KR20060016630A - Method for analyzing defects in semiconductor device - Google Patents

Method for analyzing defects in semiconductor device Download PDF

Info

Publication number
KR20060016630A
KR20060016630A KR1020040065142A KR20040065142A KR20060016630A KR 20060016630 A KR20060016630 A KR 20060016630A KR 1020040065142 A KR1020040065142 A KR 1020040065142A KR 20040065142 A KR20040065142 A KR 20040065142A KR 20060016630 A KR20060016630 A KR 20060016630A
Authority
KR
South Korea
Prior art keywords
passivation layer
semiconductor device
layer
defect
grinding
Prior art date
Application number
KR1020040065142A
Other languages
Korean (ko)
Inventor
탁병석
Original Assignee
동부아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부아남반도체 주식회사 filed Critical 동부아남반도체 주식회사
Priority to KR1020040065142A priority Critical patent/KR20060016630A/en
Publication of KR20060016630A publication Critical patent/KR20060016630A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명은 그라인더(Grinder)를 이용하여 폴리이미드 계층 및 페시베이션 계층 일부분을 제거하고, 제거하고 남은 페시베이션 계층의 일부분을 SEM의 구동 전압을 조절하여 불량 원인을 보다 정확하게 분석하기 위한 것으로, 이를 위한 작용은 폴리이미드 계층을 그라이딩하는 제1과정과, 폴리이미드 계층이 전면 그라이딩된 후, 페시베이션 계층 일부를 그라이딩하는 제2과정과, 제2과정에서 그라이딩하고 남은 페시베이션 계층을 SEM을 이용하여 불량 포인트를 분석하는 제3과정을 포함한다. 따라서, 불량의 원인을 보다 명확하게 규명하여 공정 파트에 피드백하여 공정의 이상 유무 및 장비의 이상 유무 확인으로 반도체 수율을 향상시킬 수 있는 효과가 있다. The present invention is to remove a portion of the polyimide layer and passivation layer by using a grinder, and to analyze the cause of the defect more accurately by adjusting the driving voltage of the SEM to remove a portion of the remaining passivation layer. The operation is performed by the first process of gliding the polyimide layer, the second process of gliding a portion of the passivation layer after the polyimide layer is totally glided, and the passivation layer remaining after gliding in the second process. Using a third process of analyzing the bad point using. Therefore, it is possible to more clearly identify the cause of the defect to feed back to the process parts to improve the semiconductor yield by confirming the abnormality of the process and the abnormality of the equipment.

그라인더(Grinder), SEM, 폴리이미드 계층, 페시베이션 계층Grinder, SEM, Polyimide Layer, Passivation Layer

Description

반도체 소자의 불량 분석방법{METHOD FOR ANALYZING DEFECTS IN SEMICONDUCTOR DEVICE}Fault analysis method of semiconductor device {METHOD FOR ANALYZING DEFECTS IN SEMICONDUCTOR DEVICE}

도 1은 반도체 소자의 불량이 발생된 탑 메탈(Top Metal) 계층에 대하여 Grinding 하기 전의 단면도이고, 1 is a cross-sectional view before grinding on a top metal layer in which a defect of a semiconductor device is generated.

도 2는 본 발명에 따른 반도체 소자의 불량이 발생된 탑 메탈 라인에 대하여 Grinding 후의 단면도이며, 2 is a cross-sectional view after grinding for the top metal line in which the defect of the semiconductor device according to the present invention occurs.

도 3은 본 발명에 따른 반도체 소자의 불량 분석 SEM 사진을 도시한 도면이다. 3 is a view showing a SEM analysis of the failure of the semiconductor device according to the present invention.

본 발명은 반도체 소자의 불량 분석방법에 관한 것으로, 특히 탑 메탈(Top Metal) 계층에서 발생된 불량의 원인을 분석할 수 있는 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure analysis method of a semiconductor device, and more particularly, to a method of analyzing a cause of a failure generated in a top metal layer.

통상적으로, 반도체 소자를 제조하는 경우, 점차적으로 그 소자의 초 고집적화에 따라 회로 선폭이 감소하고, 메탈 계층(Metal Layer)도 다층 구조로 형성되어 있다. In general, in the case of manufacturing a semiconductor device, the circuit line width is gradually reduced with the ultra-high integration of the device, and the metal layer is also formed in a multilayer structure.

도 1은 반도체 소자의 불량이 발생된 탑 메탈 계층에 대하여 Grinding 하기 전의 단면도로서, 다층의 메탈 계층(S1)과, 메탈 계층 상부에 스크래치 및 모이스춰(Moisture)를 방지하기 위해 PE-산화막(S2)/PE-질화막(S3)으로 이루어진 페시베이션 계층(Passivation Layer)과, 페시베이션 상부에 폴리이미드 계층(Polyemide Layer)(S4)을 순차적으로 증착함으로써, 이 두 계층의 강한 밀도를 이용하여 메탈 계층 상부의 스크래치 및 모이스춰(Moisture)를 방지할 수 있다. FIG. 1 is a cross-sectional view before grinding of a top metal layer in which a defect of a semiconductor device is generated, and includes a multilayer metal layer S1 and a PE oxide layer S2 to prevent scratches and moisture on the metal layer. By sequentially depositing a passivation layer consisting of a / PE-nitride film (S3) and a polyimide layer (S4) on top of the passivation, the strong density of these two layers is used to Prevents scratches and moisture

그러나, 다층 구조의 메탈 계층 중 탑 메탈 계층에 불량 포인트, 즉 쇼트 현상이 발생될 경우, 그 발생 현상을 정확하게 분석할 수 없다. 즉, 메탈 계층 중에서 탑 메탈의 경우, 건식 식각 및 습식 식각에 의해 나타나는 부분적인 오버 에칭, 혹은 언더 에칭 현상이 발생하며, 또한 상술한 바와 같이, 스크래치 및 Moisture를 방지하기 위해 PE-산화막/PE-질화막으로 이루어진 페시베이션 계층과, 페시베이션 상부에 폴리이미드 계층을 순차적으로 증착하므로, 탑 메탈 불량 부위를 정밀 검사 시 정확한 분석을 행할 수 없게 되는 문제점을 갖는다. However, when a defect point, that is, a short phenomenon occurs in the top metal layer among the metal layers of the multilayer structure, the occurrence phenomenon cannot be accurately analyzed. That is, in the case of the top metal in the metal layer, a partial over etching or under etching phenomenon caused by dry etching and wet etching occurs, and as described above, in order to prevent scratches and moisture, PE-oxide film / PE- Since the passivation layer made of a nitride film and the polyimide layer are sequentially deposited on the passivation layer, there is a problem in that an accurate analysis cannot be performed when inspecting the top metal defect site.

이에, 본 발명은 상술한 문제점을 해결하기 위해 안출한 것으로, 그 목적은 그라인더(Grinder)를 이용하여 폴리이미드 계층 및 페시베이션 계층 일부분을 제거하고, 제거하고 남은 페시베이션 계층의 일부분을 SEM의 구동 전압을 조절하여 불량 원인을 보다 정확하게 분석할 수 있는 반도체 소자의 불량 분석방법을 제공함에 있다.Accordingly, the present invention has been made to solve the above-described problems, the object of the present invention is to remove a portion of the polyimide layer and passivation layer using a grinder, and to remove a portion of the remaining passivation layer to drive the SEM The present invention provides a defect analysis method of a semiconductor device capable of more accurately analyzing a cause of a defect by adjusting a voltage.

이러한 목적을 달성하기 위한 본 발명에서 반도체 소자의 불량 분석방법은, 폴리이미드 계층을 그라이딩(Grinding)하는 제1과정과, 폴리이미드 계층이 전면 그 라이딩된 후, 페시베이션 계층 일부를 그라이딩하는 제2과정과, 제2과정에서 그라이딩하고 남은 페시베이션 계층을 SEM을 이용하여 불량 포인트를 분석하는 제3과정을 포함하는 것을 특징으로 한다.In the present invention for achieving the above object, the defect analysis method of the semiconductor device, the first process of grinding the polyimide layer (Grinding), and after the polyimide layer is the entire surface of the grinding passivation layer And a third process of analyzing the defect points using the SEM for the remaining passivation layer after the second process and the second process.

이하, 본 발명의 실시예는 다수개가 존재할 수 있으며, 이하에서 첨부한 도면을 참조하여 바람직한 실시 예에 대하여 상세히 설명하기로 한다. 이 기술 분야의 숙련자라면 이 실시 예를 통해 본 발명의 목적, 특징 및 이점들을 잘 이해하게 될 것이다. Hereinafter, a plurality of embodiments of the present invention may exist, and a preferred embodiment will be described in detail with reference to the accompanying drawings. Those skilled in the art will appreciate the objects, features and advantages of the present invention through this embodiment.

도 2는 본 발명에 따른 반도체 소자의 불량이 발생된 탑 메탈 라인에 대하여 Grinding 후의 단면도이다.2 is a cross-sectional view after grinding for the top metal line in which the defect of the semiconductor device according to the present invention occurs.

먼저, 도 1은 반도체 소자의 불량이 발생된 탑 메탈 라인에 대하여 Grinding 하기 전의 단면도로서, 이에 대하여 설명하면 다음과 같다. 먼저, 다층의 메탈 계층 라인(S1)이 형성되어 있고, 이러한 메탈 계층 라인 상부에 스크래치 및 모이스춰(Moisture)를 방지하기 위해 페시베이션 계층(S2,S3)을 증착한다. 여기서, 페시베이션 계층은 PE-산화막(S2)/PE-질화막(S3)으로 이루어져 있다.First, FIG. 1 is a cross-sectional view before grinding of a top metal line in which a defect of a semiconductor device is generated. First, multilayer metal layer lines S1 are formed, and passivation layers S2 and S3 are deposited on the metal layer lines to prevent scratches and moisture. Here, the passivation layer is composed of a PE oxide film (S2) / PE nitride film (S3).

이어서, 페시베이션 계층(S2,S3) 상부에 폴리이미드 계층(S4)을 증착한다.Subsequently, a polyimide layer S4 is deposited on the passivation layers S2 and S3.

본 발명에 따라 그라인더(Grinder)를 이용하여 먼저, 도 1에 도시된 폴리이미드 계층(S4)을 일정 시간동안 그라이딩(Grinding)하여 전면 제거한다. 여기서, 그라이딩은, 예로서, 40Rpm의 속도, 0.05㎛의 슬러리를 이용하여 15분(min)동안 진행된다. First, using a grinder according to the present invention, first, the polyimide layer S4 illustrated in FIG. 1 is ground for a predetermined time to remove the entire surface. Here, the gliding proceeds for 15 minutes using, for example, a slurry of 0.05 µm at a rate of 40 Rpm.

다음으로, 폴리이미드 계층(S4)에 대한 그라이딩이 완료된 후, PE-산화막(S2)/PE-질화막(S3)으로 이루어진 페시베이션 계층을 일정 시간동안 그라이딩하여 95%를 제거한다. 여기서, 그라이딩은, 예로서, 40Rpm의 속도, 0.05㎛의 슬러리를 이용하며 10분(min)동안 진행된다. Next, after the gradation to the polyimide layer (S4) is completed, the passivation layer consisting of PE-oxide film (S2) / PE-nitride film (S3) is ground for a predetermined time to remove 95%. Here, the gliding proceeds for 10 minutes, using, for example, a slurry of 0.05 μm, a slurry of 0.05 μm.

마지막으로, 도 2에 도시된 바와 같이, 그라이딩에 의해 95%의 페시베이션 계층이 제거되고, 남은, 5%의 페시베이션 계층, 즉 PE-산화막(S5)을 1.5㎚ 이하의 분해로 정확하게 분해할 수 있는 전자 주사 현미경(Scanning Electron Microscopy, SEM)의 구동 전압을 임의의 전압으로 다운 조절할 경우, 빛의 굴절율이 최소화됨에 따라 다층의 메탈 계층 라인 상부에 발생된 불량 포인트, 즉 쇼트 현상(S6)을 도 3에 도시된 바와 같이, 정확하게 관찰(분석)할 수 있다. 여기서, SEM의 구동 전압은, 노멀(normal)일 경우, 200V에 의해 구동되지만, 다층의 메탈 계층 라인 상부에 발생된 불량 포인트, 즉 쇼트 현상을 정확하게 분석하기 위해 -40V 내지 20V의 구동 전압으로 조절한다. Finally, as shown in Fig. 2, 95% of the passivation layer is removed by gliding, and the remaining 5% of the passivation layer, that is, the PE-oxide film S5 is accurately decomposed to a resolution of 1.5 nm or less. When adjusting the driving voltage of the scanning electron microscope (SEM) to an arbitrary voltage, the defect point generated on the multi-layered metal layer line as the refractive index of light is minimized, that is, the short phenomenon (S6) As shown in FIG. 3, it can be observed (analyzed) accurately. Here, the driving voltage of the SEM is driven by 200V when it is normal, but is adjusted to a driving voltage of -40V to 20V to accurately analyze a defect point, that is, a short phenomenon occurring on the multilayer metal layer line. do.

따라서, 그라인더(Grinder)를 이용하여 폴리이미드 계층 및 페시베이션 계층 일부분(95%)을 제거하고, 제거하고 남은 페시베이션 계층의 일부분(5%)을 SEM의 구동 전압을 조절하여 불량 원인을 보다 정확하게 분석함으로써, 불량의 원인을 보다 명확하게 규명하여 공정 파트(part)에 피드백(feedback)하여 공정의 이상 유무 및 장비의 이상 유무 확인으로 반도체 수율을 향상시킬 수 있다. Therefore, the grinder is used to remove a portion of the polyimide layer and passivation layer (95%), and to remove the remaining portion of the passivation layer (5%) by adjusting the driving voltage of the SEM to more accurately determine the cause of the defect. By analyzing, it is possible to more clearly identify the cause of the defect and to feed back to the process part to improve the semiconductor yield by confirming the abnormality of the process and the abnormality of the equipment.

또한, 본 발명의 사상 및 특허청구범위 내에서 권리로서 개시하고 있으므로, 본원 발명은 일반적인 원리들을 이용한 임의의 변형, 이용 및/또는 개작을 포함할 수도 있으며, 본 명세서의 설명으로부터 벗어나는 사항으로서 본 발명이 속하는 업계에서 공지 또는 관습적 실시의 범위에 해당하고 또한 첨부된 특허청구범위의 제한 범위내에 포함되는 모든 사항을 포함한다. In addition, since the present invention is disclosed as a right within the spirit and claims of the present invention, the present invention may include any modification, use and / or adaptation using general principles, and the present invention as a matter deviating from the description of the present specification. It includes all matter falling within the scope of known or customary practice in the art to which it belongs and falling within the scope of the appended claims.

상기에서 설명한 바와 같이, 본 발명은 그라인더(Grinder)를 이용하여 폴리이미드 계층 및 페시베이션 계층 일부분을 제거하고, 제거하고 남은 페시베이션 계층의 일부분을 SEM의 구동 전압을 조절하여 불량 원인을 보다 정확하게 분석함으로써, 불량의 원인을 보다 명확하게 규명하여 공정 파트에 피드백하여 공정의 이상 유무 및 장비의 이상 유무 확인으로 반도체 수율을 향상시킬 수 있는 효과가 있다. As described above, the present invention removes a portion of the polyimide layer and the passivation layer by using a grinder, and controls the driving voltage of the SEM to remove a portion of the remaining passivation layer to more accurately analyze the cause of the defect. As a result, the cause of the defects can be more clearly identified and fed back to the process parts to improve the semiconductor yield by checking for abnormalities in the process and abnormalities in the equipment.

Claims (7)

다층의 메탈 계층, 상기 메탈 계층 상부에 형성된 페시베이션 계층, 상기 페시베이션 상부에 형성된 폴리이미드 계층을 포함하는 반도체 소자에서 다층 메탈 계층의 불량 분석 방법으로서, A failure analysis method of a multilayer metal layer in a semiconductor device including a multilayer metal layer, a passivation layer formed on the metal layer, and a polyimide layer formed on the passivation, 상기 폴리이미드 계층을 그라이딩(Grinding)하는 제1과정과,A first process of grinding the polyimide layer, 상기 폴리이미드 계층이 전면 그라이딩된 후, 상기 페시베이션 계층 일부를 그라이딩하는 제2과정과, A second process of gliding a part of the passivation layer after the polyimide layer has been front-glided; 상기 제2과정에서 그라이딩하고 남은 페시베이션 계층을 SEM을 이용하여 불량 포인트를 분석하는 제3과정A third process of analyzing the defect point using the SEM of the passivation layer remaining after the grinding in the second process 을 포함하는 반도체 소자의 불량 분석방법.Failure analysis method of a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제1과정에서의 그라이딩은, 40Rpm의 속도와 0.05㎛의 슬러리를 이용하여 15분(min) 동안 진행되는 것을 특징으로 하는 반도체 소자의 불량 분석방법.Grinding in the first process, a failure analysis method of a semiconductor device, characterized in that the progress for 15 minutes (min) using a slurry of 0.05㎛ and 40Rpm. 제 1 항에 있어서,The method of claim 1, 상기 제2과정에서의 그라이딩은, 40Rpm의 속도와 0.05㎛의 슬러리를 이용하여 10분(min) 동안 진행되는 것을 특징으로 하는 반도체 소자의 불량 분석방법.Grinding in the second process, a failure analysis method of a semiconductor device, characterized in that proceed for 10 minutes (min) using a slurry of 0.05㎛ and 40Rpm. 제 1 항에 있어서,The method of claim 1, 상기 제2과정에서의 페시베이션 계층 일부는, 상기 페시베이션 계층의 95%인 것을 특징으로 하는 반도체 소자의 불량 분석방법.A portion of the passivation layer in the second process is 95% of the passivation layer, the failure analysis method of a semiconductor device. 제 1 항에 있어서, The method of claim 1, 상기 제3과정에서의 그라이딩하고 남은 페시베이션 계층은, PE-산화막인 것을 특징으로 하는 반도체 소자의 불량 분석방법.The passivation layer remaining after the grinding in the third process is a PE-oxide film. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 페시베이션 계층은, PE-산화막/PE-질화막으로 이루어진 것을 특징으로 하는 반도체 소자의 불량 분석방법.The passivation layer, PE-oxide film / PE- nitride film failure analysis method of a semiconductor device, characterized in that consisting of. 제 1 항에 있어서, The method of claim 1, 상기 제3과정에서의 SEM은, -40V 내지 20V의 전압으로 조절하여 구동하는 것을 특징으로 하는 반도체 소자의 불량 분석방법.SEM in the third process, the failure analysis method of a semiconductor device, characterized in that for driving by adjusting to a voltage of -40V to 20V.
KR1020040065142A 2004-08-18 2004-08-18 Method for analyzing defects in semiconductor device KR20060016630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040065142A KR20060016630A (en) 2004-08-18 2004-08-18 Method for analyzing defects in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040065142A KR20060016630A (en) 2004-08-18 2004-08-18 Method for analyzing defects in semiconductor device

Publications (1)

Publication Number Publication Date
KR20060016630A true KR20060016630A (en) 2006-02-22

Family

ID=37124887

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040065142A KR20060016630A (en) 2004-08-18 2004-08-18 Method for analyzing defects in semiconductor device

Country Status (1)

Country Link
KR (1) KR20060016630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966017B1 (en) 2018-09-13 2019-04-04 오민섭 Grinding control method and equipment for defect analysis of semiconductor device
CN112179915A (en) * 2019-07-04 2021-01-05 深圳长城开发科技股份有限公司 Layer removing method for positioning damage points in bare chip
CN116230528A (en) * 2023-03-24 2023-06-06 胜科纳米(苏州)股份有限公司 Chip delamination method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966017B1 (en) 2018-09-13 2019-04-04 오민섭 Grinding control method and equipment for defect analysis of semiconductor device
CN112179915A (en) * 2019-07-04 2021-01-05 深圳长城开发科技股份有限公司 Layer removing method for positioning damage points in bare chip
CN116230528A (en) * 2023-03-24 2023-06-06 胜科纳米(苏州)股份有限公司 Chip delamination method
CN116230528B (en) * 2023-03-24 2024-01-09 胜科纳米(苏州)股份有限公司 Chip delamination method

Similar Documents

Publication Publication Date Title
CN100561731C (en) Multistage interconnected reliability testing structure
DE102006056625B4 (en) Method and test structure for determining focus settings in a lithography process based on CD measurements
JP2005277338A (en) Semiconductor device and inspecting method therefor
DE102007063268A1 (en) Wire bond with aluminum-free metallization layers through surface conditioning
US20060056676A1 (en) Surface inspection device and method
KR20060016630A (en) Method for analyzing defects in semiconductor device
DE102014202113A1 (en) Infrared-based metrology for detecting strain and defects around silicon vias
JP4679299B2 (en) INSPECTION METHOD, INSPECTION DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP4564417B2 (en) Semiconductor device and short circuit detection method
JP2006303227A (en) Method of correcting defect and apparatus of correcting defect
JP4983006B2 (en) Substrate inspection apparatus and method
US8623673B1 (en) Structure and method for detecting defects in BEOL processing
US20070138639A1 (en) Pad structure in a semiconductor device and a method of forming a pad structure
JP5061719B2 (en) Substrate inspection apparatus and method
JP2008078572A (en) Semiconductor device and method for manufacturing it
JP2004253445A (en) Semiconductor device and its manufacturing method
JP3903901B2 (en) Thin film device thickness inspection method
JP2007242862A (en) Inspection substrate and inspection method of defects of transfer pattern
JP2000031228A (en) Manufacture and inspection of semiconductor device
US20180113081A1 (en) Semiconductor inspection method and management method of semiconductor manufacturing apparatus
KR100778860B1 (en) Method for analyzing defects of semiconductor device
JP2003059990A (en) Method for manufacturing semiconductor integrated circuit device
KR100698750B1 (en) Semiconductor device including the overlay mark and the manufacturing method thereof
KR100807044B1 (en) Method of examining process for semiconductor device fabrication
Porat et al. Inline defect root cause analysis of Cu CMP shorts using dual beam FIB

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application