KR20060009189A - Alternative refrigerant mixture - Google Patents

Alternative refrigerant mixture Download PDF

Info

Publication number
KR20060009189A
KR20060009189A KR1020040056692A KR20040056692A KR20060009189A KR 20060009189 A KR20060009189 A KR 20060009189A KR 1020040056692 A KR1020040056692 A KR 1020040056692A KR 20040056692 A KR20040056692 A KR 20040056692A KR 20060009189 A KR20060009189 A KR 20060009189A
Authority
KR
South Korea
Prior art keywords
refrigerant
propane
mixed
mixed refrigerant
refrigerants
Prior art date
Application number
KR1020040056692A
Other languages
Korean (ko)
Inventor
김만회
김주혁
김민수
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020040056692A priority Critical patent/KR20060009189A/en
Publication of KR20060009189A publication Critical patent/KR20060009189A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/47Type R502

Abstract

본 발명은 환경문제를 야기함으로 인해 생산이 규제되고 있는 저온 냉동기용 프레온계 혼합냉매인 R-502를 대체하여, 환경문제를 해소함과 동시에 냉동용량 및 그 성능이 우수한 저온용 혼합냉매 조성물에 관한 것이다.The present invention replaces R-502, a freon-based mixed refrigerant for low temperature freezers, whose production is regulated due to environmental problems, and relates to a low temperature mixed refrigerant composition having excellent freezing capacity and performance while solving environmental problems. .

이를 위해 본 발명은, 냉동시스템에 사용되는 혼합냉매 조성물에 있어서, 프로판과 디플로로메탄이 혼합되며, 그 혼합비가 프로판 88~98 중량%와, 디플로로메탄 2~12 중량%가 전체 100 중량%에 대해 혼합된 것을 특징으로 하는 대체 혼합냉매 조성물을 제공한다.To this end, the present invention, in the mixed refrigerant composition used in the refrigeration system, propane and difluoromethane are mixed, the mixing ratio is 88 ~ 98% by weight of propane, 2 to 12% by weight of difluoromethane total 100 An alternative mixed refrigerant composition is provided that is mixed with respect to weight percent.

냉매, 프로판, 디플로로메탄, R-290, R-32, 냉동, 공조, R-502Refrigerant, Propane, Difluoromethane, R-290, R-32, Refrigeration, Air Conditioning, R-502

Description

대체 혼합냉매 조성물{alternative refrigerant mixture}Alternative refrigerant mixture

본 발명은 환경문제를 야기함으로 인해 생산이 규제되고 있는 저온 냉동기용 프레온계 혼합냉매인 R-502를 대체하여, 환경문제를 해소함과 동시에 냉동용량 및 그 성능이 우수한 저온용 혼합냉매 조성물에 관한 것이다.The present invention replaces R-502, a freon-based mixed refrigerant for low temperature freezers, whose production is regulated due to environmental problems, and relates to a low temperature mixed refrigerant composition having excellent freezing capacity and performance while solving environmental problems. .

통상적으로, R-502 냉매를 사용하는 냉동기 시스템에 순수 프로판을 냉매로 적용했을 경우에 냉매의 체적냉동능력이 작기 때문에 같은 냉동능력을 가지기 위해서는 압축기의 크기가 더 커져야 하는 문제가 있다.In general, when pure propane is used as a refrigerant in a refrigerator system using an R-502 refrigerant, the size of the compressor has to be increased in order to have the same refrigerating capacity because the volume of the refrigerant is small.

안정된 화학적 성질과 우수한 열역학적 성질로 인하여 저온용 냉동기에 주로 사용되어온 R-502냉매는 R-22와 R-115가 48.8%, 51.2%의 중량비로 혼합되어 있는 프레온계 공비혼합냉매이다.R-502 refrigerant, which has been mainly used in low temperature freezers because of its stable chemical properties and excellent thermodynamic properties, is a freon based azeotropic mixed refrigerant in which R-22 and R-115 are mixed at a weight ratio of 48.8% and 51.2%.

그러나, 상기 냉매 R-502에 포함되어 있는 CFC 계열 냉매 R-115와 HCFC 계열 냉매 R-22가 대기 중에 방출되었을 때, 이들 물질에 포함되어 있는 염소 (Cl) 성분이 오존층을 파괴시킨다는 사실이 밝혀졌으며 지구온난화에도 원인이 되는 물질로 판명됨에 따라 그 생산과 사용이 이미 금지되었거나 금지될 예정에 있다.However, when the CFC series refrigerant R-115 and HCFC series refrigerant R-22 contained in the refrigerant R-502 are released into the atmosphere, it is found that the chlorine (Cl) component contained in these substances destroys the ozone layer. As it turns out to be a cause of global warming, its production and use are already banned or planned to be banned.

따라서, 이러한 기존의 냉매를 대체할 수 있는 새로운 물질의 개발이 냉동 및 공조 산업 분야의 중요한 연구 과제가 되고 있으며, 최근에 개발 상용화된 R-502 대체냉매로는 R-404a(R-125/R-143a/R-134a, 44%/52%/4%), R-407a(R-32/R-125/R-134a, 20%/40%/40%), R-407b(R-32/R-125/R-134a, 10%/70%/20%), R-507(R-125/R-143a, 50%/50%) 등이 있다.Therefore, the development of a new material that can replace the existing refrigerant is an important research task in the refrigeration and air conditioning industry, and R-502a (R-125 / R) has been recently developed and commercialized R-502 replacement refrigerant -143a / R-134a, 44% / 52% / 4%), R-407a (R-32 / R-125 / R-134a, 20% / 40% / 40%), R-407b (R-32 / R-125 / R-134a, 10% / 70% / 20%), and R-507 (R-125 / R-143a, 50% / 50%).

여기서, 상기된 대체냉매는 지구환경을 파괴시키는 성분을 포함하지 않아야 함은 물론이고, 기존에 사용하던 냉매와 열역학적 물성치들이 유사한 것이 바람직하다.Here, the alternative refrigerant described above should not include a component that destroys the global environment, and it is preferable that the thermodynamic properties are similar to those of the conventional refrigerant.

이 중 열역학적 성질을 고려해 볼 때, 한 가지 성분의 순수냉매로서 기존에 사용하던 냉매의 열역학적 성질과 유사한 성질을 갖는 대체냉매를 찾는 것이 매우 어려우며, 이러한 경우에는 2성분, 혹은 다성분 혼합물을 대체냉매로서 사용하여야만 한다.Considering the thermodynamic properties, it is very difficult to find alternative refrigerants that have properties similar to those of conventional refrigerants as pure refrigerants of one component, and in this case, two-component or multicomponent mixtures are replaced. Should be used as

따라서, 현재는 HFC 계열의 냉매 및 이들의 혼합물이 대체물로 많이 제시되고 있으며, 위의 혼합냉매들은 오존층을 파괴하지 않는 HFC 계열 냉매들로 이루어지지만, 지구온난화지수가 높고, 합성물질로 이루어져 가격이 비싸며 일반적으로 사용하던 압축기의 냉동기와 호환되지 않기 때문에 냉동시스템에 적용시 새로운 문제점이 노출된다는 단점을 가지고 있다.Therefore, HFC-based refrigerants and mixtures of them are currently suggested as substitutes, and the above mixed refrigerants are composed of HFC-based refrigerants that do not destroy the ozone layer, but have a high global warming index and are made of synthetic materials. It is expensive and incompatible with the compressors of the compressors used in general, which has the disadvantage of exposing new problems when applied to the refrigeration system.

특히, 최근의 기상이변 등이 지구온난화에 등에 기인한다는 사실을 감안할 때 지구온난화지수가 큰 HFC 계열 냉매를 사용하는 것은 바람직하지 않다고 할 수 있으며, 이러한 문제를 근본적으로 해결하기 위한 해결책으로 자연에 존재하는 물질을 냉매로 사용하여 기존의 냉동기와 호환되어 그 냉각성능이 우수한 대체 혼합냉매를 구현해야 한다는 요구가 발생된다.In particular, considering that recent weather abnormalities are caused by global warming, it is not preferable to use HFC-based refrigerants with a large global warming index, and they exist in nature as a solution to fundamentally solve these problems. There is a demand to use an alternative mixed refrigerant having excellent cooling performance by using a material that is used as a refrigerant as a refrigerant.

본 발명의 상기된 요구에 부응하기 위해 창안된 것으로써, 오존층 파괴와 지구온난화 등의 환경문제를 야기하지 않으며 동시에 저온냉동기의 냉동능력과 성능을 향상시킬 수 있는 대체 혼합냉매를 제공하는 것에 목적이 있다.
It is an object of the present invention to provide an alternative mixed refrigerant that can improve the freezing capacity and performance of a low temperature freezer without causing environmental problems such as ozone layer destruction and global warming. .

상기된 목적을 달성하기 위해 본 발명은, 냉매의 포화압력이 낮고 체적냉동능력이 작은 프로판의 단점을 보완하기 위해, 프로판(CH3CH3CH3, R-290)에 HFC 계열 냉매 중 지구온난화지수가 낮은 디플로로메탄(CH2F2, R-32)을 혼합하여서 된 대체냉매를 구현한다.In order to achieve the above object, the present invention, in order to compensate for the shortcomings of propane having a low saturation pressure of the refrigerant and a small volume freezing capacity, the global warming of the HFC series refrigerant in propane (CH 3 CH 3 CH 3 , R-290) Alternative refrigerants are achieved by mixing difluoromethane (CH 2 F 2 , R-32) with a low index.

구체적으로 본 발명은, 냉동시스템에 사용되는 혼합냉매 조성물에 있어서, 프로판과 디플로로메탄이 혼합되며, 그 혼합비가 프로판 88~98 중량%와, 디플로로메탄 2~12 중량%가 전체 100 중량%에 대해 혼합된 것을 특징으로 한다.Specifically, the present invention, in the mixed refrigerant composition used in the refrigeration system, propane and difluoromethane are mixed, the mixing ratio is 88 ~ 98% by weight of propane and 2 to 12% by weight of difluoromethane in total 100 Characterized by mixing relative to weight%.

<실시예><Example>

기본적으로 R-502의 대체냉매는 지구온난화와 오존층파괴 등의 환경문제를 야기하지 않아야 하며, 냉매로서의 열역학적 성질이 우수해야 한다. 또한 R-502를 적용한 저온 냉동기용 시스템과 비교하여 냉동성능 및 냉동용량이 같거나 커야 하고 효율이 높은 대체냉매를 개발해야 대체물질로서 유용하게 사용될 수 있다.Basically, the alternative refrigerant of R-502 should not cause environmental problems such as global warming and ozone depletion, and it should be excellent in thermodynamic properties as refrigerant. In addition, compared to the system for the low temperature freezer using R-502, the freezing performance and the freezing capacity should be the same or larger, and an efficient alternative refrigerant should be developed to be used as a substitute material.

순수 프로판과 R-32와 기존에 사용되던 R-502, R-404a의 비등점, 증기압, 열전도율, 점도, 표면장력, 정압비열과 정적비열의 비, 증발잠열, 지구온난화지수, 오존층파괴지수 등의 열역학적 성질을 비교의 목적 하에 표 1에 나타내었다. Boiling point, vapor pressure, thermal conductivity, viscosity, surface tension, ratio of static pressure and static specific heat, evaporative latent heat, global warming index, ozone depletion index, etc. of pure propane, R-32 and R-502 and R-404a Thermodynamic properties are shown in Table 1 for the purpose of comparison.

여러가지 냉매의 열역학적 특성Thermodynamic Characteristics of Various Refrigerants R-502R-502 R-404aR-404a PropanePropane R-32R-32 분자량, kg/kmolMolecular weight, kg / kmol 111.6111.6 97.697.6 44.144.1 52.0252.02 비등점, ℃Boiling point, ℃ -45.4-45.4 -46.2-46.2 -42.1-42.1 -51.65-51.65 증기압 (℃35/40 ℃), kPaVapor Pressure (℃ 35/40 ℃), kPa 159.8/ 1681159.8 / 1681 170.8/ 1833170.8 / 1833 137.1/ 1369137.1 / 1369 221.4/ 2478221.4 / 2478 임계온도, ℃Critical temperature, ℃ 80.7380.73 72.1472.14 96.7096.70 78.1178.11 증발잠열 (at 0 ℃), kJ/kgLatent heat of evaporation (at 0 ℃), kJ / kg 147.1147.1 165.3165.3 374.5374.5 315.29315.29 액상정적비열 (at 0 ℃), kJ/kgKLiquid static specific heat (at 0 ℃), kJ / kgK 0.66610.6661 0.85970.8597 1.5801.580 0.93860.9386 기상점도 (at 25 ℃), ×10-6kg/msMeteorological viscosity (at 25 ° C), × 10 -6 kg / ms 13.013.0 12.5312.53 8.7378.737 13.0513.05 열전도율 (기상/액상 at 0 ℃), W/mKThermal Conductivity (Gaseous / Liquid at 0 ℃), W / mK 0.00982/ 0.072570.00982 / 0.07257 0.01289/ 0.077830.01289 / 0.07783 0.01911/ 0.092940.01911 / 0.09294 0.01179/ 0.15410.01179 / 0.1541 표면장력 (at 0 ℃), N/mSurface tension (at 0 ℃), N / m 0.008540.00854 0.007500.00750 0.006980.00698 0.010990.01099 Cp/Cv (기상비열비 at 0 ℃ )Cp / Cv (weather specific heat ratio at 0 ℃) 1.2371.237 1.2361.236 1.2771.277 1.4701.470 오존층파괴지수Ozone Depletion Index 0.230.23 00 00 00 지구온난화지수Global Warming Index 43004300 37503750 33 650650

상기 표 1에서와 같이 혼합냉매의 구성 물질인 프로판과 R-32는 분자량이 작기 때문에 동일한 냉동용량의 시스템에 적용할 때 냉매를 절약할 수 있으며, 프로판의 증기압은 R-502와 R-404a에 비해 약간 작은 편이다.As shown in Table 1, propane and R-32, which are the constituents of the mixed refrigerant, have a small molecular weight, and thus, refrigerants may be saved when applied to a system having the same refrigeration capacity. Slightly smaller than

또한, R-32의 증기압은 다른 냉매들에 비해 크지만, 프로판에 R-32를 소량 섞음으로써, R-502 냉매와 비슷한 증기압을 형성할 수 있다.In addition, although the vapor pressure of R-32 is larger than that of other refrigerants, by mixing a small amount of R-32 with propane, a vapor pressure similar to that of the R-502 refrigerant can be formed.

상기 증발잠열이 크면 적은 양의 액상냉매로 소요냉동능력을 얻을 수 있다는 장점이 있으며, 프로판과 R-32는 R-502에 비해 증발잠열이 두 배 이상 큰 특징을 가지고 있다.If the latent latent heat of vaporization is large, there is an advantage in that required cooling capacity can be obtained with a small amount of liquid refrigerant, and propane and R-32 have a feature of greater than twice the latent latent vaporization compared to R-502.

즉, 증발잠열에 비해서 냉매의 액상비열이 크면 팽창과정 동안 다량의 기상냉매가 발생하게 되며, 팽창과정에서 발생한 냉매증기는 냉동능력이 없기 때문에 그만큼 냉동용량이 감소하게 된다.That is, when the liquid specific heat of the refrigerant is greater than the latent heat of evaporation, a large amount of gaseous refrigerant is generated during the expansion process, and the refrigerant vapor generated during the expansion process has no freezing capacity, thereby reducing the freezing capacity.

따라서, R-32의 경우 증발잠열에 대한 액체비열의 비율이 기존 사용되는 냉매들의 반 정도로 작은 특징을 가지며 프로판은 R-502와 R-404a에 비해 약간 작은 특징을 갖기 때문에 팽창과정에서의 상변화에 따른 냉동용량의 감소를 줄일 수 있는 장점이 있다.Therefore, in the case of R-32, the ratio of liquid specific heat to latent heat of evaporation is about half as small as that of conventional refrigerants, and propane is slightly smaller than that of R-502 and R-404a. There is an advantage to reduce the decrease in the freezing capacity.

상기 냉매의 점도가 작으면 압축기 내에서의 유동저항 등을 줄일 수 있기 때문에 압축기의 체적효율을 증가시킬 수 있으며, 프로판의 기상점도는 R-502, R-404a에 비해 작고 R-32는 약간 큰 특징을 가지고 있기 때문에 이를 적절히 혼합하게 되면 압축기의 체적효율을 보다 유리하게 운영할 수 있게 된다.When the viscosity of the refrigerant is small, the flow resistance in the compressor can be reduced, so that the volumetric efficiency of the compressor can be increased. The vapor phase viscosity of propane is smaller than that of R-502 and R-404a, and R-32 is slightly larger. Because of its characteristics, mixing it properly allows the volumetric efficiency of the compressor to be operated more advantageously.

열교환기는 냉동기의 주요 부품으로 시스템 부피의 대부분을 차지하는 것으로, 제안된 크기의 열교환기에서 효율적인 열교환이 이루어지기 위해서는 냉매의 열전달 특성이 우수해야 한다.The heat exchanger is the main part of the refrigerator and occupies most of the system volume. The heat transfer characteristics of the refrigerant must be excellent for efficient heat exchange in the heat exchanger of the proposed size.

여기서, 열전도율이 낮으면 열교환기의 열전달 면적을 크게 하거나 이차유체 와의 온도차를 크게 해야 하고, 열교환기의 열전달 면적을 크게 하면 냉동기의 단가가 높아짐과 동시에 이차유체와의 온도차를 크게 하면 냉동기의 성능이 떨어지는 문제가 발생한다.Here, if the thermal conductivity is low, the heat transfer area of the heat exchanger should be increased or the temperature difference with the secondary fluid should be increased. If the heat transfer area of the heat exchanger is enlarged, the unit price of the freezer will be increased and the temperature difference with the secondary fluid will be increased. Falling problem occurs.

따라서, 열전달 특성을 결정하는 인자 중 하나인 열전도율이 프로판과 R-32의 경우에 R-502와 R-404a에 비해 매우 우수하기 때문에, 동 체적상의 열교환기가 갖는 냉각효율은 프로판과 R-32의 혼합에 의해 향상될 수 있다.Therefore, since the thermal conductivity, which is one of the factors for determining the heat transfer characteristics, is very superior to that of R-502 and R-404a in the case of propane and R-32, the cooling efficiency of the heat exchanger in the body volume is higher than that of propane and R-32. By mixing.

상기 표면장력이 작으면 액상냉매에 의해서 증발기 열교환기 관내 표면이 잘 젖게 되어 열전달 효과가 상승하게 되는데, 프로판의 표면장력은 기존 두 냉매보다 작으며 R-32는 큰 특징을 갖기 때문에 프로판 R-32는 적절히 혼합되어 대체냉매를 형성하게 된다.If the surface tension is small, the surface of the evaporator heat exchanger tube is well wetted by the liquid refrigerant, and the heat transfer effect is increased. The surface tension of propane is smaller than that of the existing two refrigerants, and R-32 has a larger characteristic, so propane R-32 Is mixed properly to form alternative refrigerant.

상기 정적비열에 대한 정압비열의 비가 작으면 압축기에서 압축 시에 냉매 가스 온도의 상승이 크지 않기 때문에 압축비를 보다 넓게 설정할 수 있으며, 증발온도가 낮은 경우에도 1단 압축으로 냉동기를 구성할 수 있게 된다.If the ratio of the static specific heat to the static specific heat is small, the compression gas can be set wider because the rise of the refrigerant gas temperature is not large at the time of compression in the compressor, and the refrigerator can be configured by one-stage compression even when the evaporation temperature is low. .

따라서, 프로판은 R-502와 R-404a의 비열 비율과 비슷한 정도의 값을 가지며, R-32는 큰 값을 갖는다. Therefore, propane has a value similar to the specific heat ratio of R-502 and R-404a, and R-32 has a large value.

전술된 바 있듯이, 프레온계 혼합냉매인 R-502는 오존층을 파괴하고 지구온난화지수도 높으며, HFC계 혼합냉매인 R-404a는 오존층파괴지수는 영이지만 지구온난화지수가 높은 편이다.As described above, R-502, a mixed freon refrigerant, destroys the ozone layer and has a high global warming index. R-404a, a HFC mixed refrigerant, has a zero ozone depletion index but a high global warming index.

이에 반하여, 자연에 존재하는 천연냉매인 프로판은 오존층파괴지수가 영(0) 이며 지구온난화에 대한 영향도 미미하고, R-32는 다른 HFC 계 냉매보다 지구온난화지수가 매우 낮기 때문에 본 발명에 의한 혼합냉매에서는 프로판에 소량의 R-32를 혼합하여 지구온난화에 대한 영향은 매우 적다.In contrast, propane, a natural refrigerant present in nature, has an ozone layer depletion index of zero (0) and little effect on global warming, and R-32 has a lower global warming index than other HFC refrigerants. In mixed refrigerants, a small amount of R-32 is mixed with propane, which has little effect on global warming.

결국, 본 발명에 따른 혼합냉매는 상기된 열역학적 특성에 근거하여 우수한 열역학적 성질과 환경친화적인 성질을 갖는 두 냉매를 적절히 조합한 것으로서 냉매로서 우수한 성질을 갖도록 조성하게 된다.As a result, the mixed refrigerant according to the present invention is suitably a combination of two refrigerants having excellent thermodynamic properties and environmentally friendly properties based on the thermodynamic properties described above, and is configured to have excellent properties as a refrigerant.

본 발명의 혼합 냉매 중 특정 조성의 혼합냉매를 선정 조합하여 표 2에 나타내었다. 또한, 표 2에 나타낸 특정 조성의 혼합냉매와 R-502, R-404a 그리고 순수 프로판에 대하여 이론 사이클 특성 해석을 수행하고 그 결과를 표 3에 나타내었다.Table 2 shows selected combinations of specific refrigerants of the mixed refrigerants of the present invention. In addition, the theoretical cycle characteristics analysis was performed on the mixed refrigerant of the specific composition shown in Table 2, and R-502, R-404a and pure propane, and the results are shown in Table 3.

여기서, 이론 사이클 특성 해석을 위한 표준 조건으로는 ASHRAE L.B.P를 사용하였고, 냉매의 열물성을 계산하기 위해서 냉매물성프로그램인 REFPROP 6.01를 사용하였으며, 압축기의 효율은 100%로 가정하였다.Here, ASHRAE L.B.P was used as a standard condition for theoretical cycle characteristics analysis. REFPROP 6.01, a refrigerant properties program, was used to calculate the thermal properties of the refrigerant, and the efficiency of the compressor was assumed to be 100%.

또한, 열교환 시 온도가 변하는 혼합냉매와 온도가 변하지 않는 냉매를 비교하기 위하여 열교환할 때의 냉매의 평균온도를 같게 하는 방법을 사용하였다.In addition, in order to compare a mixed refrigerant whose temperature is changed during the heat exchange with a refrigerant which does not change in temperature, a method of equalizing the average temperature of the refrigerant during heat exchange was used.

프로판/R-32 혼합냉매 조성물Propane / R-32 Mixed Refrigerant Composition 프로판, 중량%Propane, wt% R-32, 중량%R-32, wt% 1One 9696 44 22 9494 66 33 9292 88 44 9090 1010

이론 사이클 특성 해석 (ASHRAE L.B.P)Theoretical Cycle Characteristic Analysis (ASHRAE L.B.P) R-502R-502 R-404aR-404a PropanePropane 1One 22 33 44 응축압력, kPaCondensing pressure, kPa 23312331 2545.52545.5 18831883 20702070 21592159 22422242 23262326 응축온도구배, ℃Condensation Temperature Gradient, ℃ 00 0.270.27 00 5.075.07 7.057.05 8.78.7 10.0510.05 증발압력, kPaEvaporation pressure, kPa 255.1255.1 270.6270.6 216.6216.6 265.5265.5 285285 301301 315315 증발온도구배, ℃Evaporation Temperature Gradient, ℃ 00 0.650.65 00 9.309.30 12.2112.21 14.3514.35 15.8915.89 압축비Compression Ratio 9.149.14 9.419.41 8.698.69 7.807.80 7.587.58 7.457.45 7.387.38 압축기토출온도, ℃Compressor discharge temperature, ℃ 120.4120.4 113.7113.7 115.8115.8 113.9113.9 113.7113.7 113.9113.9 114.5114.5 증발기입구건도Evaporator entrance level 0.3830.383 0.4240.424 0.3510.351 0.3670.367 0.3730.373 0.3770.377 0.3810.381 냉동부하, kJ/kgFrozen load, kJ / kg 137.98137.98 154.9154.9 354.5354.5 344.5344.5 339.9339.9 335.4335.4 331.1331.1 체적냉동능력, kJ/m3 Volumetric freezing capacity, kJ / m 3 1606.11606.1 1680.71680.7 1378.71378.7 1662.91662.9 1770.91770.9 1854.41854.4 1924.71924.7 성능계수Coefficient of performance 2.632.63 2.612.61 2.722.72 2.842.84 2.862.86 2.872.87 2.852.85

상기 표 3에 기인하여, 순수프로판의 기상 비체적이 크기 때문에 체적냉동능력이 작은 특징을 갖는데, 이는 R-32를 소량 혼합함으로써 냉매의 체적냉동능력이 높아진 혼합냉매를 얻었다.Due to the above Table 3, the volumetric refrigeration capacity of the pure propane has a small volume freezing capacity, and a small amount of R-32 was mixed to obtain a mixed refrigerant having a high volume freezing capacity of the refrigerant.

또한, 상기 프로판과 R-32 혼합냉매들의 냉동부하는 R-502와 R-404a에 비해 두 배 이상 크며, 성능계수 역시 큰 특징을 가지고 있으며, 혼합냉매들의 압축기의 압축비는 작은 특징을 가지고 있다.In addition, the refrigeration load of the mixed propane and R-32 refrigerant is more than twice as large as the R-502 and R-404a, has a large coefficient of performance, and the compression ratio of the compressor of the mixed refrigerant has a small feature.

따라서, 본 발명에 의한 혼합냉매 조성물은 기존의 냉매에 비해 냉동부하, 체적냉동능력, 성능계수가 모두 큰 특징을 갖는다.Therefore, the mixed refrigerant composition according to the present invention has a feature that all of the refrigerating load, the volume freezing capacity, and the performance coefficient are larger than the conventional refrigerant.

이상에서 설명된 것과 같이 본 발명은, 지구 환경을 파괴하는 물질로 규정된 저온 냉동용 냉매 R-502를 대체할 수 있으며, 냉동용량 및 성능 면에서도 더 우수한 효과를 기대할 수 있다. As described above, the present invention can replace the low-temperature refrigeration refrigerant R-502, which is defined as a material that destroys the global environment, and can expect better effects in terms of freezing capacity and performance.                     

즉, 본 발명은, 지구온난화 현상이 최소화되어 환경 문제를 야기하지 않고, 냉매로서 뛰어난 열물성을 갖는 프로판과 R-32를 혼합하여 기존 냉매인 R-502와 증기압이 비슷하고 냉동용량 및 성능은 더 뛰어난 냉매를 냉동시스템에 적용함으로써 냉동기 제조원가 및 운영비를 줄일 수 있는 효과를 얻게 된다.
That is, in the present invention, the global warming phenomenon is minimized and does not cause an environmental problem, and by mixing propane and R-32 having excellent thermal properties as a refrigerant, the vapor pressure is similar to that of the existing refrigerant, and the freezing capacity and performance are more. By applying excellent refrigerants to the refrigeration system, it is possible to reduce the freezer manufacturing cost and operating costs.

Claims (2)

냉동시스템에 사용되는 혼합냉매 조성물에 있어서,In the mixed refrigerant composition used in the refrigeration system, 프로판과 디플로로메탄이 혼합된 것을 특징으로 하는 대체 혼합냉매 조성물.Alternative mixed refrigerant composition, characterized in that the mixture of propane and difluoromethane. 프로판 88~98 중량%와, 디플로로메탄 2~12 중량%가 전체 100 중량%에 대해 혼합된 것을 특징으로 하는 대체 혼합냉매 조성물.Alternative mixed refrigerant composition, characterized in that 88 to 98% by weight of propane and 2 to 12% by weight of difluoromethane are mixed with respect to 100% by weight.
KR1020040056692A 2004-07-21 2004-07-21 Alternative refrigerant mixture KR20060009189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040056692A KR20060009189A (en) 2004-07-21 2004-07-21 Alternative refrigerant mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040056692A KR20060009189A (en) 2004-07-21 2004-07-21 Alternative refrigerant mixture

Publications (1)

Publication Number Publication Date
KR20060009189A true KR20060009189A (en) 2006-01-31

Family

ID=37119972

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040056692A KR20060009189A (en) 2004-07-21 2004-07-21 Alternative refrigerant mixture

Country Status (1)

Country Link
KR (1) KR20060009189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220110A (en) * 2010-04-16 2011-10-19 珠海格力电器股份有限公司 Novel environment-friendly refrigerant
CN103074038A (en) * 2011-10-25 2013-05-01 珠海格力电器股份有限公司 Novel environment-friendly refrigerant and air conditioning device
KR101296520B1 (en) * 2011-09-16 2013-08-13 한국해양과학기술원 Mixed refrigerant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234613A (en) * 1991-09-30 1993-08-10 E.I. Du Pont De Nemours And Company Substantially constant boiling compositions of difluoromethane and propane
KR940703904A (en) * 1992-02-03 1994-12-12 로날드 에이, 블리이커 New refrigerant composition
JPH08269441A (en) * 1995-04-04 1996-10-15 Sanyo Electric Co Ltd Working fluid
JPH1121548A (en) * 1997-07-01 1999-01-26 Matsushita Electric Ind Co Ltd Refrigeration cycle unit
JP2000044938A (en) * 1998-08-04 2000-02-15 Hitachi Ltd Working medium composition for air conditioner, and air conditioner using the same
KR100349736B1 (en) * 1994-07-27 2002-12-18 이네오스 플루어 홀딩즈 리미티드 Refrigerant compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234613A (en) * 1991-09-30 1993-08-10 E.I. Du Pont De Nemours And Company Substantially constant boiling compositions of difluoromethane and propane
KR940703904A (en) * 1992-02-03 1994-12-12 로날드 에이, 블리이커 New refrigerant composition
KR100349736B1 (en) * 1994-07-27 2002-12-18 이네오스 플루어 홀딩즈 리미티드 Refrigerant compositions
JPH08269441A (en) * 1995-04-04 1996-10-15 Sanyo Electric Co Ltd Working fluid
JPH1121548A (en) * 1997-07-01 1999-01-26 Matsushita Electric Ind Co Ltd Refrigeration cycle unit
JP2000044938A (en) * 1998-08-04 2000-02-15 Hitachi Ltd Working medium composition for air conditioner, and air conditioner using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220110A (en) * 2010-04-16 2011-10-19 珠海格力电器股份有限公司 Novel environment-friendly refrigerant
WO2011127782A1 (en) * 2010-04-16 2011-10-20 珠海格力电器股份有限公司 Novel environmental-friendly refrigerant
KR101296520B1 (en) * 2011-09-16 2013-08-13 한국해양과학기술원 Mixed refrigerant
CN103074038A (en) * 2011-10-25 2013-05-01 珠海格力电器股份有限公司 Novel environment-friendly refrigerant and air conditioning device

Similar Documents

Publication Publication Date Title
KR20020019682A (en) The composition of refrigerant mixtures for high back pressure condition
US20220154057A1 (en) Refrigerant blends in flooded systems
US6649079B2 (en) Composition of refrigerant mixtures for low back pressure condition
WO1997029162A1 (en) Difluoromethane/hydrocarbon refrigerant mixture and refrigeration cycle plant using the same
KR100696806B1 (en) The nonflammable refrigerant mixture for alternating of r404a
KR100924426B1 (en) The Environmental Refrigerant Mixture For The Open Showcase Refrigerator
KR20060009189A (en) Alternative refrigerant mixture
KR100571359B1 (en) Mixed refrigerant composition for low temperature
KR100648412B1 (en) Low temperature alternative refrigerant composition
KR100616770B1 (en) Near azeotropic mixed refrigerant including r32
CN1240804C (en) Environmental protection refrigerant
KR100616773B1 (en) Azeotropic and near azeotropic mixed refrigerant including r32
KR100534480B1 (en) Composition of environmental refrigerant mixture
KR100405104B1 (en) The composition of refrigerant mixtures for high back pressure condition
KR100414761B1 (en) Refrigerant compositions for alternating refrigerant r-500 which show azeotropic behavior and have enhanced innflammability
KR100439278B1 (en) The composition of refrigerant mixtures for alternating refrigerant r-502
KR100696805B1 (en) The environmental refrigerant mixture for refrigerating system
KR100669091B1 (en) Near azeotropic mixed refrigerant
CN101307223B (en) Ternary near-azeotropic refrigerant containing 1,1,2,2-Ttetrafluoroethane
KR100414762B1 (en) The composition of refrigerant mixtures for alternating refrigerant r-500
Liu et al. Simulation and test results of hydrocarbon mixtures in a Modified-Lorenz-Meutzner cycle domestic refrigerator
KR101049612B1 (en) Refrigerated mixed refrigerant composition for the semiconductor industry
KR100582824B1 (en) The environmental refrigerant mixture for car air conditioner
KR100616771B1 (en) Near azeotropic mixed refrigerant
KR20080094260A (en) The environmental refrigerant mixture for the industrial refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
E801 Decision on dismissal of amendment