KR20060039980A - Composition of high melt strength polypropylene for thermoforming - Google Patents

Composition of high melt strength polypropylene for thermoforming Download PDF

Info

Publication number
KR20060039980A
KR20060039980A KR1020040089134A KR20040089134A KR20060039980A KR 20060039980 A KR20060039980 A KR 20060039980A KR 1020040089134 A KR1020040089134 A KR 1020040089134A KR 20040089134 A KR20040089134 A KR 20040089134A KR 20060039980 A KR20060039980 A KR 20060039980A
Authority
KR
South Korea
Prior art keywords
resin composition
weight
catalyst
melt
propylene homopolymer
Prior art date
Application number
KR1020040089134A
Other languages
Korean (ko)
Other versions
KR100612109B1 (en
Inventor
임광열
김창희
윤필중
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020040089134A priority Critical patent/KR100612109B1/en
Publication of KR20060039980A publication Critical patent/KR20060039980A/en
Application granted granted Critical
Publication of KR100612109B1 publication Critical patent/KR100612109B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/651Pretreating with non-metals or metal-free compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 진공성형성이 우수한 고탄성 폴리프로필렌 수지 조성물에 관한 것으로서, 보다 상세하게는 올레핀 중합용 고체착물티타늄 촉매에 올레핀 단량체와 디엔계 화합물을 첨가, 중합하여 제조한 전중합촉매를 이용하여 긴가지가 도입된 폴리올레핀을 중합하고, 여기에 프로필렌 단독중합체 수지를 블렌드하여 이루어지는 진공성형성이 우수한 고탄성 폴리프로필렌 수지 조성물에 관한 것이다. The present invention relates to a high-elastic polypropylene resin composition excellent in vacuum formability, and more particularly, to a long-composition using a prepolymerization catalyst prepared by adding and polymerizing an olefin monomer and a diene compound to a solid complex titanium catalyst for olefin polymerization. The present invention relates to a highly elastic polypropylene resin composition having excellent vacuum forming property by polymerizing a polyolefin into which is introduced and blending a propylene homopolymer resin.

   고탄성 폴리프로필렌, 전중합, 진공성형성, 용융강도High elastic polypropylene, prepolymerization, vacuum forming, melt strength

Description

진공성형성이 우수한 고탄성 폴리프로필렌 수지 조성물{COMPOSITION OF HIGH MELT STRENGTH POLYPROPYLENE FOR THERMOFORMING}     High elastic polypropylene resin composition excellent in vacuum forming property TECHNICAL FIELD

본 발명은 알파올레핀 중합용 촉매의 주위에 고분자량 단량체(macromonomer)가 캡슐화(encapsulation)한 형태의 전중합촉매를 이용하여 중합한 긴가지가 도입된 폴리올레핀 중합체와 프로필렌 단독중합체를 블렌드하여 이루어지는 진공성형이 우수한 고탄성 폴리프로필렌 수지 조성물에 관한 것이다.The present invention is a vacuum forming process by blending a polyolefin polymer and a propylene homopolymer having a long branched polymerized by using a prepolymerization catalyst in which a macromonomer is encapsulated around an alpha olefin polymerization catalyst. It is related with this excellent high elastic polypropylene resin composition.

일반적으로 폴리프로필렌은 다른 수지에 비해 상대적으로 높은 강도와 우수한 기계적인 성질을 가진 범용 플라스틱이며, 이는 결정성과 고분자 사슬의 분자구조에 기인한다. 더욱이 프로필렌 단독중합체는 고온에서의 변형에 우수한 저항성을 지니며, 높은 인장강도, 표면강성을 지니고 있으며, 용도에 따라 에틸렌이나 부틸렌을 불규칙 혹은 블록 공중합한 코폴리프로필렌은 충격강도가 증가된다. In general, polypropylene is a general-purpose plastic having a relatively high strength and excellent mechanical properties compared to other resins, due to the crystal structure and the molecular structure of the polymer chain. Furthermore, the propylene homopolymer has excellent resistance to deformation at high temperatures, has high tensile strength and surface stiffness, and copolypropylene with irregular or block copolymerization of ethylene or butylene increases in impact strength, depending on the application.

반면에 폴리프로필렌은 선형 사슬구조에 기인한 약한 용융장력으로 인하여 다른 플라스틱 재료에 비해 진공성형이나 중공성형의 경우에 있어서 쉬트나 프리폼의 가열도중 처짐현상(sagging)이 심하여 만족할 만한 성형성을 확보하지 못하였다.On the other hand, polypropylene does not have satisfactory formability due to the sagging during heating of sheets or preforms compared to other plastic materials due to the weak melt tension due to the linear chain structure. I couldn't.

따라서 이를 극복하기 위하여 폴리프로필렌과 같은 폴리올레핀의 용융장력을 증가시키기 위한 여러가지 방법이 제시되고 있는 바, 첫번째는 폴리올레핀에 긴 가지(long chain branch)를 도입하여, 가공공정에서 고분자사슬간의 인력을 감소시켜 이지 플로우(easy flow)특성을 부여하며, 성형공정(특히, 대형 블로우 등과 같은 치수안정성을 요하는 용도)에서는 긴 가지가 인접 사슬과의 물리적 가교를 통해 고탄성을 나타내게 하는 방법이다. 이러한 긴 가지를 도입하여 고탄성의 폴리올레핀을 제조하는 방법으로는 주로 중합반응기를 거쳐서 나온 폴리올레핀에 전자선이나 반응압출법을 통해 라디칼을 형성시키고, 이들을 다시 반응시켜, 사슬형 폴리올레핀에 긴가지를 형성시키는 방법을 사용하였다. 두번째는 용융지수가 매우 낮은 폴리프로필렌에 폴리에틸렌을 물리적으로 블렌드하는 방법이다. 이중 두번째 방법은 용융지수가 낮아 가공성이 저하되는 문제점이 있다. Therefore, in order to overcome this, various methods for increasing the melt tension of polyolefins such as polypropylene have been proposed. First, the introduction of long chain branches into polyolefins reduces the attraction between polymer chains in the processing process. It is a method of providing easy flow characteristics, and in forming processes (particularly, applications requiring dimensional stability such as large blows, etc.), long branches have high elasticity through physical crosslinking with adjacent chains. As a method of preparing a high elastic polyolefin by introducing such long branches, radicals are mainly formed on the polyolefins that have passed through a polymerization reactor through electron beam or reaction extrusion, and then reacted again to form long branches in the chain polyolefin. Was used. The second is to physically blend polyethylene into polypropylene with a very low melt index. The second method has a problem that the workability is lowered because the melt index.

따라서, 성형재료로서 유용한 고탄성을 가지는 폴리올레핀을 중합단계에서 직접 중합하여 고탄성을 한층 더 향상시킬 수 있는 중합 방법 및 블렌드 방법이 개발된다면 성형재료로서의 폴리올레핀의 용도확대를 기대할 수 있을 것이다.Therefore, if a polymerization method and a blending method are developed in which a high elasticity polyolefin having a high elasticity useful as a molding material is directly polymerized in the polymerization step, a high elasticity can be further improved, the use of the polyolefin as a molding material can be expected to be expanded.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 용융장력을 증가시켜 진공성형, 중공성형, 열성형 등의 공정에 적용 가능한 폴리프로필렌 수지 조성물을 제공하는 것을 목적으로 한다. The present invention is to solve the problems as described above, an object of the present invention is to provide a polypropylene resin composition applicable to processes such as vacuum molding, blow molding, thermoforming by increasing the melt tension.

본 발명의 폴리프로필렌 수지 조성물은 올레핀 중합용 고체착물 티타늄 촉매 와 올레핀/다중기능기 화합물과의 전중합을 통해 제조되는, 올레핀 중합체에 가지(branch)를 형성할 수 있는 고분자량 단량체(macromonomer)가 촉매 주위에 캡슐화(encapsulation)한 형태의 촉매(이하, '전중합촉매'라 함)를 이용하여 중합된 긴가지가 도입된 고탄성 폴리올레핀 중합체와 프로필렌 단독중합체 수지를 블렌드하여 이루어지는 것을 특징으로 한다.The polypropylene resin composition of the present invention is a macromolecular monomer capable of forming a branch in an olefin polymer prepared by prepolymerization of a solid complex titanium catalyst for olefin polymerization and an olefin / multifunctional compound. It is characterized in that it is made by blending a high elastic polyolefin polymer and a propylene homopolymer resin in which long branches polymerized using a catalyst in a form encapsulated around the catalyst (hereinafter, referred to as 'prepolymerization catalyst').

본 발명에서 사용되는 긴 가지가 도입된 고탄성 폴리올레핀 중합체는 알파올레핀 중합용 촉매의 주위에 고분자량 단량체가 캡슐화한 형태의 전중합 촉매를 이용하여 통상의 방법으로 중합된 것으로서, 이의 제조에 사용되는 촉매 성분의 바람직한 예는, 대한민국 특허등록 10-0387734호 및 10-0431637호에 기재되어 있다. 이 두 특허의 전체내용은 본 명세서에 통합되는 것으로 한다. 이 촉매 성분에 대해 간략히 요약해 보면, 올레핀 중합용 고체 티타늄 촉매를 두개 이상의 비닐기를 가지는 실란화합물로 표면처리한 다음, 이 표면 처리된 고체 티타늄 촉매와 올레핀 단량체 및 디엔 화합물을 전중합시키므로써 촉매 주위에 고분자량 단량체를 캡슐화시켜 제조된 것을 특징으로 한다.The high-strength polyolefin polymer having a long branch introduced in the present invention is polymerized by a conventional method using a prepolymerization catalyst in a form in which a high molecular weight monomer is encapsulated around the catalyst for alpha olefin polymerization. Preferred examples of the components are described in Korean Patent Registration Nos. 10-0387734 and 10-0431637. The entire contents of these two patents are intended to be incorporated herein. In summary, the catalyst component is treated by surface treatment of a solid titanium catalyst for olefin polymerization with a silane compound having two or more vinyl groups, followed by prepolymerization of the surface treated solid titanium catalyst with an olefin monomer and a diene compound. It characterized in that it is prepared by encapsulating a high molecular weight monomer.

본 발명에 따른 고탄성 폴리프로필렌 수지 조성물은 상기의 전중합촉매를 이용하여, 통상의 중합방법으로 중합하여 얻어지는 긴가지가 도입된 폴리올레핀 중합체(이하, '긴가지가 도입된 중합체') 30~95중량% 및 프로필렌 단독중합체 5~70중량%를 포함하고, 산화방지제를 상기 수지 조성물 100중량부에 대하여 0.05~0.5중량부 포함하여 이루어진다.The high-elastic polypropylene resin composition according to the present invention is 30 to 95% by weight of a polyolefin polymer (hereinafter referred to as a polymer having a long branch) obtained by polymerizing by a conventional polymerization method using the above prepolymerization catalyst. % And 5 to 70% by weight of a propylene homopolymer, and 0.05 to 0.5 parts by weight of an antioxidant based on 100 parts by weight of the resin composition.

그리고 본 발명에서 긴가지가 도입된 중합체(a)와 프로필렌 단독 중합체(b) 의 용융지수비(a/b)는 바람직하게는 0.5~5.0, 가장 바람직하게는 0.8~5.0이 적당하다. 수지 조성물에서 용융지수비(a/b)가 5.0을 넘는 경우 가공시 부하가 많이 걸리고 시트 용융시 시트 내에 구멍이 형성되어 시트가 파괴되는 문제점이 있다. 용융지수가 0.5 미만인 경우 용융강도과 열처짐 특성이 저하되고 시트의 두께 균일도가 나빠지는 문제점이 있다. In the present invention, the melt index ratio (a / b) of the polymer (a) and the propylene homopolymer (b) in which the long branch is introduced is preferably 0.5 to 5.0, and most preferably 0.8 to 5.0. When the melt index ratio (a / b) in the resin composition exceeds 5.0, there is a problem in that a lot of load is applied during processing and holes are formed in the sheet when the sheet is melted and the sheet is destroyed. If the melt index is less than 0.5, there is a problem in that the melt strength and thermal deflection characteristics are lowered and the thickness uniformity of the sheet is worsened.

또한 긴가지가 도입된 중합체에 블랜딩 되는 프로필렌 단독 중합체의 함량은 5중량% 미만이면 가공특성이 저하되고, 70중량%를 초과하게 되면 용융장력이 저하된다.In addition, if the content of the propylene homopolymer blended to the long branch introduced polymer is less than 5% by weight, the processing properties are lowered, and when it exceeds 70% by weight, the melt tension is lowered.

본 발명에 따른 진공성형성이 우수한 고탄성 폴리프로필렌 수지 조성물은 연신점도 측정시 변형율 속도가 어느 정도 이상의 값을 가지면, 점단후화(Extension Hardening)현상이 발현되어 연신점도 값이 선형 곡선의 값보다 많이 커지는 것을 특징으로 한다.High elasticity polypropylene resin composition excellent in vacuum formability according to the present invention, if the strain rate is more than a certain value when the stretch viscosity is measured, the extension hardening phenomenon is expressed, the stretch viscosity value is larger than the value of the linear curve It is characterized by.

본 발명의 고탄성 폴리프로필렌 수지 조성물의 용융강도는 100mN 이상이며, 탄성력이 2.0 이상인 것이 바람직하다.It is preferable that the melt strength of the high elastic polypropylene resin composition of this invention is 100 mN or more, and elasticity is 2.0 or more.

본 발명의 수지 조성물에는 필요에 따라 내열안정제, 핵제, 내후안정제, 대전방지제, 활제, 슬립제, 난연제, 안료, 염료 등과 같은 각종 첨가제가 첨가될 수 있다.If necessary, various additives such as heat stabilizers, nucleating agents, weather stabilizers, antistatic agents, lubricants, slip agents, flame retardants, pigments, dyes, and the like may be added to the resin composition of the present invention.

본 발명에서 긴 가지가 도입된 중합체와 프로필렌 단독중합체를 블렌딩하는 방법은 특별한 제한이 없으며, 보편적으로 알려진 블렌딩방법을 사용할 수 있다. 상기의 각 성분들과 기타 첨가제를 필요한 양으로 첨가하여 니더(kneader), 롤, 밤 바리(Bambury) 믹서 등의 혼련기와 1축 또는 2축 압출기 등을 사용하여 혼련하는 방법이 이용될 수 있다.In the present invention, there is no particular limitation on the method of blending the propylene homopolymer and the polymer having the long branches introduced, and a commonly known blending method may be used. Each of the above components and other additives may be added in a required amount to knead using a kneader such as a kneader, a roll, a Bambury mixer, or a single or twin screw extruder.

본 발명에 따른 수지 조성물은 진공성형성이 우수하므로 진공성형용의 단독 시트나 다중층 시트 및 진공 성형품의 제조에 적합하다.Since the resin composition which concerns on this invention is excellent in vacuum forming, it is suitable for manufacture of a single sheet, a multilayer sheet, and a vacuum molded article for vacuum molding.

이하에서는, 실시예와 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 그러나, 본 발명은 이들 실시예에 국한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.

실시예 및 비교예Examples and Comparative Examples

[제조예][Production example]

300mN의 용융강도를 갖는 긴가지가 도입된 폴리프로필렌을 하기의 방법에 따라 제조 및 처리하였다.Polypropylene with long branches having a melt strength of 300 mN was prepared and treated according to the following method.

전중합촉매의 제조Preparation of Prepolymerization Catalyst

1단계 : 마그네슘화합물 용액의 제조Step 1: Preparation of Magnesium Compound Solution

질소분위기로 치환된, 기계식 교반기가 설치된 1.0ℓ 반응기에 염화마그네슘(MgCl2) 15g, 염화알루미늄(AlCl3) 4.2g, 톨루엔 550㎖의 혼합물을 넣고, 400rpm으로 교반시킨 다음, 테트라하이드로퓨란 30㎖, 부탄올 28㎖, 에탄올 1.4㎖, 실리콘테트라에톡사이드 1.5㎖, 트리부틸포스페이트 3.0㎖를 투입하고, 온도를 105℃로 올려, 4시간 동안 반응시켰다. 반응이 끝난 후에 얻어진 균일 용액을 상온으로 냉각하였다.A mixture of 15 g of magnesium chloride (MgCl 2 ), 4.2 g of aluminum chloride (AlCl 3 ), and 550 ml of toluene was added to a 1.0 liter reactor equipped with a mechanical stirrer replaced with a nitrogen atmosphere, stirred at 400 rpm, and 30 ml of tetrahydrofuran. , 28 ml of butanol, 1.4 ml of ethanol, 1.5 ml of silicon tetraethoxide, and 3.0 ml of tributylphosphate were added thereto, and the temperature was raised to 105 ° C. for 4 hours. The homogeneous solution obtained after the reaction was completed was cooled to room temperature.

2단계 : 고체 담지체의 제조Step 2: preparing a solid carrier

온도를 13℃로 유지시킨 1.6ℓ 반응기에 1단계에서 제조한 마그네슘 용액을 이송시켰다. 교반을 350rpm으로 유지시킨 다음, 사염화티타늄(TiCl4) 15.5㎖를 투입하고, 반응기의 온도를 90℃로 올렸다. 이 과정 동안에 고체 담지체가 생성되었다. 90℃에서 1시간 동안 반응을 지속시킨 다음 교반을 중지하여, 생성된 고체 담지체의 침전이 이루어지도록 하였다. 침전이 완료되고 난 후, 상등액을 분리해 낸 고체 담지체를 톨루엔 75㎖로 두 번 세척하였다.The magnesium solution prepared in step 1 was transferred to a 1.6 L reactor maintained at 13 ° C. After stirring was maintained at 350 rpm, 15.5 ml of titanium tetrachloride (TiCl 4 ) was added thereto, and the temperature of the reactor was raised to 90 ° C. Solid carriers were produced during this process. The reaction was continued at 90 ° C. for 1 hour and then stirring was stopped to allow precipitation of the resulting solid support. After the precipitation was completed, the solid carrier from which the supernatant was separated was washed twice with 75 ml of toluene.

3단계 : 고체 티타늄촉매의 제조Step 3: Preparation of Solid Titanium Catalyst

고체 담지체에 톨루엔 100㎖와 염화티타늄(TiCl4) 100㎖를 투입한 후, 반응기의 온도를 110℃로 올려 1시간 동안 가열하였다. 교반을 중지하고 고체 담지체를 침전시킨 뒤 상등액을 분리하고, 톨루엔 100㎖와 TiCl4 100㎖를 투입한 뒤, 70℃에서 디이소부틸프탈레이트 2.9㎖를 주입하였다. 반응기의 온도를 다시 120℃로 올려 1시간 동안 교반시켰다. 교반을 정지한 뒤, 상등액을 분리하고, 톨루엔 100㎖를 주입한 후, 반응기의 온도를 70℃로 내려 30분 동안 교반하였다. 반응기 교반을 중지하고 상등액을 분리한 후, TiCl4 100㎖를 주입하여 70℃에서 30분 동안 교반하여 고체 티타늄촉매를 제조하였다.100 ml of toluene and 100 ml of titanium chloride (TiCl 4 ) were added to the solid carrier, and the temperature of the reactor was raised to 110 ° C. and heated for 1 hour. After the stirring was stopped, the solid carrier was precipitated, the supernatant was separated, 100 ml of toluene and 100 ml of TiCl 4 were added thereto, and 2.9 ml of diisobutyl phthalate was added at 70 ° C. The temperature of the reactor was again raised to 120 ° C. and stirred for 1 hour. After the stirring was stopped, the supernatant was separated, 100 ml of toluene was injected, and the temperature of the reactor was lowered to 70 ° C. and stirred for 30 minutes. After stopping the reactor stirring and separating the supernatant, 100 ml of TiCl 4 was injected and stirred at 70 ° C. for 30 minutes to prepare a solid titanium catalyst.

4단계 : 고체 티타늄촉매의 표면처리Step 4: surface treatment of solid titanium catalyst

상기에서 제조된 고체 티타늄촉매를 정제된 헥산 75㎖로 5번 세척하고, 헥산 500㎖와 다이비닐다이메틸 실란 50㎖를 가하여 상온에서 1시간 동안 반응시켰다. 제조된 촉매는 질소 분위기에서 건조한 후 보관하였다. 표면처리된 고체 티타늄촉 매에는 티타늄원자가 2.5중량% 함유되어 있었다.The solid titanium catalyst prepared above was washed five times with 75 ml of purified hexane, and 500 ml of hexane and 50 ml of divinyldimethyl silane were added and reacted at room temperature for 1 hour. The prepared catalyst was stored after drying in a nitrogen atmosphere. The surface treated solid titanium catalyst contained 2.5% by weight of titanium atoms.

5단계 : 전중합Step 5: prepolymerization

용량 0.5ℓ의 고압반응기를 프로필렌으로 세정한 다음, 상기 4단계에서 얻은 촉매 2g, 헥산 300㎖, 트리에틸알루미늄 6m㏖, 헥사디엔 20㎖를 넣고, 에틸렌으로 0.9기압으로 압력을 맞추고, 20℃에서 5시간 동안 중합을 실시하였다. 이렇게 하여 얻어진 전중합촉매에 있어서, 촉매 주위에 중합된 고분자량단량체의 양은 촉매 1g당 31.0g 이었다.After washing the high-pressure reactor with a capacity of 0.5 L with propylene, 2 g of the catalyst obtained in step 4, 300 ml of hexane, 6 mmol of triethylaluminum, and 20 ml of hexadiene were added, and the pressure was adjusted to 0.9 atm with ethylene, and at 20 ° C. The polymerization was carried out for 5 hours. In the prepolymerization catalyst thus obtained, the amount of the high molecular weight monomer polymerized around the catalyst was 31.0 g per 1 g of the catalyst.

중합polymerization

용량 2ℓ의 고압 반응기를 프로필렌으로 세정한 다음, 유리병에 상기에서 제조된 전중합촉매 20mg을 담아 반응기 안에 장착한 후, 반응기 안을 질소/진공 상태로 3회 반복하고, 상압 상태로 만들었다. 트리에틸알루미늄 7m㏖과 디시클로펜틸디메톡시실란 0.5m㏖, 디이소프로필디메톡시실란 0.5m㏖을 반응기에 주입하였다. 다시, 수소 5000Nml를 투입하고, 이어서 액상프로필렌 1,200㎖를 투입한 후, 반응기를 교반해 가면서 온도를 65℃로 상승시켜, 1시간 동안 중합반응을 수행하였다. 중합반응이 완료된 후, 미반응 가스를 배출하고, 온도를 상온으로 냉각한 후 반응기를 탈착하였다. 생성된 중합체는 분리 수집하여 50℃의 진공오븐에서 6시간 이상 건조하여 백색의 중합체(긴 가지가 도입된 중합체)를 얻었다.The high-pressure reactor with a capacity of 2 L was washed with propylene, and then loaded into the reactor with 20 mg of the prepolymerized catalyst prepared above in a glass bottle, and then the reactor was repeated three times in a nitrogen / vacuum state and brought to atmospheric pressure. 7 mmol of triethylaluminum, 0.5 mmol of dicyclopentyldimethoxysilane and 0.5 mmol of diisopropyldimethoxysilane were injected into the reactor. Again, 5000 Nml of hydrogen was added, and then 1,200 mL of liquid propylene was added, and then the temperature was raised to 65 DEG C while stirring the reactor, and polymerization was performed for 1 hour. After the polymerization reaction was completed, the unreacted gas was discharged, the temperature was cooled to room temperature, and the reactor was desorbed. The resulting polymer was collected separately and dried in a vacuum oven at 50 ° C. for at least 6 hours to obtain a white polymer (polymer with long branches introduced).

[물성측정방법][Measurement of physical properties]

하기 실시예 및 비교예에서 제조된 수지 조성물의 물성측정은 다음과 같은 방법으로 수행하였다.Measurement of physical properties of the resin composition prepared in the following Examples and Comparative Examples was performed by the following method.

표면 특성 및 열처짐 평가(Heat sagging 특성)Surface characteristics and thermal sagging evaluation (Heat sagging characteristics)

펠렛 형태의 수지 조성물을 T다이 형태의 캐스팅 장비를 활용하여 두께가 0.5mm인 시트로 성형하였다. 성형한 시트의 표면상태를 양호(○), 우수(◎) 및 불량(X)으로 평가하였으며, 이 시트를 이용한 진공 열성형 평가를 위한 방법으로 10cm 직경의 두 원판 사이에 시트를 장착 후, 200℃의 오븐 속에서 20mm 처졌을 때의 시간을 측정하였다.The resin composition in the form of pellets was molded into a sheet having a thickness of 0.5 mm using a casting apparatus in the form of a T die. The surface condition of the molded sheet was evaluated as good (○), good (◎) and poor (X). As a method for evaluating vacuum thermoforming using this sheet, the sheet was placed between two discs of 10 cm diameter, and then 200 The time when 20 mm sag in the oven of ° C was measured.

용융강도 및 연신점도 측정Melt strength and draw viscosity measurement

SMER(Samsung Melt Tension Rheometer)을 이용하여 200℃에서 모세관 유량계(capillary rheometer)의 판을 통해 나오는 스트랜드에 대하여 140℃ 챔버온도에서 용융강도 및 연신점도를 측정하였다. 이때 판의 L/D는 16이며, 가속비는 1mm/sec였다.Melt strength and elongation viscosity were measured at 140 ° C. chamber temperature for strands exiting through a plate of capillary rheometer at 200 ° C. using SMER (Samsung Melt Tension Rheometer). At this time, the plate had an L / D of 16 and an acceleration ratio of 1 mm / sec.

탄성력 측정(Die Swell Ratio)Elastic Swell Ratio

Die Swell Ratio(이하 DSR)는 용융지수 측정 장치에서 2mm의 직경(D1)을 갖는 오리피스를 통과한 후의 용융물체의 직경(D2)을 측정하여 다음식으로 계산하였다.Die Swell Ratio (hereinafter referred to as DSR) was calculated by measuring the diameter (D2) of the melt after passing through an orifice having a diameter (D1) of 2 mm in the melt index measuring device.

DSR=D2/D1DSR = D2 / D1

[실시예 1] Example 1

표 1에서 B-1으로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 70중량%에 용융지수 1.7g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 30중량%를 블렌딩하 고, 이 수지 조성물 100중량부에 대하여 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 1.55g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As identified by B-1 in Table 1, the melting index of 1.7g / 10 to 70% by weight of the polymer of the molten index 1.5g / 10min (ASTM D1238: 230 ℃, 2.16kg) in which the long branches prepared above were introduced 30 wt% of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed with 100 parts by weight of the resin composition, and then melt mixed through a twin screw extruder to pelletize. It was. The melt index of this resin was 1.55 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[실시예 2] Example 2

표 1에서 B-2로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 50중량%에 용융지수 1.7g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 50중량%를 블렌딩하고, 이 수지조성물 100중량부에 대하여 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 1.60g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As identified by B-2 in Table 1, the melting index of 1.7g / 10 to 50% by weight of the polymer of 1.5g / 10min (ASTM D1238: 230 ° C, 2.16kg) in which the long branch prepared above was introduced. 50 wt% of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed together with 100 parts by weight of this resin composition, and then melt mixed through a twin screw extruder to pelletize. . The melt index of this resin was 1.60 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[실시예 3] Example 3

표 1에서 B-3으로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 30중량%에 용융지수 1.7g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 70중량%를 블렌딩하고, 이 수지조성물 100중량부에 대하여 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 1.71g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As identified by B-3 in Table 1, the molten index was 1.7 g / 10 to 30 wt% of the polymer having a molten index of 1.5 g / 10 min (ASTM D1238: 230 ° C., 2.16 kg) in which the long branch prepared above was introduced. 70% by weight of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed together with 100 parts by weight of the resin composition, and then melt mixed through a twin screw extruder to pelletize. . The melt index of this resin was 1.71 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[비교예 1] Comparative Example 1

표 1에서 B-4로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 10중량%에 용융지수 1.7g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 90중량%를 블렌딩하고, 이 수지조성물 100중량부에 대하여 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 1.73g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As confirmed by B-4 in Table 1, the melting index of 1.7g / 10 to 10% by weight of the polymer of the molten index 1.5g / 10min (ASTM D1238: 230 ℃, 2.16kg) introduced into the long branches prepared above 90% by weight of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed with 100 parts by weight of the resin composition, and then melt mixed through a twin screw extruder to pelletize. . The melt index of this resin was 1.73 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[비교예 2]Comparative Example 2

표 1에서 B-5로 확인되는 바와 같이, 용융지수 1.7g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 100중량부에 대해 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 1.75g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다. As confirmed by B-5 in Table 1, the biaxial extruder was mixed with 0.5 parts by weight of antioxidant against 100 parts by weight of propylene homopolymer having a melt index of 1.7 g / 10 minutes (ASTM D1238: 230 ° C., 2.16 kg). Pelletized by melt mixing through. The melt index of this resin was 1.75 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[실시예 4] Example 4

표 1에서 C-1로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 70중량%에 용융지수 5.0g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 30중량%를 블렌딩하고, 이 수지조성물 100중량부에 대하여 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 2.4g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다. As identified by C-1 in Table 1, the molten index 5.0g / 10 to 70% by weight of the polymer of the molten index 1.5g / 10min (ASTM D1238: 230 ℃, 2.16kg) introduced into the long branches prepared above 30 wt% of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed together with 100 parts by weight of the resin composition, and then melt mixed through a twin screw extruder to pelletize. . The melt index of this resin was 2.4 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[실시예 5]Example 5

표 1에서 C-2로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 50중량%에 용융지수 5.0g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 50중량%를 블렌딩하고, 이 수지조성물 100중량부에 대하여 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 3.25g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다. As confirmed by Table 2 in Table 1, the long branch prepared above was introduced into the melt index of 1.5g / 10min (ASTM D1238: 230 ℃, 2.16kg) of 50% by weight of the polymer melt index 5.0g / 10 50 wt% of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed together with 100 parts by weight of this resin composition, and then melt mixed through a twin screw extruder to pelletize. . The melt index of this resin was 3.25 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[비교예 3] Comparative Example 3

표 1에서 C-3으로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체 20중량%에 용융지수 5.0g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 80중량%를 블렌딩하고, 이 수지조성물 100중량부에 대해 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 이 수지의 용융지수는 4.2g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As identified by C-3 in Table 1, the melt index of the prepared long branch introduced melt index 1.5g / 10 minutes (ASTM D1238: 230 ℃, 2.16kg) 20% by weight of the polymer 5.0g / 10 80% by weight of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed together with 100 parts by weight of this resin composition, and then melt mixed through a twin screw extruder to pelletize. . The melt index of this resin was 4.2 g / 10 min, and the properties and processing characteristics of the resin composition were evaluated by the above method.

[비교예 4] [Comparative Example 4]

표 1에서 C-4로 확인되는 바와 같이, 용융지수 5.0g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 100중량부에 대해 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As confirmed by C-4 in Table 1, a biaxial extruder was mixed with 0.5 parts by weight of antioxidant against 100 parts by weight of propylene homopolymer having a melt index of 5.0 g / 10 minutes (ASTM D1238: 230 ° C., 2.16 kg). Pelletized by melt mixing through. The method and the processing characteristic of the resin composition were evaluated by the said method.

[비교예 5] [Comparative Example 5]

표 1에서 C-5로 확인되는 바와 같이, 상기에서 제조된 긴가지가 도입된 용융지수 1.5g/10분(ASTM D1238 : 230℃, 2.16kg)의 중합체 70중량%에 용융지수 0.25g/10분(ASTM D1238:230℃, 2.16kg)인 프로필렌 단독중합체 30중량%를 블렌딩하 고, 이 수지 조성물 100중량부에 대해 산화방지제 0.5중량부를 함께 혼합한 후 2축 압출기를 통해 용융 혼합하여 펠렛화하였다. 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As confirmed by C-5 in Table 1, melt index 0.25g / 10 in 70% by weight of the polymer of the long branch prepared above melt index 1.5g / 10 minutes (ASTM D1238: 230 ℃, 2.16kg) was introduced 30 wt% of propylene homopolymer in powder (ASTM D1238: 230 ° C., 2.16 kg) was blended, 0.5 parts by weight of antioxidant was mixed together with 100 parts by weight of the resin composition, and then melt mixed through a twin screw extruder to pelletize. It was. The method and the processing characteristic of the resin composition were evaluated by the said method.

[비교예 6] Comparative Example 6

표 1에서 D로 확인되는 바와 같이, 상기에서 제조된 긴 가지가 도입된 용융지수 1.5g/10분(ASTM D1238:230℃, 2.16kg)의 중합체를 산화방지제를 혼합하지 않고 2축 압출기를 통해 펠렛화하였다. 이 수지의 용융지수는 2.7g/10분이었고, 상기의 방법으로 수지 조성물의 특성 및 가공 특성을 평가하였다.As can be seen from Table 1, the long branch prepared melt index 1.5 g / 10 min (ASTM D1238: 230 ° C., 2.16 kg) of the polymer prepared above was introduced through a twin screw extruder without mixing antioxidants. Pelletized. The melt index of this resin was 2.7 g / 10 minutes, and the characteristics and processing characteristics of the resin composition were evaluated by the above method.

Figure 112004051003119-PAT00001
Figure 112004051003119-PAT00001

상기 표 1의 결과에서 알 수 있는 바와 같이, 긴 가지가 도입된 중합체가 도 입된 실시예 1~5는 프로필렌 단독중합체 100중량%를 사용한 비교예 2 및 4에 비해 탄성력, 용융강도 및 열처짐 특성이 우수하였다.As can be seen from the results of Table 1, Examples 1 to 5 in which the polymer having a long branch introduced were introduced, compared to Comparative Examples 2 and 4 using 100% by weight of propylene homopolymer, elastic strength, melt strength and thermal deflection characteristics. Was excellent.

산화방지제가 혼입되지 않은 긴가지가 도입된 중합체(비교예 6)는 가공 안정성이 매우 취약하여 용융지수가 상승하였고, 시트(sheet)의 표면 특성 또한 수려하지 못하지만, 높은 용융강도와 우수한 진공성형성을 나타내었다. Polymers with long branches that do not contain antioxidants (Comparative Example 6) have a very poor processing stability, resulting in an increased melt index and poor surface properties, but high melt strength and excellent vacuum properties. Indicated.

긴가지가 도입된 중합체와 용융지수가 1.7g/10분인 프로필렌 단독중합체의 블렌딩에 있어서, 긴가지가 도입된 프로필렌 중합체의 함량이 30중량% 이상인 실시예 1~3의 용융강도는 100mN 이상으로 긴가지가 도입된 프로필렌 중합체의 함량이 10중량%인 비교예 1에 비해 진공성형성이 우수하였다. In blending a polymer having a long branch introduced with a propylene homopolymer having a melt index of 1.7 g / 10 min, the melt strength of Examples 1 to 3 in which the content of the long branch introduced propylene polymer is 30% by weight or more is longer than 100 mN. Compared to Comparative Example 1 in which the content of the propylene polymer in which the branch was introduced was 10% by weight, vacuum forming was excellent.

연신점도에 있어서도 긴가지가 도입된 중합체의 블랜딩을 통해 점단후화가 나타나고, 탄성력도 2.0 이상을 나타내었다.In elongational viscosity, point thickening appeared through the blending of polymers with long branches introduced, and the elastic force was 2.0 or more.

용융지수가 5.0g/10분인 프로필렌 단독중합체와의 블렌딩에 있어서, 특히 긴가지가 도입된 중합체의 함량이 50중량% 이상시 높은 용융강도 및 탄성력을 나타내었으며, 우수한 진공성형성을 나타내었다.In blending with a propylene homopolymer having a melt index of 5.0 g / 10 min, especially when the content of the polymer having a long branch introduced was 50% by weight or more, it showed high melt strength and elasticity, and exhibited excellent vacuum formability.

비교예 5는 용융지수가 0.25g/10분인 프로필렌 단독중합체와의 블렌딩으로서 용융지수가 너무 낮아 시트 가공시 부하가 높아 시트 성형이 불가하였다. Comparative Example 5 is a blend with a propylene homopolymer having a melt index of 0.25 g / 10 minutes, and the melt index is too low, so that the sheet forming is not possible due to a high load during sheet processing.

상기 실시예 및 비교예를 통해 알 수 있는 바와 같이, 본 발명에 따른 수지 조성물은 열처짐현상 및 용융강도를 크게 증가시키고 표면특성을 개선하는 것을 확인할 수 있다. As can be seen through the examples and comparative examples, it can be seen that the resin composition according to the present invention greatly increases the thermal deflection phenomenon and the melt strength and improves the surface properties.                     

따라서, 본 발명에 의하면 용융상태로 가공하는 진공 열성형 공정에 사용하기에 적합한 고탄성의 폴리프로필렌 수지 조성물을 효과적으로 제조할 수 있다.Therefore, according to the present invention, a highly elastic polypropylene resin composition suitable for use in a vacuum thermoforming process processed in a molten state can be effectively produced.

또한 본 발명에 따른 폴리프로필렌 수지 조성물은 용융장력을 크게 향상 시켜, 발포공정, 진공성형 공정, 중공성형 공정 등 기존의 불가능한 공정에 적용이 가능하다. 또한 본 발명에서 사용되는 긴 가지가 도입된 중합체는 가교를 시키는 방법에 의해 제조된 것이 아니므로 열가소성수지의 성질을 그대로 유지할 수 있으며 재활용이 가능하다는 장점이 있다.In addition, the polypropylene resin composition according to the present invention greatly improves the melt tension, and can be applied to existing impossible processes such as foaming process, vacuum molding process, and blow molding process. In addition, the polymer is introduced in the long branches used in the present invention is not produced by the method of crosslinking has the advantage that can maintain the properties of the thermoplastic resin as it is and can be recycled.

Claims (3)

올레핀 중합용 고체 티타늄촉매를 두 개 이상의 비닐기를 가지는 실란화합물로 표면처리한 다음, 이 표면처리된 고체 티타늄촉매와 올레핀 단량체 및 디엔화합물을 전중합반응시키므로써 촉매주위에 고분자량 단량체를 캡슐화시켜 제조되는 전중합 촉매를 이용하여 중합된 긴가지가 도입된 폴리올레핀 중합체 30~95중량% 및 프로필렌 단독중합체 5~70중량%를 포함하고, 이 수지조성물 100중량부에 대해 산화방지제 0.05~0.5중량부를 포함하여 이루어지는 것을 특징으로 하는 진공성형성이 우수한 고탄성 폴리프로필렌 수지 조성물.The solid titanium catalyst for olefin polymerization is surface treated with a silane compound having two or more vinyl groups, followed by prepolymerization of the surface treated solid titanium catalyst with an olefin monomer and a diene compound to encapsulate a high molecular weight monomer around the catalyst. 30 to 95% by weight of a polyolefin polymer introduced with a long branch polymerized using a prepolymerization catalyst, and 5 to 70% by weight of a propylene homopolymer, and 0.05 to 0.5 parts by weight of an antioxidant based on 100 parts by weight of this resin composition. High elasticity polypropylene resin composition excellent in vacuum forming. 제 1항에 있어서, 상기 긴가지가 도입된 폴리올레핀 중합체(a)와 프로필렌 단독중합체(b)의 용융지수(ASTM D1238:230℃, 2.16kg)의 비(a/b)가 0.5~5.0인 것을 특징으로 하는 진공 성형성이 우수한 고탄성 폴리프로필렌 수지 조성물.According to claim 1, wherein the ratio of the melt index (ASTM D1238: 230 ℃, 2.16kg) of the polyolefin polymer (a) and the propylene homopolymer (b) in which the long branch is introduced (a / b) is 0.5 to 5.0 A highly elastic polypropylene resin composition having excellent vacuum formability. 제 1항에 있어서, 상기 고탄성 폴리프로필렌 수지 조성물의 용융강도는 100mN 이상이며, 탄성력이 2.0 이상인 것을 특징으로 하는 진공 성형성이 우수한 고탄성 폴리프로필렌 수지 조성물.The high elastic polypropylene resin composition having excellent vacuum formability according to claim 1, wherein the high elastic polypropylene resin composition has a melt strength of 100 mN or more and an elastic force of 2.0 or more.
KR1020040089134A 2004-11-04 2004-11-04 Composition of high melt strength polypropylene for thermoforming KR100612109B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040089134A KR100612109B1 (en) 2004-11-04 2004-11-04 Composition of high melt strength polypropylene for thermoforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040089134A KR100612109B1 (en) 2004-11-04 2004-11-04 Composition of high melt strength polypropylene for thermoforming

Publications (2)

Publication Number Publication Date
KR20060039980A true KR20060039980A (en) 2006-05-10
KR100612109B1 KR100612109B1 (en) 2006-08-11

Family

ID=37147052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040089134A KR100612109B1 (en) 2004-11-04 2004-11-04 Composition of high melt strength polypropylene for thermoforming

Country Status (1)

Country Link
KR (1) KR100612109B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1329801C (en) * 1987-09-21 1994-05-24 Charles K. Buehler Modified silica based catalyst
JP3421086B2 (en) * 1993-07-15 2003-06-30 三菱化学株式会社 Olefin polymerization method
KR100203442B1 (en) * 1996-10-07 1999-06-15 남창우 Resin compositions with flame resistance and low-smoking
KR100387734B1 (en) 2000-06-17 2003-06-18 삼성종합화학주식회사 Catalyst and process for polymerization of olefin
KR100431637B1 (en) 2000-12-22 2004-05-17 삼성아토피나주식회사 Polymeration method of olefin and resin composition of high melt strength
US6803417B2 (en) * 2001-10-11 2004-10-12 Dupont Dow Elastomers L.L.C. Polyolefin powder, processes for making and using slush molded articles made from the same

Also Published As

Publication number Publication date
KR100612109B1 (en) 2006-08-11

Similar Documents

Publication Publication Date Title
EP1824928B1 (en) Novel propylene polymer blends
EP1833909B1 (en) Novel propylene polymer compositions
EP2215155B1 (en) Polyolefin nanocomposites materials
CN103517943B (en) High filling soft polyolefin compositions
KR20120127466A (en) Propylene homopolymer having high melt strength and preparation method thereof
JP2012101550A (en) Polypropylene film with improved balance of mechanical property
CN101654533B (en) Polypropylene-based resin composition and automobile parts using the same
CN104169357B (en) Polypropylene resin composite and formed body
KR100959052B1 (en) Propylene-ethylene block copolymer
JP5542911B2 (en) Polyolefin masterbatch and composition suitable for injection molding
CN114350100A (en) Propylene resin composition having melt flowability and impact resistance
JP2007092050A (en) Propylene resin composition, its manufacturing method and injection-molded item
JP2012229303A (en) Propylenic resin composition, and injection molding thereof
CN112500541B (en) Polypropylene resin composition having excellent whitening resistance and heat resistance, method for preparing the same, and molded article molded therefrom
CN111187482B (en) Polypropylene resin composition having excellent whitening resistance, process for producing the same, and molded article molded from the same
KR100612109B1 (en) Composition of high melt strength polypropylene for thermoforming
US10858513B2 (en) Compatibilised polyolefin and polyphenylene oxide and/or polystyrene composition
JP6826595B2 (en) Propylene resin composition and its injection molded product
KR100538712B1 (en) Polypropylene resin composition having exellent transparency and thermoformability
JP2020158652A (en) Propylene-based polymer composition and molding thereof
JP2018178108A (en) Propylene resin composition and molded body
KR102457624B1 (en) Ethylene-propylene copolymer resin composition having excellent mechanical properties and dimensional stability, method of manufacturing the same, and molded article manufactured thereby
KR100538713B1 (en) Polyolefin resin composition having exellent transparency and thermoformability
JP3308040B2 (en) Polyolefin molded body
KR20180027673A (en) Polypropylene resin composition for blow molded article integrated with handle and preparing method same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 14