KR20060020145A - Method for manufacturing a capacitor using conducting polymer - Google Patents
Method for manufacturing a capacitor using conducting polymer Download PDFInfo
- Publication number
- KR20060020145A KR20060020145A KR1020040068908A KR20040068908A KR20060020145A KR 20060020145 A KR20060020145 A KR 20060020145A KR 1020040068908 A KR1020040068908 A KR 1020040068908A KR 20040068908 A KR20040068908 A KR 20040068908A KR 20060020145 A KR20060020145 A KR 20060020145A
- Authority
- KR
- South Korea
- Prior art keywords
- voltage
- manufacturing
- tantalum
- electrolytic capacitor
- layer
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 229920001940 conductive polymer Polymers 0.000 title claims description 13
- 238000000034 method Methods 0.000 title description 13
- 239000002322 conducting polymer Substances 0.000 title 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 23
- 230000008929 regeneration Effects 0.000 claims abstract description 13
- 238000011069 regeneration method Methods 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract description 4
- 239000007784 solid electrolyte Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 229930007886 (R)-camphor Natural products 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G2009/05—Electrodes or formation of dielectric layers thereon characterised by their structure consisting of tantalum, niobium, or sintered material; Combinations of such electrodes with solid semiconductive electrolytes, e.g. manganese dioxide
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
본 발명은 탄탈 전해 캐패시터의 제조방법중 재화성단계에서, 일정전압으로 고정시킨 화성전압이 될 때까지, 순간적으로 전압을 인가시키는 종래와 달리, 일정시간동안 순차적으로 전압을 상승시켜 고분자층의 파괴현상을 방지하여 탄탈소자 내부 깊숙이까지 고분자층을 형성되므로, LC 특성 및 등가직렬저항(ESR) 특성이 개선되는 효과를 가진다.The present invention breaks down the polymer layer by sequentially raising the voltage for a predetermined time, unlike the conventional method of applying a voltage instantaneously until a chemical voltage fixed to a constant voltage in the regeneration step of the manufacturing method of the tantalum electrolytic capacitor. Since the polymer layer is formed deep inside the tantalum element by preventing the phenomenon, the LC characteristic and the equivalent series resistance (ESR) characteristics are improved.
Description
도 1은 일반적인 탄탈전해 캐패시터의 제조방법을 개략적으로 나타낸 블록도이고,1 is a block diagram schematically illustrating a method of manufacturing a general tantalum electrolytic capacitor,
도 2는 도 1의 제조방법중 재화성단계에서의 전압인가를 나타내는 그래프이고,Figure 2 is a graph showing the application of voltage in the regeneration step of the manufacturing method of Figure 1,
도 3은 본 발명의 바람직한 일실시예에 따른 재화성단계에서의 전압인가를 나타내는 그래프이다.3 is a graph showing the application of voltage in the regeneration step according to an embodiment of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
S100 : 성형 및 진공소결단계 S200 : 유전체층 형성단계S100: forming and vacuum sintering step S200: dielectric layer forming step
S20 : 화성단계 S300 : 전해질층 형성단계S20: chemical conversion step S300: electrolyte layer forming step
S30 : 도전성 고분자층 형성단계 S400 : 재화성 단계S30: conductive polymer layer forming step S400: recyclable step
S500 : 음극체 형성단계 S50 : 흑연층 형성단계S500: cathode body forming step S50: graphite layer forming step
S600 : 은페이스트층 형성단계 S700 : 리드프레임 접합단계S600: silver paste layer forming step S700: lead frame bonding step
S800 : 몰드 외장단계S800: Mold exterior step
본 발명은 전도성 고분자를 이용한 캐패시터 제조방법에 관한 것으로, 보다 상세하게는 중합시 재화성과정에 있어서 화성전압을 일정시간동안 순차적으로 전압을 상승시켜 줌으로서 LC특성과 ESR 특성을 개선한 캐패시터 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a capacitor using a conductive polymer, and more particularly, to a capacitor manufacturing method for improving LC characteristics and ESR characteristics by increasing the voltage sequentially for a predetermined time during the regeneration process during polymerization. It is about.
잘 알려진 바와 같이, 반도체 작용을 하는 탄탈금속의 산화피막을 캐패시터의 유전체로 이용하는 전해 캐패시터(electrolytic capacitor)를 탄탈륨(tantalum) 전해 캐패시터라 한다. 이러한 탄탈전해 캐패시터는 양극산화에 의하여 형성된 탄탈산화물(Ta2O5)을 유전체로 하고 있다. 탄탈의 박과 소결체를 전극으로 양극산화에 의하여 탄탈금속면에 형성된 산화피막은 화성전압 1V당 10∼16Å으로 형성된 얇은 피막으로서 피막의 두께는 화성전압의 상승에 비례하여 증가하며, 캐패시터의 정전용량과는 반비례의 관계를 이루고 있다. 또한, 화성전압은 탄탈전해 캐패시터의 종류에 따라 다르지만, 탄탈고체 전해 캐패시터에서는 정격전압의 3∼4배, 탄탈 박형 전해 커패시터에서는 1.3∼1.4배를 기준으로 하고 있고, 유전체인 탄탈산화피막의 유전율은 εr은 23으로, 유전율이 7에 해당하는 알루미늄 산화피막에 비해 약 3배에 해당한다.As is well known, an electrolytic capacitor that uses an oxide film of tantalum metal which acts as a semiconductor as a dielectric of a capacitor is called a tantalum electrolytic capacitor. Such a tantalum electrolytic capacitor has a tantalum oxide (Ta 2 O 5 ) formed by anodization as a dielectric. The oxide film formed on the tantalum metal surface by anodizing the foil and sintered body of tantalum as an electrode is a thin film formed at 10 ~ 16Å per 1V of the conversion voltage, and the thickness of the coating increases in proportion to the increase of the conversion voltage. Is inversely related to. In addition, the harmonic voltage varies depending on the type of tantalum electrolytic capacitor, but it is based on 3 to 4 times the rated voltage in the tantalum solid electrolytic capacitor and 1.3 to 1.4 times in the tantalum thin electrolytic capacitor. ε r is 23, which is about three times higher than that of an aluminum oxide film having a dielectric constant of 7.
도 1에는 이상과 같은 탄탈전해 캐패시터의 일반적인 제조방법을 도시하고 있다. 이를 참조하여 설명하면, 도 1에 있어서, 먼저, 성형단계로서, 즉 Ta 다공질체의 형성을 위해, 먼저, 탄탈분말에 접착제(blinder) 역할을 행하는 용제인 D- Camphor를 바인더로서 첨가하여 혼합하여 프레스 성형성을 향상한 후, Ta 혼합 분말 속에 양극의 소자 리드선을 삽입하고 원기둥형 또는 직사각형으로 프레스 성형하고, 상기 프레스 성형품을 고진공중, 예를 들어 10-4 Pa 이하의 진공중에서 1600∼2000℃정도로 가열함으로서 소결하여 Ta 다공질체, 즉 양극체를 형성한다(S100). 이어서, 화성처리(S20)를 행하는 유전체 형성단계에서는 상기 소결공정에 의한 Ta 다공질체를 양극으로서 대향 전극과 함께 인산등의 전해액 중에 침지하고, 화성전압을 인가함으로서 Ta 다공질체 표면에 유전체가 되는 산화피막(Ta2O5)을 생성하게 되며(양극 산화법), 이때, 화성전압의 조건[Vf(formation volt)]에 따라 유전체층(Ta 산하피막)의 두께가 결정되고, 콘덴서로서의 특성이 결정되며, 상기 전해액은 그 농도를 0.6 용량%로 조절한 수용액등이 이용된다.(S200) 다음 단계에서는, 즉 상기 단계에서 생성된 산화피막의 표면에 반도체층으로서의 고체 전해질층이 형성된다.(S300) 고체 전해질로서는 이산화망간이나, 피롤, 티오펜 및 그 유도체를 중합시킨 도전성 전도성 고분자등을 이용한다. 예를 들어, 고체 전해질로서 피롤 중합체를 이용하는 경우에는 표면에 유전체층이 형성된 양극체상에 피롤모노머 용액과 삼산화철등의 산화제 용액을 이용하여 화학중합 또는 전해중합시킴으로서 고체 전해질층이 형성되는 것이 알려져 있다. 또한, 도전성 고분자를 형성하는 방법으로서, 산화제를 미리 유전체 표면에 형성하고, 그 후, 모노머 용액에 침지하여 중합반응을 일으키는 것도 가능하다. 또, 고체 전해질층으로서 망간을 이용하는 경우에는 표면에 유전체층이 형성된 양극체를 질산망간등에 침지하여 가열 처리등을 차례 로 행함으로써 고체 전해질층이 형성된다.(S30) 그리고, 이러한 고체 전해질층의 형성공정시, 특히 망간을 고체 전해질층의 성분으로서 선택한 경우에는 그 공정중에 행해지는 열처리에 의해 상기 유전체층이 파괴되어 있는 개소가 있게 되며, 이러한 유전체층의 파괴 개소를 다시 수복하기 위해 유전체층 및 반도체층으로서의 고체 전해질층이 차례로 형성된 양극체에 재차 화성처리를 행한다.(S400) 다음 단계로서 고체 전해질층상에 음극체층을 형성하는 바(S500), 음극체로서 흑연층을 형성하고(S50), 은을 포함하는 페이스트층을 형성한다.(S600) 이어서 양극의 소자 리드선에 리드 프레임 양극부를 스폿트 용접에 의해 접합하고, 은을 포함하는 페이스트층에 리드 프레임 음극부를 도전성 접착제에 의해 접합한다.(S700) 마지막으로, 전체를 수지로 몰드 외장하여(S800) Ta 고체 전해 콘덴서를 완성한다.Fig. 1 shows a general manufacturing method of the above tantalum electrolytic capacitor. Referring to this, in FIG. 1, first, in order to form a Ta porous body, first, D-camphor, which is a solvent that acts as a binder to tantalum powder, is added and mixed as a binder. After improving press formability, a positive electrode lead wire was inserted into Ta mixed powder and press-molded into a cylindrical or rectangular shape, and the press-formed product was subjected to 1600 to 2000 ° C in a high vacuum, for example, a vacuum of 10 -4 Pa or less. Sintering by heating to a degree to form a Ta porous body, that is, a positive electrode (S100). Subsequently, in the dielectric formation step of performing the chemical conversion treatment (S20), the Ta porous body by the sintering process is immersed in an electrolyte solution such as phosphoric acid together with the counter electrode as an anode, and an oxidation is formed on the surface of the Ta porous body by applying a conversion voltage. The film Ta 2 O 5 is produced (anode oxidation method), and at this time, the thickness of the dielectric layer (Ta acidic film) is determined according to the conditions of the formation voltage [Vf (formation volt)], and the characteristics as a capacitor are determined. An aqueous solution of which the concentration is adjusted to 0.6% by volume is used. (S200) In the next step, that is, a solid electrolyte layer as a semiconductor layer is formed on the surface of the oxide film produced in the step. As the electrolyte, manganese dioxide, a conductive conductive polymer obtained by polymerizing pyrrole, thiophene and derivatives thereof is used. For example, when a pyrrole polymer is used as the solid electrolyte, it is known that a solid electrolyte layer is formed by chemical polymerization or electropolymerization using a pyrrole monomer solution and an oxidizer solution such as iron trioxide on a positive electrode having a dielectric layer formed on its surface. Moreover, as a method of forming a conductive polymer, it is also possible to form an oxidizing agent on the dielectric surface beforehand, and then to immerse it in a monomer solution and to generate a polymerization reaction. In the case of using manganese as a solid electrolyte layer, a solid electrolyte layer is formed by immersing an anode having a dielectric layer formed on the surface in manganese nitrate or the like, followed by heat treatment. (S30) Then, the solid electrolyte layer is formed. In the process, in particular, when manganese is selected as a component of the solid electrolyte layer, there is a point where the dielectric layer is destroyed by the heat treatment performed in the process, and the solid as the dielectric layer and the semiconductor layer is used to repair the breakdown point of the dielectric layer again. A chemical conversion process is performed again on the positive electrode bodies in which the electrolyte layers are sequentially formed (S400). Next, a negative electrode layer is formed on the solid electrolyte layer (S500), and a graphite layer is formed as the negative electrode (S50). A paste layer is formed (S600). The lead frame anode portion is then contacted by spot welding on the element lead wire of the anode. And it is joined by the anode lead frame parts of the conductive adhesive in the paste layer containing silver. (S700) Finally, the completed (S800) Ta solid electrolytic capacitor with an external mold the entire resin.
이상과 같은 종래의 탄탈 전해 캐패시터의 제조방법에 있어서 유전체층의 결함부분에서의 유전체층이 다른 영역보다 얇기 때문에 전계집중이 발새되기 쉬우므로, 이러한 전계집중에 의해 국소적으로 열이 발생되고, 발생된 열은 유전체층의 결정화를 일으킴으로서 유전체층의 절연파괴를 초래하게 된다. 이러한 절연파괴가 누설전류(Leakage Current : LC)를 증가시키는 원인중의 하나가 되고 있다. 이에 유전체층의 결함부분의 수복수단으로서 재화성 공정이 채용하여 되었으나, 종래의 재화성공정은 도 2에 도시된 바와 같이, 재화성전압을 30V로 고정하고, 이와 같이 고정된 전압이 될때까지 순간적으로 인가함으로서 유전체 피막을 수복시켰지만, 상대적으로 급격하게 전압을 인가시킴으로서 내부에 코팅되어진 고분자층의 파괴현상을 초래하는 문제점이 있었다.In the conventional method of manufacturing a tantalum electrolytic capacitor as described above, since the dielectric layer at the defective portion of the dielectric layer is thinner than other regions, field concentration tends to occur, so heat is generated locally by such field concentration. This causes crystallization of the dielectric layer, resulting in dielectric breakdown of the dielectric layer. This breakdown is one of the causes of increasing leakage current (LC). As a means of repairing a defective portion of the dielectric layer, a regeneration process has been employed. However, the conventional regeneration process fixes the regeneration voltage to 30 V, as shown in FIG. 2, and applies it instantaneously until the fixed voltage is reached. By repairing the dielectric film, there was a problem of causing a breakdown of the polymer layer coated therein by applying a voltage relatively rapidly.
본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로, 그 목적은 일정시간동안 순차적으로 전압을 상승시켜 고분자층의 파괴현상을 방지하여 탄탈소자 내부 깊숙이까지 고분자층을 형성할 수 있는 전도성 고분자를 이용한 탄탈 전해 캐패시터의 제조방법을 제공하는 것이다.The present invention has been made to solve the above problems, the object of which is to increase the voltage sequentially for a predetermined time to prevent the destruction of the polymer layer to prevent the destruction of the polymer layer to form a polymer layer deep into the tantalum element tantalum using a conductive polymer It is to provide a method for producing an electrolytic capacitor.
이와 같은 목적을 실현하기 위한 본 발명의 전도성 고분자를 이용한 탄탈전해 캐패시터의 제조방법에 있어서, 그 재화성단계의 화성전압을 일정전압으로 고정시키되, 상기 화성전압이 될 때까지 순차적으로 전압을 상승시켜주는 것을 특징으로 한다. In the method of manufacturing a tantalum electrolytic capacitor using the conductive polymer of the present invention for realizing the above object, the harmonic voltage of the regeneration step is fixed at a constant voltage, and the voltage is sequentially increased until the harmonic voltage is reached. It is characterized by giving.
본 발명에 의하면, 일정전압으로 고정시킨 재화성 전압이 될 때까지 순간적으로 전압을 인가시키는 종래와 달리, 일정시간동안 순차적으로 전압을 상승시켜줌으로서, 탄탈소자 내부 깊숙이 까지 고분자층이 형성되므로, LC 특성 및 등가직렬저항(ESR) 특성이 개선되는 효과를 가진다.According to the present invention, unlike the conventional method of applying a voltage instantaneously until a regenerated voltage fixed to a constant voltage, by increasing the voltage sequentially for a predetermined time, since the polymer layer is formed deep inside the tantalum element, LC The characteristics and equivalent series resistance (ESR) characteristics are improved.
이하, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 본 발명의 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 더욱 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
본 발명은 일반적인 전도성 고분자를 이용한 탄탈전해 캐패시터의 제조방법의 과정중에서 재화성단계이외에는 모두 동일하므로, 그 상세한 설명은 생략하였다.Since the present invention is the same except for the reoxidation step in the process of manufacturing a tantalum electrolytic capacitor using a common conductive polymer, detailed description thereof is omitted.
도 3에는 본 발명의 바람직한 일실시예에 따른 전도성 고분자를 이용한 탄탈전해 캐패시터의 제조방법의 재화성단계에 적용되는 전압인가 그래프를 도시하였다.3 is a graph showing the voltage applied to the regeneration step of the manufacturing method of a tantalum electrolytic capacitor using a conductive polymer according to an embodiment of the present invention.
본 발명에 따른 재화성단계는, 도시된 바와 같이, 시간 T1에서 T2의 동안에는 10V가 될 때까지 전압을 인가하고, 시간 T2에서 T3의 동안에는 20V가 될 때까지 전압을 인가하고, 그리고 마지막으로 시간 T3에서 T4의 동안에는 30V가 될 때까지 순차적으로 완만하게 인가함으로서 탄탈소자의 내부 깊숙한 곳까지 고분자층이 형성되므로, LC 특성 및 등가직렬저항(ESR) 특성이 개선된다.The regeneration phase according to the invention, as shown, applies a voltage until 10V during T2 at time T1, applies a voltage until 20V during T3 at time T2, and finally time During T3 to T4, the polymer layer is formed deep inside the tantalum element by gradually applying it slowly until it reaches 30V, thereby improving LC characteristics and equivalent series resistance (ESR) characteristics.
이상에서 설명한 바와 같은 본 발명에 따른 전도성 고분자를 이용하는 탄탈전해 캐패시터의 제조방법은 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.Method for manufacturing a tantalum electrolytic capacitor using the conductive polymer according to the present invention as described above is just one embodiment, the present invention is not limited to the above embodiment, as claimed in the following claims Without departing from the gist of the present invention, anyone of ordinary skill in the art will have the technical spirit of the present invention to the extent that various modifications can be made.
상술한 바와 같이, 본 발명에 따른 전도성 고분자를 이용하는 탄탈전해 캐패시터의 제조방법은 재화성단계에서의 화성전압을 일정전압으로 고정시킨 재화성 전압이 될 때까지 순간적으로 전압을 인가시키는 종래와 달리, 일정시간동안 순차적으로 전압을 상승시켜줌으로서, 탄탈소자 내부 깊숙이 까지 고분자층이 형성되므로, LC 특성 및 등가직렬저항(ESR) 특성이 개선되는 효과를 가진다.As described above, in the method of manufacturing a tantalum electrolytic capacitor using the conductive polymer according to the present invention, unlike the conventional method of applying a voltage instantaneously until the regeneration voltage is fixed to a constant voltage in the regeneration phase, By sequentially increasing the voltage for a predetermined time, since the polymer layer is formed deep inside the tantalum element, the LC characteristics and equivalent series resistance (ESR) characteristics are improved.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040068908A KR20060020145A (en) | 2004-08-31 | 2004-08-31 | Method for manufacturing a capacitor using conducting polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040068908A KR20060020145A (en) | 2004-08-31 | 2004-08-31 | Method for manufacturing a capacitor using conducting polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20060020145A true KR20060020145A (en) | 2006-03-06 |
Family
ID=37127336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040068908A KR20060020145A (en) | 2004-08-31 | 2004-08-31 | Method for manufacturing a capacitor using conducting polymer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20060020145A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107240512A (en) * | 2017-04-21 | 2017-10-10 | 南通星晨电子有限公司 | A kind of capacitor impregnation equipment |
-
2004
- 2004-08-31 KR KR1020040068908A patent/KR20060020145A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107240512A (en) * | 2017-04-21 | 2017-10-10 | 南通星晨电子有限公司 | A kind of capacitor impregnation equipment |
CN107240512B (en) * | 2017-04-21 | 2019-01-11 | 南通星晨电子有限公司 | A kind of capacitor impregnation equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4731389B2 (en) | Multilayer solid electrolytic capacitor and manufacturing method thereof | |
JP5062770B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2001148328A (en) | Manufacturing method for solid electrolytic capacitor | |
KR20060020145A (en) | Method for manufacturing a capacitor using conducting polymer | |
JP2836114B2 (en) | Method for manufacturing solid electrolytic capacitor | |
US6334945B1 (en) | Aging process for solid electrode capacitor | |
JP4748726B2 (en) | Solid electrolytic capacitor | |
JPH06168855A (en) | Multilayer solid electrolytic capacitor and fabrication thereof | |
KR20060020146A (en) | Method for manufacturing a capacitor using conducting polymer | |
JP2811648B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2819628B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP6952921B1 (en) | Solid Electrolytic Capacitors and Manufacturing Methods for Solid Electrolytic Capacitors | |
JP2001068381A (en) | Solid state electrolytic capacitor element | |
KR20060020147A (en) | Method for manufacturing a capacitor using conducting polymer | |
JP2009182027A (en) | Manufacturing method of solid electrolytic capacitor | |
JP2003297672A (en) | Method of manufacturing solid electrolytic capacitor | |
JP2008010521A (en) | Solid-state electrolytic capacitor, and its manufacturing method | |
JP4662266B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH11121280A (en) | Solid electrolytic capacitor and manufacturing method therefor | |
JP2570121B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH10321474A (en) | Solid electrolytic capacitor and its manufacture | |
JP3978822B2 (en) | Manufacturing method of solid electrolytic capacitor | |
KR20060020144A (en) | Method for manufacturing a capacitor using conducting polymer | |
JP2001257131A (en) | Manufacturing method of solid electrolytic capacitor | |
JP2004103748A (en) | Method for manufacturing solid-state electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |