.Moreover, R <4> is a hydrogen atom or monovalent organic group, As an organic group, an alkyl group is preferable and its carbon number is 1-3 preferably.

반응식 2에서 이용되고 있는 치환기를 도입하는 분자에서, R5는 R3과 마찬가지이고, R6은 R4와 마찬가지다.In the molecule | numerator which introduce | transduces the substituent used by Scheme 2, R <5> is the same as R <3>, and R <6> is the same as R <4> .

치환기를 도입하는 분자로서, 더욱 바람직하게는 폴리벤즈이미다졸류와의 반응성이나 내구성 등을 고려하여, 이하의 화학식(c-1)로 표시되는 2-이소시아나토에틸메타크릴레이트, 화학식(c-2)로 표시되는 2-이소시아나토에틸아크릴레이트 및 화학식(c-3)으로 표시되는 글리시딜메타크릴레이트 중에서 선택되는 1 이상을 이용하는 것이 바람직하다.As a molecule for introducing a substituent, more preferably 2-isocyanatoethyl methacrylate represented by the following general formula (c-1) or the general formula (c) in consideration of the reactivity with the polybenzimidazoles, durability and the like. It is preferable to use one or more selected from 2-isocyanatoethyl acrylate represented by -2) and glycidyl methacrylate represented by the formula (c-3).

[화학식 6][Formula 6]

Figure 112005014707019-PAT00009
Figure 112005014707019-PAT00009

[화학식 7][Formula 7]

Figure 112005014707019-PAT00010
Figure 112005014707019-PAT00010

[화학식 8][Formula 8]

Figure 112005014707019-PAT00011
Figure 112005014707019-PAT00011

고분자 1과 치환기를 도입하는 분자와의 반응은 본 발명의 고체고분자 전해질을 얻기 위해 고분자 1로부터 고분자 2를 제조하는 과정에서, 어떠한 공정으로 수행할 수 있다.The reaction between the polymer 1 and the molecule introducing the substituent may be performed by any process in the process of preparing the polymer 2 from the polymer 1 to obtain a solid polymer electrolyte of the present invention.

예를 들어, 고분자 1의 용액으로부터 용매를 가열에 의해 제거하여 막을 형성하는 공정에서, 상기 고분자1의 용액에 미리 분자속에 치환기를 도입하는 분자를 용해해 두고, 용매를 가열에 의해 제거할 때에 동시에, 상기 반응식(1)로 표시되는 반응이나, 상기 반응식(2)로 표시되는 반응을 진행하는 제조방법이 효율적이므로 바람직하다.For example, in the step of removing the solvent from the solution of the polymer 1 by heating to form a film, a molecule in which a substituent is introduced into the molecule in advance is dissolved in the solution of the polymer 1, and at the same time the solvent is removed by heating. Since the reaction method shown by said reaction formula (1) and the manufacturing method which advances the reaction represented by said reaction formula (2) are efficient, it is preferable.

고분자 1을 구성하는 질소함유 복소환식 활성탄소를 상기 치환기로 치환하는 비율에 제한은 없지만, 고분자 1을 구성하는 질소함유 복소환식 전체 활성수소의 20% 이상, 바람직하게는 50% 이상, 실질적으로는 100% 이하를 치환하는 것이 바람직하다.Although there is no limitation in the ratio of substituting the nitrogen-containing heterocyclic activated carbon constituting the polymer 1 with the substituent, 20% or more, preferably 50% or more, of the total nitrogen-containing heterocyclic activated hydrogen constituting the polymer 1 is substantially It is preferable to substitute 100% or less.

치환하는 비율은, 예를 들어, 상술한 반응식(1), 또는 반응식(2)으로 표시되는 반응은 당량적으로 진행하므로, 반응에 이용되는 양으로부터 구할 수 있다.The ratio to substitute is calculated | required from the quantity used for reaction since the reaction represented by the above-mentioned reaction formula (1) or reaction formula (2) advances equivalently, for example.

이어서, 고분자 3에 대해 설명한다.Next, the polymer 3 will be described.

고분자 3은 화학식(a)로 표시되는 구성단위(a)를 함유하는 측쇄를 고분자1을 구성하는 질소함유 복소환 질소원자 부위에 가진 고분자 화합물이다.The polymer 3 is a polymer compound having a side chain containing the structural unit (a) represented by the formula (a) at a nitrogen-containing heterocyclic nitrogen atom constituting the polymer 1.

고분자 3은 예를 들어, 고분자2에 이하의 화학식(a-0)으로 표시되는 비닐포스폰산을 도핑(첨가)한 후, 이 고분자2의 치환기의 탄소-탄소 이중결합에 비닐포스폰산을 부가중합하는 방법으로 얻어진다. 이로써, 상기 탄소-탄소 이중결합에 비닐포스폰산 1개 이상이 부가결합되어 연결되고, 고분자 2의 측쇄에 구성단위 (a)가 도입된다.The polymer 3 is, for example, doped (added) vinylphosphonic acid represented by the following formula (a-0) to the polymer 2, followed by addition polymerization of vinylphosphonic acid to the carbon-carbon double bond of the substituent of the polymer 2 It is obtained by the method. As a result, one or more vinylphosphonic acids are additionally bonded to the carbon-carbon double bond, and the structural unit (a) is introduced into the side chain of the polymer 2.

[화학식 9][Formula 9]

Figure 112005014707019-PAT00012
Figure 112005014707019-PAT00012

비닐포스폰산을 부가중합하는 방법으로는 특별히 제한되지 않고, 일반적으로 알려진 비닐기 함유 모노머로부터 부가결합에 의해 고분자를 얻는 중합방법을 채용할 수 있다.There is no restriction | limiting in particular as a method of addition-polymerizing vinylphosphonic acid, The polymerization method which obtains a polymer by addition bond from the vinyl group containing monomer generally known can be employ | adopted.

구체적으로는 열에 의해 라디칼종을 발생시켜 라디칼중합을 수행하는 열중합, 과산화물 등의 분해에 의해 발생된 라디칼종을 개시제로 하는 개시제 중합, 광조사에 의해 라디칼종을 발생시켜 라디칼 중합을 수행하는 광중합, 방사선 조사에 의해 라디칼종을 발생시켜 라디칼중합을 수행하는 방사선 중합 등이 적합하다.Specifically, thermal polymerization that generates radical species by heat, and polymerization of radicals generated by decomposition of peroxide, etc., and polymerization of radicals generated by radical irradiation by photoirradiation, and radical polymerization by generating radical species For example, radiation polymerization which generates radical species by radiation irradiation and performs radical polymerization is suitable.

비닐포스폰산의 도입량, 즉 구성단위(a)의 양은, 고분자1의 반복구성단위 1개에 대해, 20몰% 내지 2000몰%이면 되고, 바람직하게는 50몰% 내지 1500몰%인 것이 바람직하다. 또한, 예를 들어, 20몰%란, 고분자 1의 반복구성단위 1개가 0.2개의 구성단위(a)를 가진 것을 나타낸다. 또한, 예를 들어, 2000몰%란, 고분자 1의 반복 구성 단위 1개가 20개의 구성단위(a)를 가진 것을 나타낸다. 20몰%이상이면 비교적 양호한 발전특성을 발현시킬 수 있고, 2000몰%이하이면 산화 용출없이도 장기적이고 안정적으로 성능을 유지할 수 있다. 또한, 내열성, 화학적 안정성의 점에서도 유리하다.The amount of vinylphosphonic acid introduced, that is, the amount of the structural unit (a), may be 20 mol% to 2000 mol% with respect to one repeating structural unit of the polymer 1, and preferably 50 mol% to 1500 mol%. . For example, 20 mol% means that one repeating structural unit of the polymer 1 has 0.2 structural units (a). For example, 2000 mol% means that one repeating structural unit of the polymer 1 has 20 structural units (a). If it is 20 mol% or more, relatively good power generation characteristics can be expressed, and if it is 2000 mol% or less, the performance can be maintained long-term and stably without oxidation dissolution. It is also advantageous in terms of heat resistance and chemical stability.

그리고, 이렇게 하여 얻어진 고분자 화합물을 이용하여 통상적인 고체 고분자 전해질막 형성방법을 이용하면, 양호한 특성을 발휘하는 전해질막을 얻을 수 있다. 바람직하게 고분자1과 치환기를 도입하는 분자와의 혼합용액을 유리판 등에 도포하고, 가열함으로써 반응을 진행시켜 막대상으로 성형된 고분자2를 얻은 후에 비닐포스폰산에 의한 처리를 수행하여 고분자 3으로 하고, 이를 이용하여 고체 고분자 전해질막을 제조하게 된다.By using the conventional solid polymer electrolyte membrane formation method using the polymer compound thus obtained, an electrolyte membrane exhibiting good characteristics can be obtained. Preferably, a mixed solution of the polymer 1 and the molecule introducing the substituents is applied to a glass plate or the like, and the reaction is carried out by heating to obtain a polymer 2 shaped into a rod, followed by treatment with vinylphosphonic acid to be polymer 3, By using this, a solid polymer electrolyte membrane is prepared.

연료전지Fuel cell

본 발명의 연료전지는, 상기 과정에 따라 얻은 고분자 전해질막을 전해질막 으로 사용한 연료전지다. 고체 고분자 전해질막은 산소극, 연료극에 협지되고, 산화제 유로를 형성한 산화제 바이폴라 플레이트를 산소극쪽에 마련하고, 연료유로를 형성한 연료 바이폴라 플레이트를 연료극쪽에 마련한 것을 단위셀로 하여 고체 고분자형 연료전지로 만든다.The fuel cell of the present invention is a fuel cell using the polymer electrolyte membrane obtained according to the above process as an electrolyte membrane. The solid polymer electrolyte membrane is sandwiched between an oxygen electrode and a fuel electrode, and an oxidant bipolar plate having an oxidant flow path is provided on the oxygen electrode side, and a fuel bipolar plate having a fuel flow path is formed on the fuel electrode side as a solid polymer fuel cell. Make.

이렇게 하여, 작동온도가 100 내지 300℃에서, 무가습 혹은 상대습도 50% 이하라도 발전성능을 장기간 안정적(내구성)으로 나타내는 고체 고분자형 연료전지를 얻을 수 있고, 예를 들어, 자동차용이나 가정발전용 연료전지로서 유용하다.In this way, even when the operating temperature is 100 to 300 ° C., even when no humidification or relative humidity is 50% or less, a solid polymer fuel cell exhibiting stable power generation performance (durability) for a long time can be obtained. It is useful as a fuel cell.

본 발명에 있어서, 이와 같은 양호한 특성이 발휘할 수 있는 이유는 정해져 있지 않지만, 구성단위(a)를 가진 측쇄를 도입한 고분자 화합물(고분자3)을 연료전지의 전해질막으로 이용함으로써 폴리벤즈이미다졸류에 단순히 인산 화합물을 도핑한 경우와 비교하여, 프로톤 전도성을 가진 측쇄를 전해질막내에 장기에 걸쳐 안정되게 보존할 수 있기 때문에, 발전성능의 장기안정성을 확보할 수 있기 때문이다.In the present invention, the reason why such a good characteristic can be exhibited is not determined, but the polybenzimidazoles are obtained by using a polymer compound (polymer 3) having a side chain having a structural unit (a) as an electrolyte membrane of a fuel cell. This is because the side chain having proton conductivity can be stably stored in the electrolyte membrane for a long time as compared with the case where the phosphoric acid compound is simply doped, so that long-term stability of power generation performance can be ensured.

[실시예]EXAMPLE

이하, 실시예에 의해 본 발명에 대해 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

이하의 실시예에서는, 실시예 1 내지 실시예 3 및 비교예 1의 고체 고분자 전해질막을 제조하고, 비닐포스폰산의 도핑량을 측정함과 더불어, 각 고체 고분자 전해질을 연료전지에 개재하여 발전특성(발전초기 및 시간의 흐름에 따른 변화)을 평가했다.In the following examples, the solid polymer electrolyte membranes of Examples 1 to 3 and Comparative Example 1 were prepared, the doping amount of vinylphosphonic acid was measured, and each solid polymer electrolyte was interposed in a fuel cell to generate power generation characteristics ( The initial development and changes over time) were evaluated.

연료전지의 발전특성의 측정은, 전해질막을 시판중인 연료전지용 전극(Electrochemist사)으로 협지하여 막전극접합체로 하여, 150 , 무가습 조건하에서 수소/공기로 연료전지 운전을 수행했다. 전극면적은 3cm 3cm=9cm2이고, 가스공급량은 수소가 50mL/분, 공기가 100mL/분으로 했다.In the measurement of the power generation characteristics of the fuel cell, the electrolyte membrane was sandwiched with a commercially available fuel cell electrode (Electrochemist) to form a membrane electrode assembly, and the fuel cell operation was carried out with hydrogen / air under no humidification conditions. The electrode area was 3 cm 3 cm = 9 cm 2 , and the gas supply amount was 50 mL / min for hydrogen and 100 mL / min for air.

실시예 1Example 1

폴리벤즈이미다졸류로서 폴리-2,2'-(m-페닐렌)-5,5'-비벤즈이미다졸 (폴리스티렌 환산으로 구한 중량평균분자량 150,000)을 10중량%의 비율로 N,N-디메틸아세트아미드에 용해한 용액을 준비하고, 이 용액에 2-이소시아나토에틸메타크릴레이트(상품명: 카렌즈 MOI, 쇼와전기공업 주식회사 제조)를 폴리벤즈이미다졸류를 구성하는 질소함유 복소환 활성수소에 대해 1당량 첨가하여 혼합용액으로 만들었다. As polybenzimidazoles, poly-2,2 '-(m-phenylene) -5,5'-bibenzimidazole (weight average molecular weight 150,000 in terms of polystyrene) was N, N- in a proportion of 10% by weight. A solution dissolved in dimethylacetamide was prepared, and 2-isocyanatoethyl methacrylate (trade name: Carens MOI, manufactured by Showa Electric Co., Ltd.) was used as the nitrogen-containing heterocyclic activity to form polybenzimidazoles. 1 equivalent was added to hydrogen to make a mixed solution.

이 용액을 유리판 위에 닥터블레이드를 이용하여 전개하고, 150℃로 가열함으로써 용매제거와 반응식 1에서 나타낸 반응을 진행시키고, 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자에 탄소-탄소이중결합을 가진 치환기가 결합된 고분자 화합물막을 얻었다.The solution was developed on a glass plate using a doctor blade, heated to 150 ° C. to proceed with the removal of solvent and the reaction shown in Scheme 1, and carbon-carbon double bonds to the nitrogen-containing heterocyclic nitrogen atoms constituting the polybenzimidazoles. The polymer compound film which the substituent which has the bond was obtained.

이 고분자 화합물막을 유기 과산화물로서 2,5-디메틸-2,5-비스(t-부틸퍼옥시)헥산(일본유지 주식회사 제조, 퍼헥서 25B)을 1000ppm 첨가하여 70℃로 온도를 조절한 비닐포스폰산(도쿄화성 주식회사 제조)에 직접 침적하여 2시간에 걸쳐 비닐포스폰산과 유기과산화물의 혼합물을 도핑했다. Vinyl phosphonic acid whose temperature was adjusted to 70 ° C. by adding 1000 ppm of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (manufactured by Nippon Oil Holding Co., Ltd., perhexer 25B) as the organic peroxide. It was directly deposited to Tokyo Chemical Co., Ltd. and doped with a mixture of vinylphosphonic acid and organic peroxide over 2 hours.

이것을 170℃에서 2분간 열처리를 수행함으로써 2,5-디메틸-2,5-비스(t-부틸퍼옥시)헥산을 개시제로 하여 폴리-2,2'-(m-페닐렌)-5,5'-비벤즈이미다졸을 구성하는 질소함유 복소환식 질소원자에 도입된 치환기가 가진 탄소-탄소 이중결합과 비 닐포스폰산의 라디칼중합을 수행하여, 실시예 1의 고체 고분자 전해질막으로 만들었다.By heat treatment at 170 ° C. for 2 minutes, poly-2,2 ′-(m-phenylene) -5,5 using 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane as an initiator Radical polymerization of a carbon-carbon double bond having a substituent introduced to a nitrogen-containing heterocyclic nitrogen atom constituting '-bibenzimidazole and vinylphosphonic acid was performed to prepare the solid polymer electrolyte membrane of Example 1.

비닐포스폰산의 도입량은 라디칼 중합후에 얻어진 고체고분자 전해질막을 100℃의 물중에서 2시간 뜨거운 물로 세정하고, 미반응 비닐포스폰산을 고체 고분자 전해질막으로부터 제거한 후에, 120℃에서 2시간 진공건조한 후, 중량 측정을 수행하고, 중량 변화로부터 계산하여 폴리-2,2'-(m-페닐렌)-5,5'-비벤즈이미다졸의 반복구조단위당 500몰%였다.The amount of vinyl phosphonic acid introduced was measured by washing the solid polymer electrolyte membrane obtained after radical polymerization in hot water at 100 ° C. for 2 hours, removing unreacted vinyl phosphonic acid from the solid polymer electrolyte membrane, and then vacuum drying at 120 ° C. for 2 hours. The measurement was carried out and calculated from the weight change was 500 mol% per repeat structural unit of poly-2,2 '-(m-phenylene) -5,5'-bibenzimidazole.

또한 중량 측정 전에는 120℃에서 2시간 진공건조하여 흡습수분의 영향을 제외했다. 이렇게 하여 얻어진 고체 고분자 전해질막을 상술한 방법으로 연료전지로서 발전 특성을 측정했다.In addition, before weighing, vacuum drying at 120 ° C. was performed for 2 hours to exclude the influence of moisture absorption. The power generation characteristics of the solid polymer electrolyte membrane thus obtained as a fuel cell were measured by the above-described method.

하기 표 1에는 발전초기 및 200시간 경과후 개방 회로 전압 및 전류밀도 0.3A/cm2에서의 출력전압을 나타낸다.Table 1 shows the open circuit voltage and the output voltage at a current density of 0.3 A / cm 2 after the initial generation and after 200 hours.

도 1에는 발전초기의 전류-전압 특성을 나타낸 것이고, 도 2에는 개방 회로 전압 및 전류밀도 0.3A/cm2에서의 출력전압의 시간의 흐름에 따른 변화를 나타낸다.Figure 1 shows the current-voltage characteristics of the initial generation, and Figure 2 shows the change over time of the output voltage at the open circuit voltage and current density 0.3A / cm 2 .

실시예 2Example 2

2-이소시아나토에틸메타크릴레이트 대신에 글리시딜메타크릴레이트 (도쿄화성 주식회사 제조)를 이용하여, 상기 반응식(2)의 반응을 진행시킨 것 이외에는 실시예 1과 동일한 방법에 따라 실시하여 고분자 화합물막을 얻었다.Polymerization was carried out in the same manner as in Example 1 except that the reaction of Scheme (2) was carried out using glycidyl methacrylate (manufactured by Tokyo Chemical Co., Ltd.) instead of 2-isocyanatoethyl methacrylate. A compound film was obtained.

상기 고분자 화합물막에 실시예 1과 동일한 방법으로 비닐포스폰산을 도입하 고, 그 도입량이 450몰%인 실시예 2의 고체 고분자 전해질막을 얻었다.Vinylphosphonic acid was introduced into the polymer compound film in the same manner as in Example 1, and the solid polymer electrolyte membrane of Example 2 having an introduction amount of 450 mol% was obtained.

상기 고체 고분자 전해질막을 이용하여 실시예 1과 동일하게 연료전지로서 발전 특성을 측정했다.Using the solid polymer electrolyte membrane, power generation characteristics were measured as a fuel cell in the same manner as in Example 1.

발전초기 및 200시간 경과후에 개방 회로 전압 및 전류밀도 0.3A/cm2에서의 출력전압을 하기 표 1에 나타낸다.Table 1 shows the open circuit voltage and the output voltage at a current density of 0.3 A / cm 2 after the initial generation and after 200 hours.

비교예 1Comparative Example 1

폴리-2,2'-(m-페닐렌)-5,5'-비벤즈이미다졸(폴리스티렌 치환으로 구한 중량평균분자량 150,000)에 인산을 600몰% 도핑함으로써, 비교예 1의 고체 고분자 전해질막을 얻었다.The solid polymer electrolyte membrane of Comparative Example 1 was prepared by doping 600 mol% of phosphoric acid to poly-2,2 '-(m-phenylene) -5,5'-bibenzimidazole (weight average molecular weight 150,000 determined by polystyrene substitution). Got it.

상기 고체 고분자 전해질막을 실시예 1과 동일한 방법으로 연료전지로서 발전 특성을 측정했다.Power generation characteristics of the solid polymer electrolyte membrane were measured as a fuel cell in the same manner as in Example 1.

하기 표 1에는 발전초기 및 200시간 경화후 개시회로전압 및 전류밀도 0.3A/cm2에서의 출력 전압을 나타낸다.Table 1 below shows the starting circuit voltage and the output voltage at a current density of 0.3 A / cm 2 after initial generation and after curing for 200 hours.

도 1에는 발전초기의 전류-전압특성을 나타내고, 도 2에는 개방 회로전압 및 전류밀도 0.3A/cm2에서의 출력전압의 시간에 따른 변화를 나타낸다. Fig. 1 shows the current-voltage characteristics of the initial generation, and Fig. 2 shows the change over time of the open circuit voltage and the output voltage at a current density of 0.3 A / cm 2 .

[표 1]TABLE 1

실시예1Example 1 실시예2Example 2 비교예1Comparative Example 1 초기Early 개방 회로 전압(V)Open circuit voltage (V) 0.9330.933 0.9300.930 0.9510.951 전압(0.3A/cm2)Voltage (0.3 A / cm 2 ) 0.6020.602 0.5820.582 0.5460.546 200 시간후After 200 hours 개방 회로 전압(V)Open circuit voltage (V) 0.9230.923 0.9130.913 0.8880.888 개방 회로 전압(V)의 저하율(%)% Drop in open circuit voltage (V) 1.11.1 1.81.8 6.66.6 전압(0.3A/cm2)Voltage (0.3 A / cm 2 ) 0.5950.595 0.5750.575 0.4880.488 전압(0.3A/cm2)의 저하율(%)% Drop in voltage (0.3 A / cm 2 ) 1.21.2 1.21.2 10.610.6

상기 표 1에는 실시예 1, 실시예 2 및 비교예 1의 고체고분자 전해질막을 이용하여 제조한 연료전지에 대해, 초기의 개방 회로 전압 및 200시간후의 개방 회로 전압과, 전극면적에 대한 전류밀도가 0.3A/cm2의 조건에서 발전했을 때의 초기 전지전압 및 발전으로부터 200시간 후의 전지전압을 나타냈다. 또한 표 1에는 초기 전압을 100%로 했을 때의 200시간 후의 전압의 저하율(%)을 함께 기재했다.Table 1 shows the initial open circuit voltage, the open circuit voltage after 200 hours, and the current density with respect to the electrode area for the fuel cells manufactured using the solid polymer electrolyte membranes of Examples 1, 2 and Comparative Example 1. The initial battery voltage at the time of power generation under the condition of 0.3 A / cm 2 and the battery voltage after 200 hours from the power generation are shown. In addition, Table 1 also described the reduction rate (%) of the voltage after 200 hours when the initial voltage was 100%.

상기 표 1에 나타낸 결과로부터 초기 상태에서는 각 실시예 및 비교예 사이에서 회로전압 및 전류밀도 0.3A/cm2의 전압에 대해 큰 차이는 보이지 않았다.In the initial state from the results shown in Table 1, no significant difference was observed for the circuit voltage and the voltage of the current density of 0.3 A / cm 2 between the Examples and Comparative Examples.

그러나, 200시간 경과한 후에는 비교예 1의 연료전지의 전압이 실시예 1 및 실시예 2의 경우와 비교하여 작아진다는 것을 알 수 있다.However, after the elapse of 200 hours, it can be seen that the voltage of the fuel cell of Comparative Example 1 is smaller than that of Examples 1 and 2.

도 1에는 실시예 1 및 비교예 1에 대해, 초기상태에서의 전류밀도와 전지전압과의 관계를 나타낸다. 초기상태에서는, 전류밀도를 높여도 전지전압에 큰 차이가 보이지 않는다.1 shows the relationship between the current density in the initial state and the battery voltage in Example 1 and Comparative Example 1. FIG. In the initial state, even if the current density is increased, no significant difference is seen in the battery voltage.

도 2에는, 실시예1 및 비교예1에 대해, 개방 회로 전압(OCV:OPEN CIRCUIT VOLTAGE) 및 전류밀도 0.3A/cm2에서의 발전시 전지전압과, 연료전지의 운전시간과의 관계를 나타낸다. 도 2에 도시한 바와 같이, 비교예 1의 경우는 운전시간이 장시간 으로 길어짐에 따라 어느쪽의 전압이든 저하되는 것을 알 수 있었다. FIG. 2 shows the relationship between the open circuit voltage (OCV: OPEN CIRCUIT VOLTAGE) and the battery voltage during power generation at a current density of 0.3 A / cm 2 and the operating time of the fuel cell in Example 1 and Comparative Example 1. FIG. . As shown in FIG. 2, in the case of Comparative Example 1, it was found that either of the voltages decreased as the operation time became longer for a long time.

한편, 실시예 1의 경우는 전압의 저하가 거의 보이지 않는다.On the other hand, in Example 1, the fall of a voltage is hardly seen.

이상과 같이, 본 발명에 관한 실시예 에서는, 150℃, 무가습 조건하에서도 비교예 1의 경우보다도 내구성이 뛰어나고, 양호한 발전성능을 장기 안정적으로 발휘할 수 있는 것이 명백해졌다. As mentioned above, in the Example which concerns on this invention, it became clear that even in 150 degreeC and a non-humidification condition, it was excellent in durability compared with the case of the comparative example 1, and can exhibit favorable power generation performance stably for a long term.

본 발명에 따르면, 100 내지 300℃ 정도의 작동온도에서, 무가습 혹은 상대습도 50% 이하의 작동조건에서 발전성능을 장기간 안정적으로 나타내는 고체 고분자 전해질막, 그 제조방법 및 이를 이용한 연료전지를 제공할 수 있다.According to the present invention, it is possible to provide a solid polymer electrolyte membrane, a method of manufacturing the same, and a fuel cell using the same, which exhibits a long-term stable performance in an operating temperature of about 100 to 300 ° C. under an operating condition of no humidification or a relative humidity of 50% or less. Can be.

Claims (7)

하기 화학식으로 표시되는 구성단위(a)를 함유하는 측쇄를, The side chain containing the structural unit (a) represented by the following formula, 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자 부위에 가진 고분자 화합물을 포함하는 고체 고분자 전해질막.A solid polymer electrolyte membrane comprising a polymer compound having a nitrogen-containing heterocyclic nitrogen atom constituting the polybenzimidazoles. [화학식 1][Formula 1]
Figure 112005014707019-PAT00013
Figure 112005014707019-PAT00013
제1항에 있어서, 상기 구성단위 (a)는 폴리벤즈이미다졸류의 반복구성단위당 20몰% 내지 2000몰%가 되도록 포함되는 것을 특징으로 하는 고체 고분자 전해질막. The solid polymer electrolyte membrane according to claim 1, wherein the structural unit (a) is contained in an amount of 20 mol% to 2000 mol% per repeating structural unit of the polybenzimidazoles. 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자에 탄소-탄소이중결합을 가진 치환기가 결합된 고분자 화합물에 비닐포스폰산을 도핑한 후에, 부가중합을 수행함으로써 상기 탄소-탄소이중결합에 비닐포스폰산이 부가중합된 고분자 화합물을 제조하는 공정을 포함하는 것을 특징으로 하는 고체 고분자 전해질막의 제조방법.Doping vinylphosphonic acid to a polymer compound having a substituent containing a carbon-carbon double bond to a nitrogen-containing heterocyclic nitrogen atom constituting polybenzimidazoles, and then performing addition polymerization to vinyl the carbon-carbon double bond. A method for producing a solid polymer electrolyte membrane, comprising the step of preparing a polymer compound to which phosphonic acid is additionally polymerized. 제3항에 있어서, 상기 폴리벤즈이미다졸류를 구성하는 질소함유 복소환식 질소원자에 탄소-탄소이중결합을 가진 치환기가 결합된 고분자 화합물은 폴리벤즈이미다졸류과, 분자중에 이소시아네이트기 또는 글리시딜기와 탄소-탄소 이중 결합을 가진 화합물과의 반응에 의하여 얻는 것을 특징으로 하는 고체 고분자 전해질막의 제조방법.4. The polymer compound according to claim 3, wherein the polymer compound in which a substituent having a carbon-carbon double bond is bonded to a nitrogen-containing heterocyclic nitrogen atom constituting the polybenzimidazoles is polybenzimidazole and an isocyanate group or glycidyl in the molecule. A method for producing a solid polymer electrolyte membrane, which is obtained by a reaction between a group and a compound having a carbon-carbon double bond. 제4항에 있어서, 상기 분자중에 이소시아네이트기 또는 글리시딜기와 탄소-탄소 이중 결합을 가진 화합물이,The compound according to claim 4, wherein the compound having an isocyanate group or glycidyl group and a carbon-carbon double bond in the molecule, 하기 화학식(c-1)로 표시되는 2-이소시아나토에틸메타크릴레이트, 화학식(c-2)로 표시되는 2-이소시아나토에틸아크릴레이트 및 화학식(c-3)으로 표시되는 글리시딜메타크릴레이트 중에서 선택되는 1 이상인 것을 특징으로 하는 고체 고분자 전해질막의 제조방법.2-isocyanatoethyl methacrylate represented by the following formula (c-1), 2-isocyanatoethyl acrylate represented by the formula (c-2) and glycidyl represented by the formula (c-3) Method for producing a solid polymer electrolyte membrane, characterized in that at least one selected from methacrylates. [화학식 6][Formula 6]
Figure 112005014707019-PAT00014
Figure 112005014707019-PAT00014
[화학식 7][Formula 7]
Figure 112005014707019-PAT00015
Figure 112005014707019-PAT00015
[화학식 8][Formula 8]
Figure 112005014707019-PAT00016
Figure 112005014707019-PAT00016
제3항에 있어서, 상기 폴리벤즈이미다졸류가The method according to claim 3, wherein the polybenzimidazoles 하기 화학식 (b-1)-(b-3)로 표시되는 고분자 및 그 유도체중에서 선택되는 것을 특징으로 하는 고체 고분자 전해질막의 제조방법.A method for producing a solid polymer electrolyte membrane, characterized in that it is selected from polymers represented by the formulas (b-1)-(b-3) and derivatives thereof. [화학식 2][Formula 2]
Figure 112005014707019-PAT00017
Figure 112005014707019-PAT00017
상기식중, n은 10-100,000이다.Wherein n is 10-100,000.
산소극; Oxygen electrode; 연료극; 및Fuel electrode; And 상기 산소극과 상기 연료극에 개재되며 제1항 또는 제2항의 고체 고분자 전해질막을 구비하고, 산화제 유로를 형성한 산화제 바이폴라 플레이트를 산소극쪽에 마련하고, 연료 유로를 형성한 연료 바이폴라 플레이트를 연료극쪽에 마련한 것을 단위셀로 하는 연료전지.An oxidant bipolar plate provided with the solid polymer electrolyte membrane according to claim 1 or 2 interposed between the oxygen electrode and the fuel electrode and having an oxidant flow path provided on an oxygen electrode side, and a fuel bipolar plate having a fuel flow path formed on the fuel electrode side. A fuel cell comprising a unit cell.
KR1020050023240A 2004-11-16 2005-03-21 Solid polymer electrolyte membrane, manufacturing method thereof and fuel cell using the same KR100657955B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/272,642 US7879506B2 (en) 2004-11-16 2005-11-15 Solid polymer electrolyte membrane, method for manufacturing the same, and fuel cell using the solid polymer electrolyte membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004331656A JP2006147165A (en) 2004-11-16 2004-11-16 Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it
JPJP-P-2004-00331656 2004-11-16

Publications (2)

Publication Number Publication Date
KR20060055291A true KR20060055291A (en) 2006-05-23
KR100657955B1 KR100657955B1 (en) 2006-12-14

Family

ID=36626620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050023240A KR100657955B1 (en) 2004-11-16 2005-03-21 Solid polymer electrolyte membrane, manufacturing method thereof and fuel cell using the same

Country Status (2)

Country Link
JP (1) JP2006147165A (en)
KR (1) KR100657955B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
WO2013125904A1 (en) * 2012-02-23 2013-08-29 서울시립대학교 산학협력단 Electrolyte having improved high-rate charging and discharging characteristics and capacitor using same
KR101325989B1 (en) * 2012-02-23 2013-11-07 서울시립대학교 산학협력단 Electrolyte having improved charge and discharge, and capacitor comprising the same
KR101305209B1 (en) * 2012-03-30 2013-11-21 서울시립대학교 산학협력단 Capacitor having improved charge and discharge, and preparing the same
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
US8679705B2 (en) 2006-07-21 2014-03-25 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell employing the electrode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251513B2 (en) * 2006-10-23 2013-07-31 旭硝子株式会社 Membrane electrode assembly for polymer electrolyte fuel cells
JP5110184B2 (en) * 2010-10-19 2012-12-26 トヨタ自動車株式会社 Phosphonic acid polymer, method for producing the same, and electrolyte membrane for fuel cell
JP5757001B2 (en) * 2011-11-09 2015-07-29 国立大学法人 東京大学 Heat resistant polymer electrolyte membrane and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521579B2 (en) * 1995-10-18 2004-04-19 Jsr株式会社 Phosphate group-containing polymer
US6124060A (en) * 1998-05-20 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolytes
KR100413801B1 (en) 2001-10-30 2004-01-03 삼성전자주식회사 Polymer electrolyte comprising conductive inorganic nano-particle and fuel cell employing the same
US6987163B2 (en) 2002-08-07 2006-01-17 Research Foundation Of The State University Of New York Modified polybenzimidazole (PBI) membranes for enhanced polymer electrochemical cells

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8349515B2 (en) 2005-09-03 2013-01-08 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8426081B2 (en) 2005-09-03 2013-04-23 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8580455B2 (en) 2006-05-29 2013-11-12 Samsung Sdi Co., Ltd. Crosslinked polybenzoxazines, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8679705B2 (en) 2006-07-21 2014-03-25 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell employing the electrode
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
US9243012B2 (en) 2007-09-11 2016-01-26 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, or polymer thereof
US8715881B2 (en) 2007-09-11 2014-05-06 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8551669B2 (en) 2007-11-02 2013-10-08 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8512914B2 (en) 2007-11-02 2013-08-20 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8808941B2 (en) 2007-11-02 2014-08-19 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8507148B2 (en) 2007-11-06 2013-08-13 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
WO2013125904A1 (en) * 2012-02-23 2013-08-29 서울시립대학교 산학협력단 Electrolyte having improved high-rate charging and discharging characteristics and capacitor using same
KR101325989B1 (en) * 2012-02-23 2013-11-07 서울시립대학교 산학협력단 Electrolyte having improved charge and discharge, and capacitor comprising the same
KR101305209B1 (en) * 2012-03-30 2013-11-21 서울시립대학교 산학협력단 Capacitor having improved charge and discharge, and preparing the same

Also Published As

Publication number Publication date
KR100657955B1 (en) 2006-12-14
JP2006147165A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
KR100657955B1 (en) Solid polymer electrolyte membrane, manufacturing method thereof and fuel cell using the same
US8039166B2 (en) Polymer electrolyte membrane for fuel cell, method of manufacturing the same, and fuel cell employing the same
US6962959B2 (en) Composite electrolyte with crosslinking agents
KR100437267B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Preparation Method Thereof
KR100813249B1 (en) Polysulfone, electrolyte membrane using the same, and fuel cell using the same
EP1474839B1 (en) Polymer electrolyte membranes for use in fuel cells
KR101267905B1 (en) Proton conducting copolymer containing diphenyl fuorene-sulfonic acid group, manufacturing method thereof, proton conducting polymer membrane, membrane-electrolyte assembly, and polymer electrolyte membrane fuel cell using the same
US20100196792A1 (en) Polymer electrolyte composition and fuel cell
KR100506096B1 (en) Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
JP4774718B2 (en) Polymer electrolyte membrane
KR101342597B1 (en) Polymer electrolyte membrane for fuel cell, manufacturing method thereof, and fuel cell employing the same
KR100745740B1 (en) Cathode electrode for fuel cell and fuel cell using the same
JPWO2006022081A1 (en) Proton conductor
KR100754376B1 (en) Proton conductive electrolyte membrane, method for preparing the same and fuel cell comprising the same
KR100707158B1 (en) Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing the gel electrolyte
US7879506B2 (en) Solid polymer electrolyte membrane, method for manufacturing the same, and fuel cell using the solid polymer electrolyte membrane
KR100668316B1 (en) Gel electrolyte and fuel cell employing the same
KR100668322B1 (en) Proton conductive solid polymer electrolyte film and fuel cell employing the same
KR20170106790A (en) Method for preparing covalently cross-linked membrane by changing ionic cross-linking to covalent cross-linking and covalently cross-linked membrane prepared thereby
KR100600150B1 (en) Composite electrolyte membrane permeated by nano scale dendrimer and the method of preparing the same
JP2006147164A (en) Polymer electrolyte membrane, its manufacturing method, and fuel cell using it
JPWO2013161405A1 (en) Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, polymer electrolyte fuel cell, water electrolysis cell, and water electrolysis device
JP2006147163A (en) Composite electrolyte membrane and fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121123

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171121

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 14