KR20060023206A - Method for fixing of carbon dioxide - Google Patents

Method for fixing of carbon dioxide Download PDF

Info

Publication number
KR20060023206A
KR20060023206A KR1020040071949A KR20040071949A KR20060023206A KR 20060023206 A KR20060023206 A KR 20060023206A KR 1020040071949 A KR1020040071949 A KR 1020040071949A KR 20040071949 A KR20040071949 A KR 20040071949A KR 20060023206 A KR20060023206 A KR 20060023206A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
slag
reaction
water
less
Prior art date
Application number
KR1020040071949A
Other languages
Korean (ko)
Inventor
변태봉
김인호
한기현
배우현
김형석
전장곤
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020040071949A priority Critical patent/KR20060023206A/en
Publication of KR20060023206A publication Critical patent/KR20060023206A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • B01D35/04Plug, tap, or cock filters filtering elements mounted in or on a faucet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

본 발명은 슬래그를 이용한 이산화탄소의 고정화 방법에 관한 것으로, 특히 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 적어도 3 시간 동안 반응시켜 슬래그 표면에 이산화탄소를 고효율로 흡수, 고정화시킴으로써 지구온난화의 주요인인 이산화탄소를 효율적으로 저감할 수 있을 뿐만 아니라, 동시에 상기 이산화탄소가 고정된 슬래그로부터 고알칼리성 용출수의 생성, 유색수의 생성, 백탁수 및 백탁침전의 생성을 방지하여 토목공사용 골재로 유용하게 사용할 수 있는 슬래그를 이용한 이산화탄소의 고정화 방법에 관한 것이다.The present invention relates to a method of immobilizing carbon dioxide using slag, in particular, slag having a water content of 5 to 35% and having a particle size of 1 mm or less by reacting carbon dioxide gas for at least 3 hours to absorb and fix carbon dioxide on the surface of slag with high efficiency. Not only can carbon dioxide, which is the main cause of warming, be efficiently reduced, but also it is useful as a civil engineering aggregate by preventing generation of highly alkaline effluent water, colored water, cloudy water and cloudy precipitates from the slag fixed with carbon dioxide. It relates to a method of immobilizing carbon dioxide using slag that can be used easily.

이산화탄소, 고정화Carbon dioxide, immobilized

Description

이산화탄소의 고정화 방법 {METHOD FOR FIXING OF CARBON DIOXIDE}Immobilization Method of Carbon Dioxide {METHOD FOR FIXING OF CARBON DIOXIDE}

본 발명은 슬래그를 이용한 이산화탄소의 고정화 방법에 관한 것으로, 더욱 상세하게는 슬래그 표면에 이산화탄소를 고효율로 흡수, 고정화시킴으로써 지구온난화의 주요인인 이산화탄소를 효율적으로 저감할 수 있을 뿐만 아니라, 동시에 상기 이산화탄소가 고정된 슬래그로부터 고알칼리성 용출수의 생성, 유색수의 생성, 백탁수 및 백탁침전의 생성을 방지하여 토목공사용 골재로 유용하게 사용할 수 있는 슬래그를 이용한 이산화탄소의 고정화 방법에 관한 것이다.The present invention relates to a method of immobilizing carbon dioxide using slag, and more specifically, by absorbing and immobilizing carbon dioxide on the surface of slag with high efficiency, carbon dioxide, which is a major factor of global warming, can be efficiently reduced, and at the same time, the carbon dioxide is fixed. The present invention relates to a method of immobilizing carbon dioxide using slag, which can be usefully used as aggregate for civil engineering by preventing generation of highly alkaline eluate, colored water, white turbidity and white sedimentation.

이산화탄소는 인류의 탄생 및 인구의 증가와 더불어 서서히 증가하기 시작하였으며, 최근에는 화석연료의 다량소비에 의해 급속히 증가하기 시작하였고, 그 결과 홍수, 냉하 등 이상기후증상이 현실의 문제로 대두되고 있다. 즉, 이산화탄소는 지구온난화의 주된 원인으로서 대기중의 이산화탄소 농도는 연간 1.3∼1.5 ppm씩 증가하고 있으며, 현재는 대기중 이산화탄소 농도가 약 330 ppm 정도에 이르고 있다.Carbon dioxide began to increase gradually with the birth of human beings and the increase of population, and recently began to increase rapidly due to the large consumption of fossil fuels. As a result, abnormal climate symptoms such as floods and cold drops are becoming a real problem. In other words, carbon dioxide is the main cause of global warming, and the concentration of carbon dioxide in the air is increasing by 1.3 to 1.5 ppm per year, and the concentration of carbon dioxide in the atmosphere is now about 330 ppm.

일반적으로 이산화탄소의 배출억제는 화석연료의 사용을 절감하는 방법과 이산화탄소를 분리, 회수하여 고정화하는 방법이 있다. 전자의 방법은 성에너지화 및 크린에너지에 관한 방법이고, 후자의 방법은 이산화탄소를 분리, 회수하여 메탄올 합성의 원료로서 이용하는 방법 또는 이산화탄소의 분리, 회수 후에 해양투기하거나 탄산염으로서 고정화하는 방법이다.In general, there are two methods of suppressing the emission of carbon dioxide: a method of reducing the use of fossil fuels, and a method of separating, recovering and fixing carbon dioxide. The former method is related to sex energy and clean energy, and the latter method is a method of separating and recovering carbon dioxide and using it as a raw material for methanol synthesis, or fixing and discharging by ocean dumping or carbonate after separation and recovery of carbon dioxide.

이중 상기 고정화하는 방법은 이산화탄소를 투기, 저장하는 방법, 탄산염으로 저장하는 방법, 이산화탄소를 탄산자원으로서 재이용하는 방법 등이 있으며, 상기 이산화탄소를 투기, 저장하는 방법으로는 해양, 지중에 투기하는 방법(Mol, 28, 51, 1990)과 탄산염이나 하이드로 타르사이트(Mg4.5Al(OH)13CO33.5H2O) 등으로 고정화하는 방법이 있다.The method of immobilization includes a method of dumping and storing carbon dioxide, a method of storing as carbonate, a method of reusing carbon dioxide as a carbonic acid resource, and the method of dumping and storing carbon dioxide as a method of dumping in the ocean and the ground ( Mol, 28, 51, 1990) and carbonate or hydro tarcite (Mg4.5Al (OH) 13CO33.5H2O).

특히, 상기 해양에의 투기법은 화력발전소, 제철소, 시멘트 공장 등의 대량 공정 발생원으로부터 이산화탄소를 분리, 회수하여 500 m 이상의 심해에 주입하는 방법으로서 이산화탄소 고정화 방법 중 가장 유용하게 사용되는 방법이다. In particular, the dumping method to the ocean is a method of isolating and recovering carbon dioxide from large-scale process sources such as thermal power plants, steel mills, cement plants, etc. and injected into a deep sea of 500 m or more is the most useful method of carbon dioxide immobilization method.

또한 상기 탄산염에 의한 이산화탄소의 고정화는 하기 반응식1 또는 반응식 2와 같이 urey 반응으로 잘 알려져 있다.In addition, the immobilization of carbon dioxide by the carbonate is well known as the urey reaction as in Scheme 1 or 2.

[반응식 1]Scheme 1

Figure 112004040821799-PAT00001
Figure 112004040821799-PAT00001

[반응식 2]Scheme 2

Figure 112004040821799-PAT00002
Figure 112004040821799-PAT00002

그러나 일반적으로 칼슘이나 규산염은 용해속도가 느리며, 이를 해결하기 위하여 서브마이크론 이하의 초미립자로 파쇄하여 표면적을 크게 해야 하며, 이를 위한 연구가 계속해서 진행되고 있다.However, in general, calcium or silicate has a slow dissolution rate, and in order to solve this problem, it is necessary to crush it into sub-micron submicron particles to increase the surface area, and studies for this continue.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 슬래그 표면에 이산화탄소를 고효율로 흡수, 고정화시킴으로써 지구온난화의 주요인인 이산화탄소를 효율적으로 저감할 수 있는 슬래그를 이용한 이산화탄소의 고정화 방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, an object of the present invention is to provide a method for immobilizing carbon dioxide using slag that can efficiently reduce carbon dioxide, which is a major factor of global warming, by absorbing and immobilizing carbon dioxide on the surface of slag with high efficiency. It is done.

본 발명의 다른 목적은 상기 방법으로 표면에 이산화탄소를 고정시켜 이산화탄소를 효율적으로 저감할 수 있을 뿐만 아니라, 동시에 슬래그로부터 고알칼리성 용출수의 생성, 유색수의 생성, 백탁수 및 백탁침전의 생성을 방지하여 토목공사용 골재로 유용하게 사용할 수 있는 슬래그를 제공하는 것이다.Another object of the present invention is to fix the carbon dioxide on the surface by the above method to efficiently reduce the carbon dioxide, and at the same time to prevent the production of highly alkaline effluent from the slag, the production of colored water, the production of cloudy and cloudy precipitates It is to provide a slag that can be useful as a civil engineering aggregate.

상기 목적을 달성하기 위하여, 본 발명은 슬래그를 이용한 이산화탄소의 고정화 방법에 있어서, 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 적어도 3 시간 동안 반응시켜 슬래그 표면에 이산화탄소를 고정화시키는 단계를 포함하는 슬래그를 이용한 이산화탄소의 고정화 방법을 제공한다.In order to achieve the above object, the present invention is a method for immobilizing carbon dioxide using slag, the reaction of slag having a water content of 5 to 35% and a particle size of 1 mm or less by reacting carbon dioxide gas for at least 3 hours to fix the carbon dioxide on the surface of the slag It provides a method of immobilizing carbon dioxide using a slag comprising the step.

또한 본 발명은 상기 방법으로 표면에 이산화탄소가 고정되어 탄산화층이 형성된 슬래그를 제공한다. In another aspect, the present invention provides a slag having a carbonation layer is fixed to the surface of the carbon dioxide.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 제철소에서 대량으로 발생되는 슬래그를 이용하여 탄산염에 의한 이산화탄소의 고정화가 가능함을 확인하고, 이를 토대로 본 발명을 완성하게 되었다. The present inventors confirmed that carbon dioxide can be immobilized by carbonate using slag generated in a large amount in a steel mill, and thus the present invention has been completed.                     

본 발명은 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 적어도 3 시간 동안 반응시켜 슬래그 표면에 이산화탄소를 고정화시켜 탄산화층(CaCO3층)을 형성시키는 것을 특징으로 한다.The present invention is characterized by forming a carbonation layer (CaCO 3 layer) by immobilizing carbon dioxide on the surface of the slag by reacting slag having a water content of 5 to 35% and having a particle size of 1 mm or less for at least 3 hours.

본 발명에 사용되는 상기 슬래그는 제철소에서 발생하는 모든 슬래그를 사용할 수 있음은 물론이며, 특히 입도가 1 ㎜ 이하인 슬래그를 사용하는 것이 이산화탄소의 고정화에 있어 더욱 좋다. 상기 슬래그의 입도가 1 ㎜를 초과할 경우에는 비표면적이 작아 반응성이 작아지고 기체인 이산화탄소와 접촉하는 면적이 작아져 반응율이 저하되며, 이에 따라 이산화탄소의 흡수량 및 고정량이 저하된다는 문제점이 있다.Of course, the slag used in the present invention can use all the slag generated in the steel mill, and in particular, it is better to use the slag having a particle size of 1 mm or less for immobilization of carbon dioxide. When the particle size of the slag exceeds 1 mm, the specific surface area is small, the reactivity is small, the area in contact with the gas carbon dioxide is small, the reaction rate is lowered, there is a problem that the absorption amount and fixed amount of carbon dioxide is lowered.

또한 상기 슬래그 내에 포함되는 수분은 고체인 슬래그와 기체인 이산화탄소 가스의 반응을 촉진시키는 촉매제로서 작용하여 이산화탄소를 CaCO3 형태로 고정화시키는데 중요한 작용을 한다. 즉, 상기 수분은 고체인 슬래그에서 칼슘이온의 용출을, 기체인 이산화탄소 가스에서 탄산이온의 용해를 촉진시켜주는 작용을 한다.In addition, the moisture contained in the slag serves as a catalyst for promoting the reaction of the slag as a solid and the carbon dioxide gas as a gas to play an important role in immobilizing the carbon dioxide in the form of CaCO 3 . That is, the moisture serves to promote the dissolution of calcium ions in the solid slag and the dissolution of carbonate ions in carbon dioxide gas.

따라서 바람직한 슬래그의 함수량은 5∼35 %이며, 그 함수량이 5 % 미만일 경우에는 모든 고체 슬래그의 표면을 이산화탄소 가스와의 반응에 참여시킬 수 없어 이산화탄소 고정량 및 반응율의 향상을 기대할 수 없다는 문제점이 있으며, 35 %를 초과할 경우에는 물속에서의 이산화탄소 가스의 확산속도가 낮아져 슬래그에서 용출된 칼슘 이온과의 반응이 느려질 수 있을 뿐만 아니라, 슬래그와 이산화탄소 가스의 반응은 초기에 매우 빠르게 진행되어 CaCO3 결정이 빠르게 이루어지므로 반 응초기에 슬래그 표면부에 형성된 탄산화층(CaCO3층)에 의하여 이후의 반응단계에서 슬래그로부터의 칼슘이온의 용출이 용이하지 않아 이산화탄소의 고정화 반응이 지속적으로 이루어지지 않는다는 문제점이 있다.Therefore, the preferable slag water content is 5 to 35%, and if the water content is less than 5%, the surface of all solid slag cannot be involved in the reaction with carbon dioxide gas, and thus there is a problem in that the fixed amount of carbon dioxide and the improvement of the reaction rate cannot be expected. In case of exceeding 35%, the diffusion rate of carbon dioxide gas in the water is lowered and the reaction of calcium ions eluted from the slag may be slowed, and the reaction of slag and carbon dioxide gas proceeds very quickly at the initial stage to determine the CaCO 3 crystal. Since this is achieved quickly, the carbonation layer (CaCO 3 layer) formed on the surface of the slag in the reaction vessel is not easy to dissolve calcium ions from the slag in the subsequent reaction step, so that the immobilization reaction of carbon dioxide is not continuously performed. have.

본 발명에 사용되는 상기 이산화탄소 가스는 열풍로, 석회소성로, 코크스로 등의 공업로, 소결, 열연 등의 발전 또는 배열 보일러 등 제철소에서 부생되는 이산화탄소 가스, 또는 공업적으로 생산되는 이산화탄소 가스 등 통상의 모든 이산화탄소 가스를 사용할 수 있음은 물론이며, 이산화탄소 함량이 높은 가스를 사용하는 것이 슬래그와의 반응시 반응율, 반응시간, 처리효과 등의 측면에서 유리하다.The carbon dioxide gas used in the present invention is a conventional industrial furnace such as a hot stove, a lime kiln, a coke oven, an industrial furnace such as sintering, hot rolling, or the like, a carbon dioxide gas produced by an ironworks, or an industrially produced carbon dioxide gas. Of course, all carbon dioxide gas can be used, and it is advantageous to use a gas having a high carbon dioxide content in terms of reaction rate, reaction time, and treatment effect when reacting with slag.

상기와 같은 이산화탄소 가스는 포화수증기화된 가스를 사용하는 것이 바람직하며, 상기 이산화탄소 가스의 포화수증기화는 이산화탄소를 물속에 투입하거나 통과시키는 방법 또는 이산화탄소 가스를 스크라버(scrubber)에 통과시키는 방법으로 실시될 수 있다.It is preferable to use a saturated steam vaporized gas as described above, and the saturated steam vaporization of the carbon dioxide gas is performed by adding or passing carbon dioxide into water or passing the carbon dioxide gas through a scrubber. Can be.

상기와 같은 슬래그와 이산화탄소 가스의 반응은 3 시간 이상 동안 실시되는 것이 바람직하며, 그 반응시간이 상기 범위내일 경우에는 이산화탄소와 반응할 수 있는 슬래그내의 칼슘이온이 모두 반응하여 슬래그 단위중량당 이산화탄소 고정량이 증가하여 이산화탄소의 저감이라는 효율성 측면에 있어 더욱 좋다.The reaction of the slag and carbon dioxide gas as described above is preferably carried out for more than 3 hours, if the reaction time is within the above range, the fixed amount of carbon dioxide per unit weight of slag by the reaction of all the calcium ions in the slag that can react with carbon dioxide It is increased and better in terms of efficiency of reduction of carbon dioxide.

또한 본 발명은 상기와 같은 방법으로 표면에 이산화탄소가 고정되어 탄산화층이 형성된 슬래그를 제공하는 바, 상기 슬래그는 표면에 이산화탄소를 고효율로 흡수, 고정화시켜 지구온난화의 주요인인 이산화탄소를 효율적으로 저감할 수 있을 뿐만 아니라, 동시에 슬래그로부터 고알칼리성 용출수의 생성, 유색수의 생성, 백탁수 및 백탁침전의 생성을 방지하여 토목공사용 골재로 유용하게 사용될 수 있는 잇점이 있다.In addition, the present invention provides a slag having a carbonation layer formed by fixing the carbon dioxide on the surface in the same manner as described above, the slag can efficiently absorb and immobilize the carbon dioxide on the surface to effectively reduce the carbon dioxide which is the main factor of global warming. In addition, there is an advantage that can be usefully used as aggregate for civil engineering by preventing the generation of highly alkaline effluent water, the generation of colored water, the production of turbid water and turbid sediment from the slag at the same time.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

[실시예]EXAMPLE

실시예 1Example 1

제강공정에서 배출된 입도 1 ㎜ 이하의 제강슬래그 32.8 ㎏에 수돗물 1,640 g을 첨가하여 함수량이 5 %가 되도록 조절한 후, 충진밀도가 2.4 g/㎤가 되도록 반응기에 충진하였다. 그 후 이산화탄소 농도가 20 %인 가스를 스크라버에 통과시켜 포화수증기화하고, 상기 포화수증기화된 이산화탄소 가스를 반응기 하단부에 유량 20 L/min으로 취입하였다. 이때 취입되는 이산화탄소 가스의 온도는 23 ℃이었으며, 입측 및 출측의 이산화탄소 농도가 동일한 값이 되었을 때(3 시간 후) 반응을 종료하였다.1,640 g of tap water was added to 32.8 kg of the steelmaking slag having a particle size of 1 mm or less discharged from the steelmaking process to adjust the water content to 5%, and the reactor was filled with a packing density of 2.4 g / cm 3. Thereafter, a gas having a carbon dioxide concentration of 20% was passed through a scrubber to saturated steam, and the saturated steamed carbon dioxide gas was blown into the reactor at a flow rate of 20 L / min. At this time, the temperature of the carbon dioxide gas blown was 23 ° C, and the reaction was terminated when the concentration of carbon dioxide at the entrance and exit was the same (after 3 hours).

실시예 2∼4 및 비교예 1∼2Examples 2-4 and Comparative Examples 1-2

상기 실시예 1에서 하기 표 1에 나타낸 바와 같이 수돗물의 양을 달리하여 슬래그의 함수량을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 반응시켰다.In Example 1, the reaction was carried out in the same manner as in Example 1, except that the water content of the slag was adjusted by varying the amount of tap water as shown in Table 1 below.

비교예 3∼5Comparative Examples 3 to 5

상기 실시예 1에서 슬래그의 함수량을 15 %가 되도록 조절하고, 입도를 1∼20 ㎜, 20∼40 ㎜, 40∼70 ㎜로 각각 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 반응시켰다.In the same manner as in Example 1 except that the slag water content was adjusted to 15% and the particle size was adjusted to 1 to 20 mm, 20 to 40 mm, and 40 to 70 mm in Example 1, respectively. Reacted.

상기 실시예 1 내지 4 및 비교예 1 내지 5의 반응 시료를 이용하여 시료의 탄소함량을 탄소분석장치로 정량분석하였으며, 이로부터 이산화탄소 고정량, 흡수량, 및 유효반응율을 하기 수학식 1∼3에 따라 계산하고, 그 결과를 하기 표 1에 나타내었다.Using the reaction samples of Examples 1 to 4 and Comparative Examples 1 to 5, the carbon content of the sample was quantitatively analyzed by a carbon analyzer, and the fixed amount of carbon dioxide, the absorption amount, and the effective reaction rate were represented by Equations 1 to 3 below. Calculated according to the results shown in Table 1 below.

[수학식 1][Equation 1]

Figure 112004040821799-PAT00003
Figure 112004040821799-PAT00003

[수학식 2][Equation 2]

Figure 112004040821799-PAT00004
Figure 112004040821799-PAT00004

[수학식 3][Equation 3]

Figure 112004040821799-PAT00005

Figure 112004040821799-PAT00005

(이때, 이론 이산화탄소 고정량은(At this time, the theoretical CO2 fixed amount is

Figure 112004040821799-PAT00006
Figure 112004040821799-PAT00006

[표 1]TABLE 1

구분division 반응조건Reaction condition 이산화탄소 흡수 특성Carbon dioxide absorption characteristics 입도 (㎜)Particle size (mm) 투입액량 (g)Input amount (g) 함수량 (%)Water content (%) 반응시간 (min)Response time (min) CO2 고정량 (g-CO2/㎏-slag)CO 2 fixed amount (g-CO 2 / ㎏-slag) 흡수량 (g-CO2/㎏-slag)Absorption amount (g-CO 2 / ㎏-slag) 유효반응율(%)Effective response rate (%) 반응전Before reaction 반응후After reaction 실 시 예Example 1One 1 이하1 or less 1,6401,640 55 180180 51.751.7 64.764.7 1313 5.85.8 22 1 이하1 or less 4,9204,920 1515 180180 51.751.7 75.975.9 24.224.2 10.710.7 33 1 이하1 or less 7,2007,200 2525 180180 51.751.7 67.867.8 16.116.1 7.137.13 44 1 이하1 or less 11.48011.480 3535 180180 51.751.7 65.665.6 13.913.9 6.26.2 비 교 예Comparative Example 1One 1 이하1 or less 00 00 180180 51.751.7 52.152.1 0.40.4 0.180.18 22 1 이하1 or less 13,12013,120 4040 180180 51.751.7 55.755.7 44 1.81.8 33 1∼201 to 20 4,9204,920 1515 180180 1.21.2 3.53.5 2.32.3 0.650.65 44 20∼4020-40 4,9204,920 1515 180180 0.70.7 2.02.0 1.31.3 0.370.37 55 40∼7040-70 4,9204,920 1515 180180 0.70.7 1.51.5 0.80.8 0.230.23 [주] 1 ㎜ 이하 입도인 슬래그의 CaO 함량 : 35.3 중량% 1∼20 ㎜, 20∼40 ㎜, 40∼70 ㎜ 입도인 슬래그의 CaO 함량 : 45.0 중량%[Note] CaO content of slag with particle size of 1 mm or less: 35.3 wt% CaO content of slag with particle size of 1-20 mm, 20-40 mm, 40-70 mm: 45.0 wt%

상기 표 1을 통하여, 본 발명에 따라 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 반응시킨 실시예 1 내지 4의 슬래그는 CO2 고정량이 반응전보다 반응후 증가하였으며, 이산화탄소 흡수량은 슬래그 1 ㎏당 10 g 이상이었으며, 유효반응율은 6∼11 % 범위로 나타났으며, 이로부터 본 발명에 따라 제조된 슬래그는 많은 양의 이산화탄소를 흡수, 고정화하여 이산화탄소를 효율적으로 저감할 수 있음을 알 수 있었다.Through the above Table 1, the slag of Examples 1 to 4 in which the slag having a water content of 5 to 35% and the particle size of 1 mm or less was reacted with carbon dioxide gas according to the present invention, the CO 2 fixed amount increased after the reaction than before the reaction, and the carbon dioxide absorption amount The silver slag was more than 10 g per kg, and the effective reaction rate was in the range of 6-11%. From this, the slag prepared according to the present invention can efficiently reduce carbon dioxide by absorbing and immobilizing a large amount of carbon dioxide. And it was found.

반면, 수분이 전혀 없는(함수량 0 %) 비교예 1, 과량의 수분을 함유하는(함수량 40 %) 비교예 2의 경우에는 이산화탄소의 흡수량이 4 % 이하로 나타났으며, 유효반응율 또한 2 % 이하의 낮은값을 나타내었다. On the other hand, in Comparative Example 1, which contained no moisture (0% water content) and Comparative Example 2, which contained excess water (40% water content), the absorption of carbon dioxide was 4% or less, and the effective reaction rate was also 2% or less. Low value of.

또한, 슬래그의 입도를 1 ㎜ 이상으로 조절한 비교예 3 내지 5의 경우에는 CO2 고정량, 이산화탄소의 흡수량, 및 유효반응율이 모두 낮게 나타났다. In addition, in the case of Comparative Examples 3 to 5 in which the particle size of the slag was adjusted to 1 mm or more, the fixed amount of CO 2 , the absorbed amount of carbon dioxide, and the effective reaction rate were all low.

이로부터, 본 발명에 따라 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 반응시킬 경우, 이산화탄소를 효율적으로 흡수하고 반응하여 슬래그 표면에 고정화함으로써 이산화탄소를 효과적으로 저감시킬 수 있음을 알 수 있었다.From this, it can be seen that according to the present invention, when the slag having a water content of 5 to 35% and the particle size of 1 mm or less is reacted with carbon dioxide gas, carbon dioxide can be effectively reduced by efficiently absorbing and reacting carbon dioxide and immobilizing on the surface of the slag. Could.

실시예 5Example 5

제강공정에서 배출된 입도 1 ㎜ 이하의 제강슬래그 32.8 ㎏에 수돗물 4,920 g을 첨가하여 함수량이 15 %가 되도록 조절한 후, 충진밀도가 2.4 g/㎤가 되도록 반응기에 충진하였다. 그 후 이산화탄소 농도가 20 %인 가스를 스크라버에 통과시켜 포화수증기화하고, 상기 포화수증기화된 이산화탄소 가스를 반응기 하단부에 유량 20 L/min으로 취입하여 4 시간동안 반응시켜 반응을 종료하였다 이때, 취입되는 이산화탄소 가스의 온도는 23 ℃이었다.4,920 g of tap water was added to 32.8 kg of the steelmaking slag having a particle size of 1 mm or less discharged from the steelmaking process to adjust the water content to 15%, and the reactor was filled with a packing density of 2.4 g / cm 3. Thereafter, a gas having a carbon dioxide concentration of 20% was passed through a scrubber to saturate steam, and the saturated steamed carbon dioxide gas was blown to the lower end of the reactor at a flow rate of 20 L / min for 4 hours to complete the reaction. The temperature of the carbon dioxide gas blown was 23 ° C.

실시예 6 및 비교예 6∼7Example 6 and Comparative Examples 6-7

상기 실시예 5에서 하기 표 2에 나타낸 바와 같이 반응시간을 달리한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 실시하여 반응시켰다. In Example 5, the reaction was carried out in the same manner as in Example 5, except that the reaction time was changed as shown in Table 2 below.

상기 실시예 5 또는 6 및 비교예 6 또는 7의 반응 시료의 이산화탄소 고정량, 흡수량, 및 유효반응율을 상기와 동일한 방법으로 측정하고, 그 결과를 하기 표 2에 나타내었다.The fixed amount of carbon dioxide, the absorbed amount, and the effective reaction rate of the reaction samples of Example 5 or 6 and Comparative Examples 6 or 7 were measured in the same manner as above, and the results are shown in Table 2 below.

[표 2]TABLE 2

구분division 반응조건Reaction condition 이산화탄소 흡수 특성Carbon dioxide absorption characteristics 입도 (㎜)Particle size (mm) 투입액량 (g)Input amount (g) 함수량 (%)Water content (%) 반응시간 (min)Response time (min) CO2 고정량 (g-CO2/㎏-slag)CO 2 fixed amount (g-CO 2 / ㎏-slag) 흡수량 (g-CO2/㎏-slag)Absorption amount (g-CO 2 / ㎏-slag) 유효반응율(%)Effective response rate (%) 반응전Before reaction 반응후After reaction 실시예Example 55 1 이하1 or less 1,6401,640 55 180180 51.751.7 64.764.7 1313 5.85.8 66 1 이하1 or less 4,9204,920 1515 180180 51.751.7 75.975.9 24.224.2 10.710.7 비교예Comparative example 66 1 이하1 or less 00 00 180180 51.751.7 52.152.1 0.40.4 0.180.18 77 1 이하1 or less 13,12013,120 4040 180180 51.751.7 55.755.7 44 1.81.8

상기 표 2를 통하여, 본 발명에 따라 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 3 시간 이상 반응시킨 실시예 5 또는 6의 경우에는 이산화탄소의 고정량, 흡수량, 및 유효반응율이 우수하게 나타났음을 확인할 수 있었다.Through Table 2, in Examples 5 or 6 in which the slag having a water content of 5 to 35% and the particle size of 1 mm or less is reacted with carbon dioxide gas for 3 hours or more, the fixed amount, the absorption amount, and the effective reaction rate of carbon dioxide. It was confirmed that this appeared excellent.

반면, 슬래그와 이산화탄소 가스를 3 시간 미만동안 반응시킨 비교예 6 또는 7의 경우에는 이산화탄소의 흡수량과 유효반응율이 실시예 5 또는 6과 비교하여 현저히 낮음을 확인할 수 있었다.On the other hand, in the case of Comparative Example 6 or 7 in which the slag and carbon dioxide gas was reacted for less than 3 hours, the absorption amount and the effective reaction rate of carbon dioxide were significantly lower than those of Example 5 or 6.

본 발명에 따르면 슬래그 표면에 이산화탄소를 고효율로 흡수, 고정화시켜 탄산화층을 형성함으로써 지구온난화의 주요인인 이산화탄소를 효율적으로 저감할 수 있을 뿐만 아니라, 동시에 슬래그로부터 고알칼리성 용출수의 생성, 유색수의 생성, 백탁수 및 백탁침전의 생성을 방지하여 토목공사용 골재로 유용하게 사용될 수 있는 효과가 있다. According to the present invention, by absorbing and immobilizing carbon dioxide on the surface of the slag with high efficiency to form a carbonation layer, not only can the carbon dioxide, which is a major factor of global warming, be efficiently reduced, but also the formation of highly alkaline effluent water and the generation of colored water from the slag. By preventing the formation of white turbid water and white sedimentation, there is an effect that can be usefully used as aggregate for civil engineering.                     

이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although only described in detail with respect to the described embodiments of the present invention, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, it is natural that such variations and modifications belong to the appended claims. .

Claims (3)

슬래그를 이용한 이산화탄소의 고정화 방법에 있어서, 함수량이 5∼35 %이고 입도가 1 ㎜ 이하인 슬래그와 이산화탄소 가스를 적어도 3 시간 동안 반응시켜 슬래그 표면에 이산화탄소를 고정화시키는 단계를 포함하는 슬래그를 이용한 이산화탄소의 고정화 방법.A method of immobilizing carbon dioxide using slag, the method comprising: immobilizing carbon dioxide on the surface of the slag by reacting slag having a water content of 5 to 35% and having a particle size of 1 mm or less with carbon dioxide gas for at least three hours. Way. 제1항에 있어서,The method of claim 1, 상기 이산화탄소 가스가 포화수증기화된 가스인 것을 특징으로 하는 슬래그를 이용한 이산화탄소의 고정화 방법.The carbon dioxide immobilization method using the slag, characterized in that the gas is saturated steam. 제1항 기재의 방법으로 표면에 이산화탄소가 고정되어 탄산화층이 형성된 슬래그.A slag in which carbon dioxide is fixed to a surface to form a carbonation layer by the method of claim 1.
KR1020040071949A 2004-09-09 2004-09-09 Method for fixing of carbon dioxide KR20060023206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040071949A KR20060023206A (en) 2004-09-09 2004-09-09 Method for fixing of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040071949A KR20060023206A (en) 2004-09-09 2004-09-09 Method for fixing of carbon dioxide

Publications (1)

Publication Number Publication Date
KR20060023206A true KR20060023206A (en) 2006-03-14

Family

ID=37129455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040071949A KR20060023206A (en) 2004-09-09 2004-09-09 Method for fixing of carbon dioxide

Country Status (1)

Country Link
KR (1) KR20060023206A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007151A1 (en) 2010-11-30 2012-05-31 Hyundai Motor Co. Method for fixing carbon dioxide
DE102011117599B3 (en) * 2011-11-04 2013-01-17 Wolfgang Beyer Process for the integration and use of environmentally harmful carbon dioxide
KR101238897B1 (en) * 2011-08-17 2013-03-04 주식회사 포스코 Manufacturing method and device for co2 gas absorbent
KR101356067B1 (en) * 2012-08-21 2014-01-28 주식회사 포스코 Method for fixing carbon dioxide and apparatus for thd same
US9487626B2 (en) 2011-12-15 2016-11-08 Postech Academy-Industry Foundation Carbon dioxide fixation method using condensation polymerization, polymer material prepared thereby, method for recovering carbon from said polymer material, and graphite generated by said carbon recovery method
CN115069362A (en) * 2022-05-30 2022-09-20 湖北工业大学 Carbon fixation and emission reduction method for steel plant wet-grinding steel slag and application

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007151A1 (en) 2010-11-30 2012-05-31 Hyundai Motor Co. Method for fixing carbon dioxide
KR101251264B1 (en) * 2010-11-30 2013-04-10 현대자동차주식회사 Method of fixing carbon dioxide
KR101238897B1 (en) * 2011-08-17 2013-03-04 주식회사 포스코 Manufacturing method and device for co2 gas absorbent
DE102011117599B3 (en) * 2011-11-04 2013-01-17 Wolfgang Beyer Process for the integration and use of environmentally harmful carbon dioxide
US9487626B2 (en) 2011-12-15 2016-11-08 Postech Academy-Industry Foundation Carbon dioxide fixation method using condensation polymerization, polymer material prepared thereby, method for recovering carbon from said polymer material, and graphite generated by said carbon recovery method
KR101356067B1 (en) * 2012-08-21 2014-01-28 주식회사 포스코 Method for fixing carbon dioxide and apparatus for thd same
WO2014030811A1 (en) * 2012-08-21 2014-02-27 주식회사 포스코 Method and apparatus for fixing carbon dioxide
CN104364195A (en) * 2012-08-21 2015-02-18 Posco公司 Method and apparatus for fixing carbon dioxide
CN115069362A (en) * 2022-05-30 2022-09-20 湖北工业大学 Carbon fixation and emission reduction method for steel plant wet-grinding steel slag and application
CN115069362B (en) * 2022-05-30 2023-11-21 湖北工业大学 Method for carbon fixation and emission reduction of wet-milling steel slag in steel plant and application of method

Similar Documents

Publication Publication Date Title
US7919064B2 (en) Capture and sequestration of carbon dioxide in flue gases
CN103111186B (en) Method for mineralizing and fixing carbon dioxide by using strengthened steel slag
CN101607172B (en) Desulfurizer for desulfurization of smoke and method for preparing same
JP2013514877A (en) Carbon dioxide sequestration by formation of group II carbonates and silicon dioxide
KR20120059254A (en) Method of fixing carbon dioxide
KR20140045459A (en) Process for the mineralization of carbon dioxide
Huang et al. Accelerated carbonation of steel slag: A review of methods, mechanisms and influencing factors
Lin et al. Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives
KR101351317B1 (en) A method for preparing reducing gas by using cokes oven gas and by-product gas from steel works
CN102815926A (en) High-temperature calcium-based coal ash absorbent for CO2 and preparation method of high-temperature calcium-based coal ash absorbent
CN112403254A (en) Method for preparing desulfurizer by using red mud as raw material and desulfurizer prepared by method
KR20060023206A (en) Method for fixing of carbon dioxide
JPS6362572B2 (en)
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
CN102120588A (en) Method for absorbing and fixing carbon dioxide through mineral carbonization
JP3020143B2 (en) Method for producing desulfurizing agent
CN112191093A (en) Method and device for fixing carbon dioxide by cement-based material
KR100728795B1 (en) Nickel metal and process for producing the same
US3298781A (en) Production of sulfites from red mud
JP7028027B2 (en) A method of absorbing CO2 and decomposing it into carbon, and a CO2 absorbent
JP2000119049A (en) Production of cement
KR101181451B1 (en) Method on the formation of carbonates from the blast furnace slag
KR101268008B1 (en) Method for permanent co2-fixation using fe-ni slag
Gautam et al. 6 Calcium Oxide
Gautam et al. Calcium Oxide: Synthesis and Applications

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination