KR20060028337A - 비상노심냉각수가 최소 우회되는 직접주입노즐 - Google Patents

비상노심냉각수가 최소 우회되는 직접주입노즐 Download PDF

Info

Publication number
KR20060028337A
KR20060028337A KR1020040077449A KR20040077449A KR20060028337A KR 20060028337 A KR20060028337 A KR 20060028337A KR 1020040077449 A KR1020040077449 A KR 1020040077449A KR 20040077449 A KR20040077449 A KR 20040077449A KR 20060028337 A KR20060028337 A KR 20060028337A
Authority
KR
South Korea
Prior art keywords
direct injection
injection nozzle
emergency core
reactor
cooling water
Prior art date
Application number
KR1020040077449A
Other languages
English (en)
Other versions
KR100568762B1 (ko
Inventor
권태순
송철화
Original Assignee
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구소 filed Critical 한국원자력연구소
Priority to KR1020040077449A priority Critical patent/KR100568762B1/ko
Priority to US10/985,862 priority patent/US7809099B2/en
Publication of KR20060028337A publication Critical patent/KR20060028337A/ko
Application granted granted Critical
Publication of KR100568762B1 publication Critical patent/KR100568762B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

본 발명은 비상노심냉각수가 최소 우회되는 직접주입노즐에 관한 것으로, 보다 상세하게는 일측의 저온관(3)으로 유입된 냉각수가 내측의 노심(6)을 경유하여 타측의 고온관(4)을 통하여 순환되도록 형성된 원자로용기(1)와, 비상노심냉각수를 상기 원자로용기(1)에 직접주입하는 직접주입노즐(5)이 형성된 가압경수로형 원자로에 있어서, 상기 직접주입노즐(5)은 상기 고온관(4) 중심으로부터 수평 평단면도상의 양측방향으로 10도에서 30도 사이에 형성되며, 수직 상하방향으로 고온관(4) 직경(D)과 직접주입노즐(5) 직경(d)의 합의 1.5배(1.5*(d+D)) 이내에 구비되어, 저온관 파단 사고를 대비하는 비상노심냉각수를 효과적으로 주입하도록 함으로써 비상노심냉각수가 파단 저온관으로의 우회율을 현저하게 낮추어 비상노심냉각수가 최소 우회되는 직접주입노즐을 제공한다.
원자로, 직접주입노즐, 비상노심냉각수

Description

비상노심냉각수가 최소 우회되는 직접주입노즐{Direct vessel injection nozzle for minimum ECC bypass}
도 1은 종래 기술에 따른 가압수형 원자로용기의 측단면도이다.
도 2는 종래 기술에 따른 저온관 파단 사고 시, 상대각 15도 위치의 직접주입노즐에 대한 ECC 주입 시, MARS(RELAP5/Mod3 1D) 컴퓨터 코드 평가 계산 결과에 대한 그래프이다.
도 3은 본 발명에 따른 원자로용기(1)에 대한 개략적인 예시도이다.
도 4는 본 발명에 따른 원자로용기(1)에 대한 평면도이다.
도 5a는 본 발명에 따른 원자로용기(1)에 대해 고온관(4)과 직접주입노즐(5)의 위치를 나타낸 평단면에 대한 개략적인 예시도이며, 도 5b는 도 5a의 D-D 영역에 대한 원자로용기(1)의 180도 대칭 전개도이다.
도 6은 도 5a의 고온관(4b) 부분에 대한 확대도이다.
도 7a는 본 발명에 따른 1/5 축소 모형실험을 나타낸 예시도이며, 도 7b는 도 7a의 C-C 영역에 대한 원자로용기(1)의 전개도이다.
도 8a는 본 발명에 따른 1/5 축소 모형실험에서 L-1 위치에 따른 직접우회율 비교를 나타낸 그래프이며, 도 8b는 L-3 위치에 따른 직접우회율 비교를 나타낸 그 래프이다.
도 9a와 도 9b는 본 발명에 따른 1/5 축소 모형실험에 대한 사진이다.
*** 도면의 주요부분에 대한 부호의 설명 ***
1 : 원자로용기 2 : 강수부
3 : 저온관 4 : 고온관
5 : 직접주입노즐 6 : 노심
7 : 노심지지부 8 : 하부공간
본 발명은 비상노심냉각수가 최소 우회되는 직접주입노즐에 관한 것으로, 보다 상세하게는 가압경수로 원자로에 있어서 저온관 파단 사고를 대비하는 비상노심냉각수를 효과적으로 주입하도록 하여 비상노심냉각수가 파단 저온관으로의 우회율을 현저하게 낮추어 비상노심냉각수가 최소 우회되는 직접주입노즐에 관한 것이다.
일반적으로 핵분열 반응 원리를 이용하여 전기 에너지를 얻는 원자로에는, 핵연료의 핵반응에 의해 발생된 열에너지를 운반 매체 냉각재인 경수를 이용하는데, 이때 원자로용기 내에서 비등하지 않도록 하기 위하여 원자로 내부의 압력이 일정 크기 이상으로 유지되도록 하는 가압형 경수로를 이용하고 있다.
이러한 가압형 경수로를 이용한 원자력 발전소에 있어서는 설계와는 다르게 안전사고들이 발생될 수 있으며, 이러한 안전 사고는 방사능 누출과 같은 인류사회의 치명적인 피해로 이어질 수 있다. 이 중 냉각수 누수가 발생되는 경우에는 원자로 노심이 과열이 되어, 원자가 소손되는 커다란 사고로 진행될 수 있게 된다. 이러한 냉각수 누수에 대한 대비로 비상 노심 냉각수를 외부로부터 공급하도록 하며, 이러한 비상노심냉각수 공급에는 저온관 주입 방법과 원자로용기 직접주입 방법이 있다.
도 1에 도시된 대한민국 특허 등록 제10-0319068호에 개시된 바와 같이, 핵분열 반응에 의해 열을 발생하는 노심(101)을 내측에 구비한 원통형 형상의 원자로용기(100)를 구비하고 있다. 그리고 원자로용기(100) 내부 일측에 지지되어 노심(101)을 지지하는 노심지지부(104)와 원자로용기(100) 사이의 강수부(105)로는, 저온관(102)으로 공급되어 하부공간(107)을 통하여 흘러, 노심(101)의 열을 흡수한 후 고온관(103)으로 배출되는 냉각수가 지나가도록 구비하였다.
이와 같은 종래의 원자로에 있어서는 저온관(102)과 가까운 곳의 원자로용기(100) 일측에 비상노심냉각수를 공급하는 직접주입노즐(106)을 구비하여, 파단 저온관(102) 사고 시, 노심(101)에 냉각수를 공급하도록 하고 있다. 이때 저온관(102) 파단 사고가 발생되어 저온관(102)으로 비상노심냉각수가 빨려 들어가지 않도록 직접주입노즐(106)로부터 하부공간(107) 측으로 안전주입덕트(108)를 구비하였다.
이와 같이 비상노심냉각수의 직접주입노즐(106)이 저온관(102)과 가까이 구비되는 종래의 원자로용기(100)에 있어서는 노심(101)을 비상 냉각하기 위한 냉각수가 오히려 저온관(102)으로 유출되는 현상이 나타나고 있다. 이에 대한 결과를 나타낸 도 2에서와 같이 종래의 원자로용기(100)에서와 같이 저온관(102)으로부터 수평 방향으로 상대각 15도에 직접주입노즐(106)을 구비한 것에 대한 비상노심냉각수 주입 시, MARS(RELAP5/Mod3 1D) 컴퓨터 코드 해석 결과를 나타낸 것으로부터 알 수 있다. 즉 노심(101)을 상하방향으로 20 등분 나누어 측정할 때, 제일 하측 영역으로부터 Node1, Node2, Node3, Node4, Node5, Node6, ...... Node20으로 구분하여, 제일 상측을 Node20인 영역으로 정하여 노심(101)의 피복재온도를 계산한 것으로, 노심(101) 피복재온도를 측정하여 일정 온도를 유지하도록 규정하고 있다. 이때 저온관(102) 파단 사고가 발생되면 가장 열이 심하게 상승되는 구간은 중간 부터 상측 2/3 영역인 Node10 영역으로부터 Node15 영역으로, 이에 대한 측정값을 도 2에 도시한 것이다. 즉 저온관(102) 파단 사고 후, 비상노심냉각수가 주입되어 약 200초가 되면 노심(101) 피복재 온도가 안정됨을 알 수 있다. 그러나 저온관(102)과 가까이에 직접주입노즐(106)을 위치하였기 때문에 약 400초 이후에는 노심(101) 피복재 온도가 급격하게 재 상승됨을 보이고 있다. 이는 냉각재파단사고 시 제어봉이 모두 삽입된 상황에서는 허용될 수 없는 노심(101) 재가열 현상이다. 이러한 현상은 노심(101)이 비상노심냉각수에 의해 냉각되지 못한다는 결과이며, 직접적으로는 비상노심냉각수의 우회율에 기인하는 것이다. 즉 우회율이 감소하여 보다 많은 비상노심냉각수가 강수부(105)에서 노심(101)으로 유입되지 못하고 저온관(102)으 로 유출되기 때문이며, 이와 같이 저온관(102)으로의 비상노심냉각수의 유출이 지속되면 원자로의 노심(101)의 온도 급상승으로 원자로가 파괴되는 등의 문제점이 발생된다.
상기와 같은 문제점을 보완하기 위한 본 발명은 가압경수로형 원자로에 있어서, 저온관 파단 등과 같은 원자로 계통 압력경계면의 파단 사고를 대비하는 비상노심냉각수를 효과적으로 주입하는 직접주입노즐에 관한 것으로, 비상노심냉각수가 파단 저온관으로의 우회율을 현저하게 낮추어 원자로 사고를 방지하도록 하는데 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명은 일측의 저온관으로 유입된 냉각수가 내측의 노심을 경유하여 타측의 고온관을 통하여 순환되도록 형성된 원자로용기와, 비상노심냉각수를 상기 원자로용기에 직접주입하는 직접주입노즐이 형성된 가압경수로형 원자로에 있어서, 상기 직접주입노즐은 상기 고온관 중심으로부터 수평 평단면도상의 양측방향으로 10도에서 30도 사이에 형성되며, 수직 상하방향으로 고온관 직경과 직접주입노즐 직경의 합의 1.5배 이내에 구비되는 비상노심냉각수가 최소 우회되는 직접주입노즐을 제공한다.
또한 상기 직접주입노즐은 상기 고온관 중심으로부터 상하 수직방향으로 1미터에서 2미터 사이의 위치에 형성되며, 상기 고온관의 중심으로부터 양측 수평방향으로 15도 위치에 형성되는 비상노심냉각수가 최소 우회되는 직접주입노즐을 제공한다.
이하 본 발명의 실시예를 첨부한 예시된 도면을 참고로 하여 상세하게 설명한다.
즉 도 3 내지 도 4에 도시된 본 발명, 비상노심냉각수가 최소 우회되는 직접주입노즐(5)을 구비하는 원자로용기(1)는 저온관(3), 고온관(4), 직접주입노즐(5), 노심(6) 및 노심지지부(7) 등으로 구비된다.
따라서 본 발명, 비상노심냉각수가 최소 우회되는 직접주입노즐(5)은 일측의 저온관(3)으로 유입된 냉각수가 내측의 노심(6)을 경유하여 타측의 고온관(4)을 통하여 순환되도록 형성된 원자로용기(1)와, 비상노심냉각수를 상기 원자로용기(1)에 직접주입하는 직접주입노즐(5)이 형성된 가압경수로형 원자로에 있어서, 상기 직접주입노즐(5)은 상기 고온관(4) 중심으로부터 상기 원자로용기(1) 중심에 대해 수평 평단면도상의 양측방향으로 10도에서 30도 사이에 형성되며, 수직 상하방향으로 고온관(4) 직경(D)과 직접주입노즐(5) 직경(d)의 합의 1.5배(1.5*(d+D)) 거리 이내에 구비되도록 한 것이다.
또한 상기 고온관(4)이 상기 원자로용기(1)의 서로 대향되는 두 곳에 형성되고, 상기 저온관(3)이 상기 원자로용기(1)의 상기 고온관(4)의 중심으로부터 양측 수평방향으로 60도 위치에 형성하여, 결국 고온관(4)은 총 2개, 저온관(3)은 총 4개가 구비되도록 한 것이다.
이와 같이 구비된 원자로용기(1)의 외측에 다수 구비되는 상기 직접주입노즐(5)은 상기 고온관(4)의 중심으로부터 양측 수평방향으로 15도 위치에 형성되고, 상기 고온관(4)의 중심으로부터 상하 수직방향으로 1미터에서 2미터 사이의 위치에 총 4개가 구비되도록 형성한 것이다.
<실시예>
이와 같이 구비되는 본 발명의 실시예를 도면을 참조하여 설명하면 다음과 같다.
도 3과 도 4는 본 발명의 바람직한 일 실시예를 나타낸 것으로, 도 3은 본 발명 비상노심냉각수가 최소 우회되는 직접주입노즐(5)이 구비된 원자로용기(1)에 대한 예시도이며, 도 4는 평면도이다. 이때 도 4에 대한 일측 단면을 나타낸 도 3은 저온관(3)과 고온관(4)에 대비하여 직접주입노즐(5)의 높이를 보여주는 일 실시 예시도를 나타낸 것이다. 즉 실제로 직접주입노즐(5)의 위치는, 수직 방향 높이는 도 3에 도시된 바와 같은 높이를, 그리고 수평 방향 위치는 도 4에 도시된 바와 같이 위치되도록 구비한 것이다. 따라서 본 발명의 직접주입노즐(5)은 종래와 다르게 저온관(3)으로부터 멀고, 고온관(4)으로부터 가까운 위치에 구비한 것이다.
즉 열을 발생하는 노심(6)을 내측에 구비한 원자로용기(1)의 일측 외측으로 냉각수가 유출입되는 저온관(3)과 고온관(4)을 구비한 것이다. 그리고 노심(6)을 고정하는 노심지지부(7)와 원자로용기(1) 사이의 강수부(2)를 통하여 저온관(3)으로부터 공급되는 냉각수가 원자로용기(1)의 하부공간(8)으로 공급된 후, 노심(6)으로 공급되어 노심(6)에서 발생된 열을 흡수하도록 한 것이다. 그리하여 노심(6)으로 공급된 냉각수는 고온으로 가열되어 고온관(4)으로 이송되어, 미도시된 증기발생기를 통하여 증기를 만들고, 이 증기를 이용하여 터빈을 회전시켜 전기를 발전하도록 한 것이다.
이때 저온관(3) 및 고온관(4)은 노심(6)이 항상 냉각수와 접촉하도록 노심(6) 보다 높게 구비하여, 저온관(3) 파단 시, 노심(6)의 급격한 온도 상승을 방지하도록 하였다.
이와 같이 구비되는 본 발명의 원자로용기(1)에 있어서, 저온관(3), 고온관(4) 및 비상노심냉각수를 공급하는 직접주입노즐(5)은 다음과 같이 형성하였다. 즉 대체적인 형상이 원통형으로 형성되는 원자로용기(1)의 대향되는 양측으로 고온관(4)을 형성하였다. 그리고 저온관(3)은 고온관(4)과 동일한 높이로 하여, 평단면도상에서 양측 고온관(4)을 중심으로 하여 각각 양측으로 60도인 상대각이 되는 위치에 형성하였다. 그리하여 1개의 원자로용기(1)에 대해 총 2개의 고온관(4)이 서로 180도의 위치에 형성하며, 총 4개의 저온관(3)을 형성한 것이다. 이때 고온관(4)의 개수는 3개 또는 4개로 하여도 무방하나 2개를 구비함이 바람직하다. 이와 같이 구비되는 원자로는 2-LOOP형이라 하며, 이외에도 통상 3-LOOP형은 3개의 고온관이 각각의 고온관은 120도 상대각을 이루며, 각각의 고온관의 일측으로 60도의 상대각을 갖는 저온관을 구비하여, 결국 3개의 고온관과 3개의 저온관을 구비하도록 한 것이 다.
이와 같이 구비되는 원자로 중 특히 2-LOOP형 원자로에 관한 것으로, 저온관(3) 파단 시, 노심(6)의 급상승 열을 차단하기 위한 비상노심냉각수를 공급하는 직접주입노즐(5)은 각각 고온관(4)의 양측으로 상대각 10도에서 30도 사이, 바람직하게는 15도의 위치에 형성하도록 하였다. 또한 이는 저온관(3)과의 상대각 35도에서 50도 사이, 바람직하게는 45도의 위치이다. 이와 같이 저온관(3) 특히 파단 저온관(3) 보다 고온관(4) 측으로 가까이 설치하여, 파단 저온관(3)과 직접주입노즐(5) 사이의 상대각을 크게 하여 형성한 것이다.
도 4에 도시된 바와 같이, 원자로용기(1)의 대향되는 위치에 형성된 양측 고온관(4a)(4b)에 대해 수평 방향 평단면상의 상대각 60도를 이루도록 4개 형성된 저온관(3a)(3b)(3c)(3d)을 구비하였다. 이때 저온관(3a) 파단은 미리 예견된 것이 아니므로, 4개의 저온관 중 임의로 일측 저온관(3a)을 예로하여 설명하면 다음과 같다. 즉 4개의 저온관(3a)(3b)(3c)(3d) 중 일측 저온관(3a)이 파단되면, 냉각수가 파단된 저온관(3a)을 통해 누수되어, 원자로 냉각재 계통의 압력은 0.5MPa 이하로 급감압이 진행된다. 이러한 누수되는 냉각재를 보충하기 위하여, 각 고온관(4a)(4b)과 각 저온관(3a)(3b)(3c)(3d) 사이에 비상노심냉각수를 공급하기 위한 직접주입노즐(5a)(5b)(5c)(5d)을 각각 구비한 것이다. 이때 파단 저온관(3a)과 가장 근접한 직접주입노즐(5a)로 공급되는 비상노심냉각수가 파단 저온관(3a)의 강한 배출 흡입력에 의해 가장 많이 빨려나가며, 이러한 비상노심냉각수가 노심(6)을 거쳐 고온관(4)으로 흐르지 않고 파단 저온관(3a)으로 빠져나가는 것을 비상노심냉각수 직접우회(Direct ECC bypass)라 하며, 주입된 비상노심냉각수 대 빠져나간 비상노심냉각수의 비율을 직접우회율(Direct ECC Bypass Fraction)이라고 한다. 이렇게 파단 저온관(3a)으로 빠져나가는 비상노심냉각수는 노심(6) 냉각에 전혀 기여를 하지 못하게 된다. 이와 반대로 파단 저온관(3a)과 대응되는 위치의 저온관(3c)과 가까이 위치한 직접주입노즐(5c)로 공급되는 비상노심냉각수는 파단부위로부터의 흡입력이 작게 미치기 때문에 원자로용기(1)의 강수부상부(2a)로부터 공급되어 강수부하부(2b) 및 하부공간(8)을 통하여 노심(6)의 과열을 방지하는데 기여를 하게 된다. 따라서 파단 저온관(3a)과 상대각을 갖고 설치되는 직접주입노즐(5a)의 위치 결정에 따라 직접주입노즐(5a)로 주입된 비상노심냉각수가 갖는 직접우회율에 의한 총 직접우회율(Direct ECC Bypass Fraction)의 크기가 결정된다.
도 5와 도 6은 본 발명의 바람직한 일 실시예를 상대각과 설치 고도에 따라 나타낸 것으로, 도 5a는 각각의 직접주입노즐(5a)(5b)(5c)(5d)을 각 고온관(4a)(4b)과의 상대각으로 나타낸 것이며, 도 5b는 도 1의 설치 고도 영역인 HL 부분에 대한 원자로용기(1) 전개도를 나타낸 것이며, 또한 도 6은 도 5a의 고온관(4b)과 직접주입노즐(5a)(5b)에 대한 상대각을 확대 표시한 부분 평단면도를 나타낸 것이다.
즉 도 5a에 도시된 바와 같이, 고온관(4b)의 수평 방향 평단면도 상의 양측으로 각각 15도 위치에 직접주입노즐(5a)(5b)을 구비한 것이다. 또한 도 5b에 도시된 바와 같이, 고온관(4b)의 중심으로부터 수직 상하방향으로 고온관(4b) 직경(D)의 두 배 위치, 바람직하게는 고온관(4b) 직경(D)과 직접주입노즐(5a')의 직경(d) 의 합의 1.5배(1.5*(d+D))인 고도 L-1에 직접주입노즐(5a')(5b')을 구비한 것을 나타낸 것이다. 또한 고온관(4b)의 중심으로부터 수직 상하방향으로 고온관(4b) 직경(D)에 해당하는 위치인 고도 L-3에 직접주입노즐(5a)(5b)을 구비한 것을 나타낸 것이다. 이때 고도 L-1의 높이는 2미터이며, L-3의 높이는 1미터 정도로 구비함이 바람직하다.
이때 고온관(4b)의 중심으로부터 직접주입노즐(5a)의 이격거리는 미국기계공학협회(American Society of Mechanical Engineers : ASME) 규격 요건인 "두 노즐 중심간의 거리가 두 노즐 직경의 합의 1.5배 이상 거리를 띄워서 노즐 위치를 정하며, 이 요건을 만족하지 않을 경우에는 보강재를 구비"하도록 하는 규정을 기초로 하여, 일 실시의 직접주입노즐(5a)의 설치 고도 위치를 고온관(4b)의 직경(D)과 직접주입노즐(d)의 직경의 합의 1.5배(1.5*(d+D)) 이내로 한 것이다.
그리고 다른 실시의 직접주입노즐(5a)의 설치 고도 위치를 정하는 기준으로는, 한국표준형원전(Korean Standard Nuclear Plant : KSNP) 및 신형경수로1400(Advanced Pressurized Reactor : APR1400)에 의한 것으로, "노심출력 2800MWt ~ 4000MWt 가압경수로 중 2-Loop Plant 일때의 배관설계규격에 의해, 고온관의 내경이 42인치, 저온관 30인치"를 기준을 기초로 하여, 고온관(4b)의 중심으로부터 직접주입노즐(5a)의 높이를 1미터에서 2미터 사이에 위치하도록 한 것이다.
상기와 같은 고온관(4b)과 직접주입노즐(5a)(5b)의 상대각의 크기 및 설치 고도의 크기에 따른 위치는, 서로 대향되는 위치의 고온관(4a) 및 직접주입노즐(5c)(5d)에서도 동일하게 적용하도록 한 것이다.
즉 고온관(4a)(4b)을 중심으로 각각 수평 방향인 평단면 상으로 10도에서 30도 사이, 바람직하게는 15도에 위치에 구비하되, 직접주입노즐(5a)(5b)(5c)(5d)이 위치되는 L-3으로 표시되는 위치에 구비하거나, 또는 직접주입노즐(5a')(5b')(5c')(5d')으로 표시되는 위치에 구비가 가능하도록 한 것이다. 이때 설치 고도 L-1은 고온관(4a)(4b)의 직경(D)의 두 배(2*D) 또는 고온관(4a)(4b)의 직경(D)과 직접주입노즐(5)의 직경(d)의 합의 1.5배(1.5*(d+D))로 하며 바람직하게는 2미터로 구비함이 바람직하다. 또한 설치 고도 L-3은 고온관(4a)(4b)의 직경(D)의 크기와 같거나 바람직하게는 1미터로 구비하도록 한 것이다.
이와 같이 구비되는 본 발명의 일 실시로, 고온관(4) 직경(D)의 크기를 42''로 하고, 직접주입노즐(5)의 직경(d)을 8.5''로 할 경우에는 L-1 설치 고도인 고온관(4) 직경(D)과 직접주입노즐(5) 직경(d)의 합의 1.5배(1.5*(d+D))는 1.92미터가 된다. 이와 같은 조건으로 검증 실험한 결과에 의하면, 설치 고도가 낮은 경우인 L-3 고도에 설치된 직접주입노즐(5a)(5b)(5c)(5d)의 직접우회율이 더 낮지만, 설치 고도 L-1에 설치된 직접주입노즐(5a')(5b')(5c')(5d') 또한 종래의 저온관(3)과 가까이 구비되는 직접주입노즐(5)에 비해 훨씬 작은 비상노심냉각수 직접우회율을 가지므로 충분히 채택 가능하다. 따라서 직접주입노즐의 방위각 및 고온관(4)과의 이루는 상대각이 동일하며 설치 고도만 다른 L-1과 L-3에 각각 구비되는 직접주입노즐(5)을 선택적으로 적용할 수 있다.
도 7 내지 도 9는 본 발명의 구성에 따른 직접우회율에 따른 비교 검증 실험 에 대한 것으로, 1/5의 크기로 축소 모형을 제작하고 유동 상사법칙에 따라 증기유동장을 공기로 상사는 모의실험(Similarity Test) 결과를 예시한 것이다. 즉 도 7a는 본 발명에 대한 검증 실험용 축소 모형의 평단면도를 나타낸 것이고, 도 7b는 고온관(4b), 파단 저온관(3a) 및 직접주입노즐(5)을 도시한 도 7a의 C-C 부분의 원자로용기(1)의 전개도를 나타낸 것이다. 그리고 도 8a는 도 7b의 설치 고도 L-1에 대한 직접우회율 비교를 나타낸 그래프이며, 도 8b는 도 7b의 설치 고도 L-3에 대한 직접우회율 비교를 나타낸 그래프이다. 그리고 도 9a는 설치 고도 L-1의 파단 저온관(3a)과의 상대각 7도에 구비된 직접주입노즐(N2')에 대한 모의 실험 장치를 나타낸 것이고, 도 9b는 설치 고도 L-1의 파단 저온관(3a)과의 상대각 52도에 구비된 직접주입노즐(N4')에 대한 모의 실험 장치를 나타낸 것이다.
즉 본 발명의 모의 실험 장치에서는 도 7a 및 도 7b에 도시된 바와 같이, 파단된 저온관(3a)을 중심으로 하여, 수평 방향의 평단면 상으로 각각 상대각이 -15도인 위치에 직접주입노즐(N1)(N1')을, 7도인 위치에 직접주입노즐(N2)(N2')을, 30도인 위치에 직접주입노즐(N3)(N3')을 그리고 52도인 위치에 직접주입노즐(N4)(N4')을 각각 구비한 것이다. 그리고 이때 설치 고도 L-1로 표시되는 직접주입노즐(N1')(N2')(N3')(N4')의 설치 고도는 저온관(3a)(또는 동일 높이인 고온관(4b))의 중심으로부터 수직 상측 방향으로 0.418미터(실제 원자로용기(1)에 있어서는 2.09미터)이며, 설치 고도 L-3으로 표시되는 직접주입노즐(N1)(N2)(N3)(N4)의 설치 고도는 저온관(3a)(또는 동일 높이인 고온관(4b))의 중심으로부터 수직 상측 방향으로 0.2미터(실제 원자로용기(1)에 있어서는 1미터)로 구비한 것이다.
이와 같이 구비되는 본 발명의 모의 실험 장치에 있어서는, 직접주입노즐(5)의 고도 및 파단 저온관(3a)과의 상대각을 변화시키면서, 동시에 각각의 저온관(3)으로 주입되는 공기의 속도를 5m/sec에서 20m/sec 범위까지 약 5m/sec 단계로 변화시켰다. 이때 저온관(3)의 상사 속도는 약 18m/sec 정도로 형성된다. 원자로용기(1)의 파단 사고 시, 각각의 직접주입노즐(5a)(5b)(5c)(5d)로부터 공급되는 비상노심냉각수가 파단 저온관(3a)으로 빠져나가는 직접우회율을 결정하는 것은 파단 저온관(3a)과 가장 가까이 위치되는 직접주입노즐(5a)로 공급되는 비상노심냉각수의 우회율에 의해 결정되므로, 본 발명의 모의 실험에서는 파단 저온관(3a)으로 빠져나가는 직접주입노즐(5a)로 공급되는 유체에 대한 실험을 하였다.
일정한 압력을 유지하도록 하는 가압경수형 원자로용기(1) 내의 액체의 냉각수는 저온관(3a) 파단 시에는 가압경수형 원자로용기(1) 내의 감압에 의해 증기형태로 변화되어 빠져나가기 때문에, 모의 실험에서는 각 저온관(3)으로 공기를 주입하였다. 또한 직접주입노즐에 있어서는 노심(6)을 냉각하기 위하여, 액체 상태의 비상노심냉각수를 공급하도록 하며, 이때 공급되는 비상노심냉각수의 물 주입속도는 0.89m/sec로 주입되며, 이는 실제 발전소의 고압안전주입수의 대형냉각재파단사고(Large Break Loss-Of-Coolant Accident : LBLOCA) 후기 재관수 기간동안의 비상노심냉각(Emergency Core Cooling : ECC) 계통의 고압안전주입수 주입속도 약 2m/sec를 상사하는 속도(2 * 1/SQRT(5)=0.89m/sec)의 척도비로 축적(Scaling) 된 속도이다. 최대 저온관(3) 주입속도 20m/sec는 실제 발전소의 후기 재관수 기간동안의 저온관 증기속도를 44.7m/sec 까지 모의하는 척도비로 축적(Scaling) 된 속도 이다. 실제 발전소의 증기 속도는 컴퓨터 코드로 과도해석한 결과에 따르면 약 40m/sec 내외이다.
이와 같이 본 발명에 대한 1/5 축소 모형실험에 따른 결과를 도시한 도 8a 및 도 8b에 따르면, 설치 고도 L-1에 대한 결과를 도시한 도 8a에 의하면, 종래의 원자로에서와 같은 조건인 -15도 및 7도 위치인 N1' 및 N2'에서 저온관(3a)의 공기 속도가 15m/sec 이상의 범위에서는 80% 및 60% 이상이 파단 저온관(3a)으로 비상노심냉각수가 배출되고 있음을 알 수 있다. 그러나 본 발명에서와 같은 조건인 30도 및 52도 위치인 N3' 및 N4'에서는 40% 이하로 현저하게 줄어있음을 알 수 있다.
그리고 설치 고도 L-3에 대한 결과를 도시한 도 8b에 의하면, 종래의 원자로에서와 같은 조건인 -15도 및 7도 위치인 N1 및 N2에서 저온관(3a)의 공기 속도가 15m/sec 이상의 범위에서는 모두 80% 이상이 저온관(3a)으로 비상노심냉각수가 배출되며, 특히 20m/sec 부근에서는 모두 100%의 비상노심냉각수가 저온관(3a)으로 배출되고 있음을 알 수 있다. 그러나 본 발명에서와 같은 조건인 30도 및 52도 위치인 N3 및 N4에서는 40% 이하로 현저하게 줄어있음을 알 수 있다. 실제 발전소 저온관 파단 사고 시, 저온관 상사 속도는 약 18m/sec 정도이다.
상기와 같이 구비되는 본 발명은 가압경수로형 원자로에 있어서, 저온관 파단 사고를 대비하는 비상노심냉각수를 효과적으로 주입하는 직접주입노즐에 관한 것으로, 별도의 설치물 없이 비상노심냉각수의 파단 저온관으로의 우회율을 현저하 게 낮추어 원자로 사고를 방지하는 효과를 제공한다.

Claims (4)

  1. 일측의 저온관(3)으로 유입된 냉각수가 내측의 노심(6)을 경유하여 타측의 고온관(4)을 통하여 순환되도록 형성된 원자로용기(1)와, 비상노심냉각수를 상기 원자로용기(1)에 직접주입하는 직접주입노즐(5)이 형성된 가압경수로형 원자로에 있어서,
    상기 직접주입노즐(5)은 상기 고온관(4) 중심으로부터 수평 평단면도상의 양측방향으로 10도에서 30도 사이에 형성되는 것을 특징으로 하는 비상노심냉각수가 최소 우회되는 직접주입노즐.
  2. 제 1항에 있어서,
    상기 직접주입노즐(5)은 상기 고온관(4)의 중심으로부터 수직 상하방향으로 고온관(4) 직경(D)과 직접주입노즐(5) 직경(d)의 합의 1.5배(1.5*(d+D)) 거리 이내에 구비되는 것을 특징으로 하는 비상노심냉각수가 최소 우회되는 직접주입노즐.
  3. 제 1항에 있어서,
    상기 직접주입노즐(5)은 상기 고온관(4) 중심으로부터 상하 수직방향으로 1미터에서 2미터 사이의 위치에 형성되는 것을 특징으로 하는 비상노심냉각수가 최 소 우회되는 직접주입노즐.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 직접주입노즐(5)은 상기 고온관(4)의 중심으로부터 양측 수평방향으로 15도 위치에 형성되는 것을 특징으로 하는 비상노심냉각수가 최소 우회되는 직접주입노즐.
KR1020040077449A 2004-09-24 2004-09-24 비상노심냉각수가 최소 우회되는 직접주입노즐 KR100568762B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020040077449A KR100568762B1 (ko) 2004-09-24 2004-09-24 비상노심냉각수가 최소 우회되는 직접주입노즐
US10/985,862 US7809099B2 (en) 2004-09-24 2004-11-10 Direct vessel injection (DVI) nozzle for minimum emergency core cooling (ECC) water bypass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040077449A KR100568762B1 (ko) 2004-09-24 2004-09-24 비상노심냉각수가 최소 우회되는 직접주입노즐

Publications (2)

Publication Number Publication Date
KR20060028337A true KR20060028337A (ko) 2006-03-29
KR100568762B1 KR100568762B1 (ko) 2006-04-07

Family

ID=37139126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040077449A KR100568762B1 (ko) 2004-09-24 2004-09-24 비상노심냉각수가 최소 우회되는 직접주입노즐

Country Status (2)

Country Link
US (1) US7809099B2 (ko)
KR (1) KR100568762B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008781A (zh) * 2014-05-21 2014-08-27 中科华核电技术研究院有限公司 防旁流式直接安注导流件及直接安注装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060871B1 (ko) * 2009-04-29 2011-08-31 한국수력원자력 주식회사 원자로 비상노심냉각수 주입용 냉각덕트

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956063A (en) * 1971-05-28 1976-05-11 The United States Of America As Represented By The United States Energy Research And Development Administration Emergency core cooling system for a fast reactor
FR2264368B1 (ko) * 1974-03-12 1977-09-23 Commissariat Energie Atomique
US4064001A (en) * 1975-05-01 1977-12-20 Combustion Engineering, Inc. Hot leg relief system
US4187147A (en) * 1976-02-20 1980-02-05 Westinghouse Electric Corp. Recirculation system for nuclear reactors
US4082608A (en) 1976-10-14 1978-04-04 Energy, Inc. Cooling of pressurized water nuclear reactor vessels
FR2504305B1 (fr) * 1981-04-17 1985-06-21 Framatome Sa Dispositif de refroidissement de secours d'un reacteur nucleaire a eau sous pression
JPS6238393A (ja) * 1985-08-14 1987-02-19 株式会社日立製作所 非常用炉心冷却方法及び装置
FR2595501B1 (fr) * 1986-03-07 1988-06-10 Framatome Sa Equipements internes de reacteurs nucleaires a cuve allongee
FR2631484B1 (fr) * 1988-05-13 1992-08-21 Framatome Sa Reacteur nucleaire a dispositif d'injection d'eau de refroidissement de secours
US5178821A (en) * 1991-06-13 1993-01-12 General Electric Company Standby passive injection coolant water safety injection system for nuclear reactor plants
US5135708A (en) * 1991-10-09 1992-08-04 B&W Nuclear Service Company Method of injection to or near core inlet
US5377242A (en) * 1993-11-15 1994-12-27 B&W Nuclear Service Company Method and system for emergency core cooling
JP4169977B2 (ja) * 2000-04-25 2008-10-22 明治製菓株式会社 ソヤサポゲノールbの製造法および新規微生物
KR100527438B1 (ko) * 2003-04-08 2005-11-09 한국원자력연구소 비상노심냉각수 유동전환용 그루브를 구비한 가압경수로형원자로

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008781A (zh) * 2014-05-21 2014-08-27 中科华核电技术研究院有限公司 防旁流式直接安注导流件及直接安注装置
CN104008781B (zh) * 2014-05-21 2017-01-04 中广核研究院有限公司 防旁流式直接安注导流件及直接安注装置

Also Published As

Publication number Publication date
KR100568762B1 (ko) 2006-04-07
US7809099B2 (en) 2010-10-05
US20100226470A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
CN107210071B (zh) 安全壳内部的非能动除热系统
EP2165339B1 (en) Nuclear reactor downcomer flow deflector
CN102282628B (zh) 反应堆容器冷却剂偏转屏障
JP6195996B2 (ja) 鉛冷却高速炉を備えた原子炉システム
US20100284507A1 (en) Nuclear reactor
JP2015502531A (ja) クロスフロー遮断堰を含む上側プレナムを有する加圧水型原子炉
KR20100118753A (ko) 원자로 비상노심냉각수 주입용 냉각덕트
CN104637553A (zh) 流量分配装置及具有该装置的核反应堆组件
KR101250474B1 (ko) 연통효과를 이용하여 원자로 풀 자연순환 성능을 강화한 액체금속냉각 원자로의 피동형 잔열 제거시스템
Ahn et al. Evaluation of a sodium–water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor
Xia et al. Three-dimensional thermal hydraulic transient calculation of coupled cold and hot sodium pools under a loss of feedwater accident in the China experimental fast reactor
KR100568762B1 (ko) 비상노심냉각수가 최소 우회되는 직접주입노즐
KR100572046B1 (ko) 수직 주입관, 스파져, 주입구 내부의 나사선 및 경사주입관을 이용한 비상 노심 냉각수 원자로용기 직접주입계통
KR20220098791A (ko) 일체형 원자로(실시예)
Riley Spacer grid induced heat transfer enhancement in a rod bundle under reflood conditions
JP6650776B2 (ja) フローダンパおよび蓄圧注水装置ならびに原子力設備
Kondo et al. Primary-side two-phase flow and heat transfer characteristics of a horizontal-tube PCCS condenser
RU2776024C1 (ru) Способ пассивного расхолаживания реакторной установки с реактором под давлением
Satpathy et al. Computational fluid dynamic studies on gas entrainment in fast breeder reactors
RU2200990C2 (ru) Ядерная паропроизводительная установка с реактором, охлаждаемым водой под давлением
Pavel Non-Standard Natural Circulation in Primary Circuit of VVER-440. Behavior of Horizontal Steam Generator in this Regime.
Susyadi et al. Steam generator cooling post LOCA with ECCS failure in NuScale reactor using RELAP5
Shumway General features of emergency core cooling systems
Kwon Performance evaluation of direct vessel injection plus (DVI+)
Bello et al. Two-phase heat transfer phenomena in a natural circulation loop during LOHS

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170111

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171207

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190104

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 15